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Abstract— In this paper we consider a probabilistic approach
to the problem of localization in wireless sensor networks and
propose a distributed algorithm that helps unknown nodes to
determine confident position estimates. The proposed algorithm
is RF based, robust to range measurement inaccuracies and can
be tailored to varying environmental conditions. The proposed
position estimation algorithm considers the errors and inaccura-
cies usually found in RF signal strength measurements. We also
evaluate and validate the algorithm with an experimental testbed.
The test bed results indicate that the actual position of nodes are
well bounded by the position estimates obtained despite ranging
inaccuracies.

Keywords: Localization, wireless sensor network, RSSI,
probabilistic, distributed, range inaccuracy, position estimates.

I. I NTRODUCTION

A wireless sensor network is a distributed collection of
nodes which are resource constrained and capable of operating
with minimal user attendance. Some of the potential applica-
tions of wireless sensors include environmental monitoring,
military surveillance, search-and-rescue operations, tracking
patients and doctors in a hospital and other commercial ap-
plications. Wireless sensor nodes operate in a cooperative and
distributed manner. Such nodes are usually embedded in the
physical environment and report sensed data to a central base
station; however, for a sensor network to achieve its purpose,
it is essential to know where the information is sensed.

We define the problem of localization as estimating the
position or spatial coordinates of wireless sensor nodes. Local-
ization is an inevitable challenge when dealing with wireless
sensor nodes, and a problem which has been studied for
many years. Nodes can be equipped with a Global Positioning
System (GPS) [1], but this is a costly solution in terms of
volume, money and power consumption.

While much research has focused on developing different
algorithms for localization, less attention has been paid to the
problem of range measurement inaccuracy.

In this paper, we discuss a robust and distributed RSSI-based
position estimation algorithm for wireless sensor network in
the presence of range measurement inaccuracy. Our approach
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is probabilistic and can be easily geared to various environ-
mental conditions by recalibrating the system or sacrificing
accuracy.

II. RELATED WORK

Recently, there has been an increasing interest in indoor
localization systems. The RF based RADAR [2] system can
track users within a building, while the Cricket [3] location
support system uses ultrasound instead for indoor localization.

Directional approaches considering steerable directional an-
tennas have been explored in [4], [5].

An interesting idea is explored in [6] where the problem
of localization is considered in the absence of beacons, while
a method for estimating unknown node positions in a sensor
network based on connectivity-induced constraints is described
in [7].

In [8], experimental evaluation of localization systems with
beacon density is considered an important parameter in deter-
mining localization quality.

Several other localization algorithms have been proposed
and implemented for outdoor localization [9]–[13]. None
of those systems used a probabilistic approach to find the
positions of the nodes. Instead they rely on accurate range
measurements. Accurate measurements are possible using an
acoustic ranging technique [10], but almost impossible with
RF signal strength measurements.

The only other localization techniques using a probabilistic
approach were conducted for indoor systems [14]–[16] where
the multipath fading make predicting the range as a function
of the signal strength practically impossible. To overcome this
problem, the authors had to calibrate the system in every
spot of an entire building, which is clearly undesirable for
a wireless sensor network environment, which may be hostile
or inaccessible.

III. PROPOSEDAPPROACH

In this section, we present a probabilistic position estima-
tion algorithm that consider range measurement inaccuracies.
Nodes in a sensor network can belong to two different classes,
namely beacons and unknowns. We assume that the beacons
have known positions (either by being placed at known posi-
tions or by using GPS), while the unknown nodes estimate



their position with the help of beacons. The first step in
RF-based localization is range measurement, i.e estimating
the distance between two nodes, given the signal strength
received by one node from the other. RF-based signal strength
measurements are usually prone to inaccuracies and errors and,
hence, calibration of such measurements is inevitable before
using them for localization.

For this algorithm to work, extensive preliminary field
measurements and calibrations were carried out as discussed
in the following subsections.

A. Measurements and Data Collection

To evaluate the accuracy of RSSI measurements, we used
two HP Compaq H3870 iPAQs equipped with Lucent Orinoco
cards to measure the signal strength as a function of distance.
One of the iPAQs was configured to send beacon packets
continuously while the other was measuring the signal strength
of each received packet. The two iPAQs were placed in an
outdoor field and remotely controlled from a laptop.

We measured the signal strength and noise in intervals of
2.5m up to 50m. For each distance, we measured the data at
16 different positions (the sender was rotated by 90 degrees,
for each position of the sender, the receiver was rotated by
90 degrees). We took 200 measurements at each position for
a total of 3200 measurements at every distance. We noted a
significant change in signal strength as a function of distance,
while the noise remained almost the same; so, we considered
only the signal strength information in our analysis.

B. Processing of Data Collected

We merged all of the data collected and calculated the
probability distribution of each signal strength as a function
of distance. Interestingly, the probability distribution followed
a normal distribution for most of the signal strengths. We also
note that there might be better distributions that could fit the
data collected; however, the focus of our research is primarily
on implementing and testing the functionality of the algorithm
rather than developing optimum distributions to fit the data.
The position estimation algorithm that we discuss later in this
paper is independent of the type of distribution as long as there
exists a feasible way to represent it in a compact fashion.
Fig. 1 shows a graph with a normal fit for data collected
with a received signal strength of 70. Themeanandstandard
deviationfor each signal strength was noted and tabulated as
a function of distance. A graphical view of the table is shown
in Fig. 2 for signal strengths ranging from 66 to 90. The
proposed algorithm, which is described in the next section,
uses this table for ranging; i.e., any node receiving a beacon
packet will estimate itself to be located on a surface that has
a probability distribution dictated by themeanand standard
deviationcorresponding to the signal strength received.

The measurements we collected were for an outdoor envi-
ronment with very little interference. It is pretty clear that in
conditions where RF measurements are severely hampered by
interference and other environmental factors, we can increase
the probability distribution factor (in this case, the standard
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Fig. 1. Distribution of distances for a received signal strength of 70.
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Fig. 2. Probability distribution of signal strength with distance.

deviation) to account for deviations from the actual or mean
position estimate. Sensors can dynamically adapt and tune to
such changing environments by choosing the right parameters
to localize themselves. However, we focus our interest only
on the outdoor environment localization problem in this paper.
Indoors, it is likely that the proposed method will work with
very poor accuracy.

C. Algorithm

Consider Fig. 3(a) which shows two beacons (1 and 2)
assisting an unknown node (3). With a Gaussian distribution
as indicated by our measurements, the unknown node will
estimate its final position as shown in Fig. 3(b). A three-
dimensional view of the same position estimate is shown in
Fig. 3(c). The nodes are more likely to be towards the mean,
and accordingly, their probability distributions are higher to-
wards the mean. Each point on every surface will have a real
positive value representing the probability distribution func-
tion associated with that surface. A higher value at position
(x, y) represents a higher probability that the node is at the
coordinates(x, y).

Every unknown node in the network will execute a dis-
tributed algorithm as follows:

The unknown node initializes its position estimate to the
entire space. The node then waits to receive beacon packets
from its neighboring nodes, and upon receiving a beacon
packet, updates its position estimate by computing the con-
straint and intersects it with the current estimate to obtain the
new estimate. If the position estimate improves, it will wait for
a specific period of time and will broadcast its new estimate
to all of its neighbors.

Every node receives a beacon packet either directly from
a beacon or from another unknown node. Each such packet
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Fig. 3. (a) Two beacons (1 and 2) assisting an unknown node (3). (b) The resulting position estimate. (c) The same constraints and position estimate as in
(a) and (b) represented as 3D surfaces.

Node Type Node ID Total Length Position estimate

Fig. 4. Packet format of a beacon message.

contains aposition estimatefield of the node originating the
packet as shown in Fig. 4.

If the message comes directly from a beacon, theposition
estimateis a point (ideal case) or a very small area (corre-
sponding to uncertainty in GPS measurements). In this case,
the constraint is simple. If the unknown node estimates a
mean µ and standard deviationσ from the signal strength
of the beacon message, the constraint is a Gaussian normal
distributed surface of meanµ and standard deviationσ. This
is equivalent to a Gaussian function rotated 360 degrees around
the coordinates of the beacon. Fig. 5 shows the constraint
imposed by a beacon on an unknown node after transmitting
a beacon message.

Fig. 5. Constraint imposed by a beacon on an unknown node.

On the other hand, if the message comes from another
unknown node, the constraint is not necessarily Gaussian. We
will explore how the constraint is computed by an unknown
node in such a situation in Section III-E.

D. Algorithm Design and Implementation Issues

The beacon packet format described in the previous section
is a generic format. Theposition estimatesent by a beacon
is not the same as the one sent by an unknown node as part
of the beacon message. In the case of beacons, the position
estimate is a point(x, y), while it is an estimate in the case

Peer ID X coordinates Y coordinates mean1 stdev1 mean2 stdev2

Peer ID X coordinates Y coordinates mean1 stdev1 mean2 stdev2

Length Beacon ID

Length Beacon ID

.....

.....

Fig. 6. Format of the position estimate as stored by an unknown node.

of an unknown. We used the following method to store the
position estimate at each unknown node.

Upon receiving a beacon packet, every unknown node
records the beacon ID, the peer that originated the message
and the estimated mean and standard deviation for that peer.
In this way, a cascade of distribution is stored and transmitted
by every unknown node in the network. Thus the position
estimate field will, look as shown in Fig. 6. Only two rows are
shown; the total size depends on the number of beacons in the
network. We note that there might be multiple entries (rows)
for a single beacon, when a node receives beacon messages
from different neighbors for a particular beacon ID. Finally,
the length of each cascade depends on the size of the network
diameter. If we assume the maximum distance between any
two unknown nodes as k hops, then the size will not exceed
(4k + 8) bytes, assuming that each field takes 2 bytes.

We observe that there are a number of other ways to store
position estimates and transmit them to other unknown nodes
in the network. One method is the grid approach, where
the network space is divided into a uniform grid, and the
probability is estimated at each square in the grid. This method
has obvious drawbacks because of storage and memory re-
quirements. The finer the grid, the greater the memory required
to store the estimates. There is a clear tradeoff between the
precision of the position estimate and the storage requirement.
Wireless sensor nodes usually have limited memory resources,
and the grid representation would consume most of those
resources.

Transmitting position estimates as a cascade of distributions
and having the unknown nodes compute the estimates locally
guarantees lesser memory requirements and allows the nodes
to obtain more precise estimates.

When a beacon sends a beacon packet, all of its neighbors
may update their position estimates; and, in return, each sends
a beacon packet, which will reach the neighbor’s neighbors
and will keep multiplying. In reality, fewer numbers of beacon
messages propagate in the network and, hence, maintain the
locality of the algorithm.



1

2

4

5 6

7

3

8

Fig. 7. The information from beacon node 1 is aggregated at node 5 and
only one beacon message is sent to nodes 6 and 8.

An important observation is that the only nodes which
actually provideinformation in the system are the beacons.
All of the other nodes simply relay these primary sources of
information. Consider the situation depicted in Fig. 7. The
information from beacon node 1 reaches nodes 2, 3 and 4. In
turn, each of the nodes 2, 3 and 4 will broadcast its newly-
computed position estimate. Node 5 will receive each of the
broadcasts, and it can aggregate the information from all three
broadcasts before sending out its own update. Then, node 8
and 6 will only receive one broadcast from node 5.

In our implementation, a main process spawns four threads,
namely recv beacon, sendbeacon, recv rssi and sendrssi.
The recv beaconthread waits for beacon packets and, upon
receiving one, updates its estimate and puts it into the queue
to be broadcast. When the aggregation timer expires, the
sendbeaconthread dequeues the packet and broadcasts it to
its neighbors.

Ranging based on signal strength measurements can be
very irregular and uncertain due to multipath fading and in-
terference, despite extensive field measurements. A single bad
beacon message received (in this case a higher or lower signal
strength than the one expected) can result in incorrectness and
deviation from the original position estimate. To increase the
robustness of the algorithm, we take multiple signal strength
measurements between pairs of nodes. Thesendrssi thread
sends an RSSI packet every second. Therecv rssi thread
waits for an RSSI packet from its neighbors and estimates the
signal strength of this packet. Then it calculates the mean and
standard deviation as indicated before from the signal strength
table. When a subsequent packet is received with a particular
signal strength, it shifts the mean and standard deviation based
on a weighted formula. If (µ1,σ1) and (µ2,σ2) are the two
consecutive measurements, then the new shifted measurement
(µshift,σshift) is computed as:

µshift =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

(1)

σshift =
σ1σ2√
σ2

1 + σ2
1

(2)

        for  ( every unknown node )

            open the log file;

            initialize the position estimate P to the

            entire space;

       

            for  ( every row in the file )

                initialize constraint C to NULL;

                set pointer to mean1;

                  

                while (! endof(row) )

                     read mean,  stdev ; 

                     compute new constraint N;

                     C = C + N ;

                     increment pointer to 

                     point to the next mean;

                end  while;

          
                P = P � C;

            end  for;

        
        end  for;

                                        

Fig. 8. The algorithm executed by each node to calculate the estimates of
unknown nodes.

The nodes were run until they estimated, with high con-
fidence, a position with the smallest area. One method of
deciding when such a position estimate is obtained is by
computing the ”spikiness” of localization. A practical way
to do this is to find the area that contains the node with
99% confidence. If this area is considerably smaller than the
previous estimate, it triggers an update. But, in this experiment,
we let the nodes run for enough time to ensure that they get
all the beacon messages needed to localize themselves.

We also logged the position estimate of every unknown node
after each update. The log format was the same as the format
of theposition estimateas shown in Fig. 6. The logs collected
were then transferred to a central computing unit (CU) that
processed them to calculate the position estimate of each node
in stages. In the real deployment, every unknown node can run
the CU program to estimate its own position, as each node has
all the information it needs to localize itself.

E. Computation of Final Estimates

Initially, we assume that every node in the network is
present in the entire space with equal probability. We also
assume that the network is fully connected, although our
algorithm will also work in partitioned networks. The CU will
execute the pseudocode shown in Fig. 8.

The CU processes each row in the log of every unknown
node to obtain the constraints and updates the current estimate
by intersecting it with the old position estimate. We will
shortly explain what the addition and intersection symbols in
the algorithm actually mean.

As discussed before, if the beacon message is directly from
a beacon, the constraintC(x, y) imposed on the unknown node
is given by a Gaussian normal distributed surface around the
coordinates of the beacon.

Thus, the unknown node updates its position estimate byin-
tersectingthe old position estimateP (x, y) with the constraint
C(x, y).
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Fig. 9. (a) Constraint after the beacon message travels one hop. (b) Constraint after the beacon message travels two hops. (c) Old position estimate ofan
unknown node. (d) New estimate obtained by intersecting the constraint with the old estimate.

If the beacon message is from an unknown node, the CU has
to process the cascade of distributions beforeintersectingwith
the old position estimate. The new constraint is calculated by
addingthe individual constraints. The sum of these constraints
is similar to theconvolutionof all the individual distributions.
Assume that we have a beacon at coordinates(xb, yb) and two
unknown nodes1 and 2. Assume that, corresponding to the
signal strength that node1 receives from the beacon we have
the pdf functionf1(d) (e.g., a Gaussian with parametersµ1

and σ1); and similarly, corresponding to the signal strength
that node2 receives from node1 we have the pdf function
f2(d).

Then, the position estimate of node1 is given by:

E1(x, y) = f1(d(x, y), (xb, yb)) ∀(x, y), (3)

whered(A,B) is the Euclidean distance between pointsA and
B. The position of node2 is given by (4).

Fig. 9 (b) shows the convolution of two constraints. Fig. 9
(a) shows how the constraint looks after a beacon message
has traveled one hop from a beacon centered at(xb =
36m, yb = 37m) with received estimated Gaussian param-
eters of µ = 17.65, σ = 2.147 at unknown node 1, while
Fig. 9 (b) shows the resultant constraint after it traverses
another hop with received estimated Gaussian parameters of
µ = 18.265, σ = 2.889 at node 2. If constraint in Fig. 9(b) is
the first constraint obtained by node 2, then the new position
estimate is the same as the constraint (since the constraint is
intersectedwith the initial uniform distribution). Otherwise,
the constraint isintersectedwith the old estimate of node 2
as shown in Fig. 9 (c) to produce a new estimate as presented
in Fig. 9 (d).

Every row in the log file is a constraint which is intersected
with the old position estimate to calculate the current estimate.

P (x, y) =
P (x, y) × C(x, y)

∫ ∞
−∞

∫ ∞
−∞ P (x, y) × C(x, y)dxdy

(5)

IV. EXPERIMENTAL EVALUATION

Our experimental test bed consists of nodes scattered ran-
domly in a field of size(60m × 60m). We used 5 beacons
and 8 unknown nodes to test the algorithm. We chose HP
Compaq H3870 iPAQs running Familiar distribution of Linux
[17], equipped with a 11 Mbps Lucent Orinoco card as our
test bed nodes. We restricted the range of each node to 20m
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Fig. 10. Experiment Configuration.

by ignoring messages with the signal strength below a certain
threshold. All the nodes were controlled from a central unit
to which the logs were transferred after the nodes localized
themselves. The set up of our experimental test bed is shown
in Fig. 10. The red circles indicate beacons while the black
circles indicate unknown nodes. We observe that the network
is sparse with many unknown nodes having close proximity
to only one or two beacons.

The beacons were configured to send beacon packets con-
tinuously every 1s. The position information of each beacon
was hard coded with the help of a GPS. On average the GPS
had an accuracy of 5m, which was considered in the end after
the nodes estimated their positions.

Fig. 11 shows the results of our experiment. The top view
shows the comparison of position estimates obtained with the
actual estimates. The circular ring indicates the GPS accuracy
associated with the actual position of an unknown node. The
side view provides a better indication of sharpness in the
position estimate of unknown nodes. Some nodes like 7, 12,
10 and 8 establish a very precise estimate; while nodes like
13 (of all nodes) have inaccurate position estimates (expected
when using inaccurate measurements).

The error of the final position estimates is shown in Fig. 12.
Considering the 7-8m error of the GPS receiver, the results are
surprisingly good.

A graph showing the improvement in the position estimate
of each unknown node after receiving a beacon packet is
shown in Fig. 13. The graph shows the area enclosing the node



E2(x, y) =

∫
x1

∫
x2

E1(x1, y1)f2(d((x, y), (x1, y1)))dx1dy1∫
x2

∫
y2

∫
x1

∫
x2

E1(x1, y1)f2(d((x2, y2), (x1, y1)))dx1dy1dx2dy2
(4)

=

∫
x1

∫
x2

f1(d(x1, y1), (xb, yb))f2(d((x, y), (x1, y1)))dx1dy1∫
x2

∫
y2

∫
x1

∫
x2

f1(d(x1, y1), (xb, yb))f2(d((x2, y2), (x1, y1)))dx1dy1dx2dy2

(a) (b) (c)

Fig. 11. (a) Position estimate of Nodes 11, 7 and 13. (b) Position estimate of Nodes 10, 12 and 6. (c) Position estimate of Nodes 14 and 8.
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Fig. 12. The localization error for each of the unknown nodes.

with 95% confidence. From the position estimates shown in
Fig. 11 and the graph in Fig. 13, we infer that nodes having
smaller final estimates in terms of area are not necessarily the
ones having precise estimates. For example, from the graph,
node 6 has the best final position estimate in terms of area, but
lies within the low probability density area; yet, the position
estimates obtained bound the actual positions of all nodes
exceedingly well.

0 1 2 3 4 5 6 7 8

10
3

10
4

No. of beacon messages received

A
re

a 
of

 th
e 

es
tim

at
e 

(m
2 ) 

−
 9

5%
 c

on
fid

en
ce

Fig. 13. Improvement in the position estimate of nodes with the number of
beacon packets received.

V. CONCLUSION

In this paper, we have described a novel, robust and dis-
tributed algorithm for localizing nodes in sensor networks.
The approach is RSSI based and takes range measurement
inaccuracies into account, which, according to our knowledge,
have not yet been pursued in literature. Our extensive outdoor
field measurements and calibration indicate that a received
signal strength is inaccurate and the proposed approach uses
this information directly for ranging. Also, the algorithm



is independent of the type of distribution as long as there
exists a feasible and practical method to store and compute
the distributions. The proposed algorithm can be tailored to
varying environmental conditions by changing the probability
distribution parameter that accounts for deviation from the
mean position estimate. Our experimental testbed analysis has
also shown positive results with the nodes being well bounded
by the estimates obtained.
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