
Proceedings of the RAAD 2009
18th International Workshop on Robotics in Alpe-Adria-Danube Region

May 25-27, 2009, Brasov, Romania

An Approach to Solving Kinematics Models and Motion Planning for
Manipulators with Mobile Base

Mihai Duguleanaa

a Department of Robotics, Transylvania University, Romania
E-mail: mihai.duguleana@unitbv.ro

URL: www.unitbv.ro

Abstract. In this paper it is presented an up-to-date review of different approaches to solving
inverse kinematics problem for 6 DOF manipulators. There are also briefly described the most
common motion planning algorithms. Furthermore, we are proposing a simple particular
solution using a combination between the Reach Hierarchy and the standard analytical
solution for Powerbot Mobile Robot equipped with a 6 DOF PowerCube robotic arm. We
conclude by listing research issues and further development directions.

Keywords. Forward Kinematics, Inverse Kinematics, Motion Planning, Redundant
Manipulators, 6 DOF

1. Introduction

Kinematics problem is one of the most discussed
issues in fields like Robotics and Computer
Animation. There are 2 different types of Kinematics:
Forward Kinematics and Inverse Kinematics. These
are widely used for synthesizing the motion of linked
bodies (also called kinematic chains). Such structures
are any robotic arms, generally formed by linked
bodies kept together by joints.

There are 6 possible types of joints: prismatic,
revolute, screw, cylindrical, planar and spherical.
Each prismatic, screw and revolute joint introduces 1
degree of freedom (DOF) to the structure while a
cylindrical joint introduces 2 DOF and a spherical or
planar joint introduces 3 DOF. If a robotic arm has 6
DOF, it can reach any point in 3D its working space.
This perfectly constrained structure is also known as
the holonomic arm.

If a link structure can reach the same position of
the end-effector by several different intermediate
positions of the bodies kinematic from the chain, it is
called redundant. Redundancy can be used to meet
secondary tasks such as obstacle avoidance,
satisfying joint limits, singularities avoidance or
variable optimization (i.e. torque optimization,
dexterity optimization, energy saving optimization).

While kinematics handles joint angles and
Cartesian coordinates positioning, the motion itself is
handled by path planning algorithms (Zoppi, 2002).

The most used types of motion planning algorithms
are sample-based motion planning and combinatorial
motion planning. The main idea for the first type of
algorithm is to apply a sampling scheme to solution
space, while combinatorial approaches to motion
planning find paths through the continuous
configuration space without resorting to
approximations (La Valle, 2006). The main issue that
is handled by sampling algorithms is the
transformation of the infinite space of solutions
(resulted from the infinite sampling loop) to a finite
space of solutions (resulted from early closing).

There are also other types of algorithms that seem
slightly adequate for PowerCube arm (Bertram et al.,
2006). Looking at the problem from the path
planning point of view, the probabilistic roadmap
planner is one of the most used solutions. This
approach searches for the shortest path between the
initial given configuration and the goal configuration
on a pre-computed graph. The graph is usually
generated in a collision-free space. Rapid-exploring
random trees are also used to generate a graph that
always offers the optimal path; however because the
trees explore the joint space uniformly, the algorithm
exhibits rather slow convergence (Kopicki, 2007).

Other approaches presume cognition. Robot
learning options are desired in tasks that are
performed in fast evolving environments. Motion can
be assisted by neural networks which are trained to
offer the optimal trajectories depending on several

1

Fig. 2. Modelling and setting up the main coordinate frame

parameters (such as load weight, shortest path,
smallest energy consume and others) (Oiama et al.,
2005). Some of these approaches also use sampling
algorithms in order to make decisions.

The goal of this paper is to present a simple yet
effective arm solution that will enable us to gain
better control over a robotic manipulator mounted on
a mobile robot.

2. Physical system structure

The work presented in this paper is conducted on
Powerbot robot from Active Robots (Fig. 1).
Powerbot comes equipped with a 6 DOF robotic arm
called PowerCube, produced by AMTEC, a
subdivision of Schunk. Active Robots provide an API
for basic control over the arm joints via CANBUS
interface, a wrapper of the libraries developed by
AMTEC. Using PowerCube signals manual, these
classes are further extended into a control driver.

The arm is driven by seven 24v DC motors and it
can reach up to 90 cm from the center of its rotating
base to the tip of its closed gripper. The arm can be
reconfigured for many different work situations, but
the initial configuration seems to have a good
correspondent in real life. As seen in Fig. 2, the joints
include a rotating base, a pivotating shoulder, two
rotating links, a pivotating elbow, a pivotating wrist
and a 1 DOF gripper that can grasp objects 6 cm
wide. All the joints except gripper are rotary. The
arm can lift weights up to 2 kg and each joint encoder
offers current position and speed control capabilities
on every motor.

The control of the arm is made by setting each
joint angle at the desired value. This type of
interaction is not useful for anything beyond a very
basic demonstration. Still, a great function provided
by Active Robots in their API is armPark(). Using
this procedure at the end of each application written
in C/C++, the PowerCube can be safely parked to a
protected configuration.

Fig. 1. Powerbot with PowerCube arm

In order to use the manipulator for higher-level
projects, it was decided to implement an interface
that will allow solving forward and inverse

2

kinematics problems while avoiding collisions and
singularities, thus providing control in Cartesian
coordinates.

3. Forward kinematics

Forward kinematics (FK) explicitly resolves the
position and orientation of each segment in Cartesian
coordinates at a specific time using joint angles as
input, as seen in Eq. (1).

nnk ZYXF −− = 11);;()(φ (1)

Given the angles Φ for each of the 1-n joints, Fk
provides the Cartesian coordinates (X;Y;Z).

For most robotic structures the main goal of FK is
to determine the position and orientation of the last
link (the end-effector).

A commonly used convention for selecting
frames of reference in robotic applications is the
Denavit-Hartenberg (D-H). The basic idea behind D-
H algorithm is to assign coordinate frames to each
joint from the chain (Spong et al., 2005). Each new
frame provides a new homogeneous transformation
matrix. While applying D-H for Powercube arm,
some conventions specific to our case have been
made. One major approximation which deeply
simplifies our problem is the suppressing of joint 3
movements. Joint 3 can be safely blocked if it can be
proved that the solution space remains the same. As
our manipulator is redundant and its base is mobile, it
is trivial that each solution is available to the
constrained link chain (as the mobile property of the
manipulator’s base introduces 2 more DOF – by
suppressing 1 DOF, PowerCube still remains
redundant).

Another factor for this particular link structure is
the small length of L1, which is only 13 cm. Being
the only rotary joint after OZ axis, this characteristic
enables a better formed solution space and reduces
singularity problems.

While fixed manipulators need redundancy for
secondary tasks like obstacle avoidance or trajectory
optimization, a mobile manipulator can always
change its position, thus changing the origin point of
the main chosen coordinate frame. Our approach
considers providing the robot possibly movement
instructions for cases where targets are out of reach,
for cases where we have obstacles or for better
grasping motions with fixed orientation and
positioning of the last body of the kinematic chain.
Later in this article it will be presented an optimal
end-effector region that is used in cases where no
solution is found.

Another convention that has been made is fixing
the main coordinate frame as seen in Fig. 2. The
origin O has been chosen in the middle of the first
joint, just over the rotary base. Axis OX has been

chosen along the straight line given by the zero angle
position for each joint.

The links 2 and 3 are merged into L23 and the
links 5 and 6 are merged into L56 (where L1 = 13cm,
L23 = 36 cm, L4 = 18 cm, L56 = 26 cm).

The resulting coordinates for the end-effector (the
point is placed in the center of the gripper) are
calculated as the product between all the homogenous
matrices resulted from D-H table (see Eq. (2), Eq (3)
and Eq. (4)).

The D-H table for this link structure is presented
in Tab. 1.

Tab. 1. D-H table for PowerCube

Link ai αi di Φi

1 L1 90º 0 Φ1*
23 L23 0 0 Φ2*

4 L4 0 0 Φ4*
56 L56 0 0 Φ5*

)]cos()cos(

cos[cos

54256424

22311

φφφφφ
φφ

++⋅++⋅
+⋅+⋅=

LL

LLEEx

(2)

)]cos()cos(

cos[sin

54256424

22311

φφφφφ
φφ

++⋅++⋅

+⋅+⋅=

LL

LLEE y
 (3)

)sin()sin(

sin

54256424

223

φφφφφ
φ

++⋅++⋅
+⋅=
LL

LEE z
 (4)

4. Inverse kinematics and motion
planning

Opposite to FK that computes the position of the end-
effector, inverse kinematics (IK) provides direct
control over the position of the end-effector by
solving each of the joint angles from the kinematic
chain (Kang, 2000).

)();;();;(1
1

nZYXFkZYXIk −
− == φ

(5)

The Eq. (5) doesn’t have a unique solution in
most cases, since Fk may not have an inverse.

There are 2 different approaches to IK problem:
analytical and numerical. Analytical methods attempt
to give an exact solution by directly inverting the FK
equations. This is only possible on relatively simple
chains. Numerical methods use approximation and
iteration to converge to a solution. These tend to have
a more general purpose but require most of the times
computational resources.

3

 Fig. 3. Geometric model of PowerCube

The most used numerical method for solving IK is
based on Jacobian matrices (Rotenberg, 2005). The
main idea that stands behind this approach is that a
Jacobian matrix contains all the information
necessary to relate a change in any component of x to
a change in any other component of the Fk function
we wish to invert. The approximation which is
usually made is presented in Eq. (6), where ∆EE is
the desired incremental change of the end-effector
position.

EEJ ∆⋅=∆ −1φ (6)

All it needs to be done now is to pick a step and
iterate the equation on a loop until EE reaches the
goal or a position which is fairly satisfying near the
goal.

Variations on this technique rely on constructing
J-1; most used are the pseudo-inverse (J+)-1 and the
transposed (JT)-1.

Another IK numerical approach is the Lagrangian
method. This one tries to extend an underconstrained
redundant system to a perfectly constrained one using
Lagrange multipliers (Kang, 2000).

Another interesting IK numerical method is called
Reach Hierarchy (RH). The main idea behind this
algorithm is that each subset of links has a working
environment. RH relies on pre-computed workspaces
for the kinematic chain, for each link subset of the
kinematic chain and for each link body in particular
(Kang, 2000).

For the specific case of the PowerCube arm, we
propose a solution based on a combination between
the analytical approach and RH.

This approach ensures fast computation times, lowers
self-collision opportunities and can be easily
implemented because it is clearly separated into logic
cases.

RH will be used for link bodies L1 and L23 and
the exact analytical solution will be computed for the
last 2 links. Using RH, the value of the first angle
will be determined. Once the first link is aligned, the
last 3 links will be coplanar with the goal, as it can be
seen in Fig. 4. There are also represented in the figure
the workspaces for L1 (W1) and L23-L4 (W45). We
will later refer to the workspace for L23-L4-L56 as
W456.

From the motion planning point of view, a
sample-based hierarchic approach will be used. If a
solution is computed, it will be tested on a loop using
static grade sampling to ensure that no collisions
occur and if the solution passes the test, joints will be
commanded in hierarchic order, starting from the
base and ending with the end-effector. If an error is
received, there are many possible scenarios that can
be followed (changing angle 2 – by ameliorating RH
algorithm, moving the robot and others).

If a specific direction to the end-effector is given,
the solution can be further constrained to the
analytical approach that will solve the configuration
of L23 and L4. In this case, if no solution is suitable
after applying the collision test function, the only
escape is to move the robot until a solution is
validated.

Other constrains that must be imposed are the
physical rotation capabilities of each joint, limiting
the collision with ground (Gz > H_robot), with the
robot itself. A collision test between the link bodies
of the kinematic chain is also imposed.

4

Fig. 6. Main program structure

5. Software architecture

The arm controlling program has been built
around the libraries provided by Active Robots, in C/
C++ environment. One of the most important
features of the software is its flexibility.
Sophisticated manipulation capabilities will be
needed for real time interaction within dynamic test
scenes.

As it can be seen in Fig. 4, each characteristic of
our problem has been separated in an object oriented
style. Subscribing to this approach ensures that other
modules can be later added and the ones that are
already functioning can be easily modified.

Fig. 4. Software architecture

The encoders from each joint provide angle
information that is used by FK module to find out the
actual position of link of the arm. The information is
transmitted to IK module which provides the 4 angles
presented in Fig. 3: Ф1, Ф 2, Ф 4 and Ф 5. Ф 1 can have
only 2 values for any goal set in the main coordinate
frame. After setting up Ф1, L23, L4 and L56 are
coplanar with the goal. We will further be analyzing
the inverse kinematics of 3 links in 2D space.

This also deeply simplifies the collision test
function. After setting up angle restrictions for each
joint, the only link collisions that have to be taken
care of are the ones between L1-L56 and L23-L56, as
all the other combinations are neighbors. Also L4 can
not reach L1 because of the length of L23 (see Eq.
(7), where ∆d is added because of the link width).

2341 LdLL <∆++ (7)

If the IK module returns a set of solutions but
none of them passes the collision test, the program
enables the robot control module which commands
the robot to move in a desired position where the goal
is reachable. For this type of cases it has been defined
an optimal end-effector region (based on the work in
(Hadi and Sukhan, 2005) where the manipulator is
having a well defined solution, considering link and
environment constrains (see Fig. 5; at left - the
optimal zone is presented facing the profile of the
robot, at right – the optimal zone is viewed from the
top of the robot, which is represented as the gray
rectangle).

Fig. 5. Optimal end-effector space

5

Based on the cited research and on our specific case
constrains, we have concluded that the optimal region
is a space solution where Ф 4 is zero.

Because it sometimes is preferred to control the
direction of the end-effector, special attention is
given to IK module. This module accepts optional
parameters like the value of Ф5, or other restrictions
to middle links.

The grasping motion itself can be improved using
different techniques. The most used approach is to
define a set of primitives that will guide the grasp
module to achieve a desired direction and orientation.
Although this research hasn’t yet been conducted on
this field, the possibility of achieving a certain target
with restrictions on the end-effector’s position has to
be maintained. Sometimes this implies setting up
fixed values or boundaries to Ф 5. It has been decided
to include this case in our software; that is why the
program has been split into 2 parts: one where the
user doesn’t set up Ф 5 and one where the user
chooses a value for this angle. In this way the
architecture can be further developed and the IK
function can be limited to solving angle configuration
for just 2 links (Fig. 6).

6. Research issues and further
development

There are still some issues opened to research while
implementing the solution described above.

While most tasks can be easily satisfied by
this simple approach, but the limitations imposed on
joint 3 reflect in the narrowing of the dextrous
workspace (the positions which can be reached by the
end-effector with arbitrary direction). It hasn’t been
taken in consideration any dynamical factors (which
are resolved by each motor encoder).

Optimizing the trajectory for achieving the lowest
consumed energy would grant the robot a higher
flexibility by increasing its autonomy, a highly
desirable aspect. Collision avoidance should seldom
be performed without moving the robot base. Both
needs described above can be satisfied by including
joint 3 in the kinematic chain and reconsidering the
IK approach.

Further development will conducted into
integrating higher lever grasping structures (like
Barett robotic hand) with PowerCube platform. A
driver for Player/Stage/Gazebo (P/S/G) environment
should also be created.

The arm controller will be further integrated
within a shell that will also support vision
computation, speech recognition, scene mapping
creation and other features that will improve human-
robot interaction, as our goal is to combine research
results from these fields within a cognitive robot.

7. References

Bertram, D., et. al.: An Integrated Approach to
Inverse Kinematics and Path Planning for
Redundant Manipulators. ICSEUK, Karlsruhe,
Germany. In Proc. of IEEE Int. Conf. on
Robotics and Automation (2006), p. 1874-1879.
http://www.kuffner.org/james/papers/

Hadi, M., Sukhan Lee: Joint Limit Analysis and
Elbow Movement Minimization for Redundant
Manipulators Using Closed Form Method.
Sungkyunkwan University, In Proc. of
International Conference on Intelligent
Computing, ICIC 2005, Hefei, China (2005), p.
423-432.
http://www.springerlink.com/content/8x4e8q4etm
am6rwg/

Kang, T.G.: Solving Inverse Kinematics Constraint
Problems for Highly Articulated Models. Master
thesis, University of Waterloo, Ontario, Canada,
2000. Available at:
http://www.cs.uwaterloo.ca/research/tr/

Kopicki, M.: Path Planning in Robot Arm Control.
The University of Birmingham, 2007, PowerPoint
presentation.

 http://www.cs.bham.ac.uk/~msk/IRLab/

LaValle, S.M.: Planning Algorithms. Cambridge
University Press, Cambridge, USA, 2006.
http://planning.cs.uiuc.edu/

Oiama, E., et al.: Inverse Kinematics Learning for
Robotic Arms with Fewer Degrees of Freedom by
Modular Neural Network Systems. NIAIST,
Ibaraki, Japan, 2005.

 http://www.macdorman.com/kfm/

Rotenberg, S.: Inverse Kinematics. UCSD, 2005.
PowerPoint presentation.

 http://graphics.ucsd.edu/courses/cse169_w05/

Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot
Modeling and Control. John Wiley & Sons, 2005.
http://www4.cs.umanitoba.ca/~jacky/

Zoppi, M.: Effective Backward Kinematics for a 6R
Painting Robot. ASME Design Engineering
Technical Conferences and Computer and
Information in Engineering Conference DECT02,
Montreal, Canada, 2002.
http://www.dimec.unige.it/PMAR/pages/downloa
d/papers/

6

