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Abstract. In this paper it is presented an up-to-date review of different approaches to solving 
inverse kinematics problem for 6 DOF manipulators. There are also briefly described the most 
common  motion  planning  algorithms.  Furthermore,  we  are  proposing  a  simple  particular 
solution  using  a  combination  between  the  Reach  Hierarchy  and  the  standard  analytical 
solution for Powerbot Mobile Robot equipped with a 6 DOF PowerCube robotic arm. We 
conclude by listing research issues and further development directions.
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1. Introduction

Kinematics  problem  is  one  of  the  most  discussed 
issues  in  fields  like  Robotics  and  Computer 
Animation. There are 2 different types of Kinematics: 
Forward Kinematics and Inverse Kinematics.  These 
are widely used for synthesizing the motion of linked 
bodies (also called kinematic chains). Such structures 
are  any  robotic  arms,  generally  formed  by  linked 
bodies kept together by joints. 

There  are  6  possible  types  of  joints:  prismatic, 
revolute,  screw,  cylindrical,  planar  and  spherical. 
Each prismatic, screw and revolute joint introduces 1 
degree  of  freedom  (DOF)  to  the  structure  while  a 
cylindrical joint introduces 2 DOF and a spherical or 
planar joint introduces 3 DOF. If a robotic arm has 6 
DOF, it can reach any point in 3D its working space. 
This perfectly constrained structure is also known as 
the holonomic arm. 

If a link structure can reach the same position of 
the  end-effector  by  several  different  intermediate 
positions of the bodies kinematic from the chain, it is 
called redundant.  Redundancy can be used to meet 
secondary  tasks  such  as  obstacle  avoidance, 
satisfying  joint  limits,  singularities  avoidance  or 
variable  optimization  (i.e.  torque  optimization, 
dexterity optimization, energy saving optimization). 

While  kinematics  handles  joint  angles  and 
Cartesian coordinates positioning, the motion itself is 
handled by path planning algorithms (Zoppi, 2002). 

The most used types of motion planning algorithms 
are sample-based motion planning and combinatorial 
motion planning. The main idea for the first type of 
algorithm is to apply a sampling scheme to solution 
space,  while  combinatorial approaches  to  motion 
planning  find  paths  through  the  continuous 
configuration  space  without  resorting  to 
approximations (La Valle, 2006). The main issue that 
is  handled  by  sampling  algorithms  is  the 
transformation  of  the  infinite  space  of  solutions 
(resulted from the infinite sampling loop) to a finite 
space of solutions (resulted from early closing).

There are also other types of algorithms that seem 
slightly adequate for PowerCube arm (Bertram et al., 
2006).  Looking  at  the  problem  from  the  path 
planning  point  of  view,  the  probabilistic  roadmap 
planner  is  one  of  the  most  used  solutions.  This 
approach searches for the shortest path between the 
initial given configuration and the goal configuration 
on  a  pre-computed  graph.  The  graph  is  usually 
generated in a collision-free space.  Rapid-exploring 
random trees are also used to generate a graph that 
always offers the optimal path; however because the 
trees explore the joint space uniformly, the algorithm 
exhibits rather slow convergence (Kopicki, 2007). 

Other  approaches  presume  cognition.  Robot 
learning  options  are  desired  in  tasks  that  are 
performed in fast evolving environments. Motion can 
be assisted by neural networks which are trained to 
offer  the  optimal  trajectories  depending  on  several 
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Fig. 2. Modelling and setting up the main coordinate frame

parameters  (such  as  load  weight,  shortest  path, 
smallest energy consume and others) (Oiama et al., 
2005). Some of these approaches also use sampling 
algorithms in order to make decisions. 

The goal of this paper is to present a simple yet 
effective  arm  solution  that  will  enable  us  to  gain 
better control over a robotic manipulator mounted on 
a mobile robot. 

2. Physical system structure

The  work  presented  in  this  paper  is  conducted  on 
Powerbot  robot  from  Active  Robots  (Fig.  1). 
Powerbot comes equipped with a 6 DOF robotic arm 
called  PowerCube,  produced  by  AMTEC,  a 
subdivision of Schunk. Active Robots provide an API 
for  basic  control  over  the arm joints via CANBUS 
interface,  a  wrapper  of  the  libraries  developed  by 
AMTEC.  Using  PowerCube  signals  manual,  these 
classes are further extended into a control driver. 

The arm is driven by seven 24v DC motors and it 
can reach up to 90 cm from the center of its rotating 
base to  the tip of its closed gripper. The arm can be 
reconfigured for many different work situations, but 
the  initial  configuration  seems  to  have  a  good 
correspondent in real life. As seen in Fig. 2, the joints 
include  a  rotating  base,  a  pivotating  shoulder,  two 
rotating links, a pivotating elbow, a pivotating wrist 
and  a  1  DOF gripper  that  can  grasp  objects  6  cm 
wide.  All  the  joints  except  gripper  are  rotary.  The 
arm can lift weights up to 2 kg and each joint encoder 
offers current position and speed control capabilities 
on every motor.

The control  of the arm is made by setting each 
joint   angle   at    the    desired   value.  This   type of 
interaction is not useful for anything beyond a very 
basic demonstration. Still, a great function provided 
by Active Robots in their  API is  armPark().  Using 
this procedure at the end of each application written 
in C/C++, the PowerCube can be safely parked to a 
protected configuration.

Fig. 1. Powerbot with PowerCube arm

In  order  to use  the manipulator  for  higher-level 
projects,  it  was  decided  to  implement  an  interface 
that    will     allow   solving   forward    and    inverse 
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kinematics  problems  while  avoiding  collisions  and 
singularities,  thus  providing  control  in  Cartesian 
coordinates. 

3. Forward kinematics

Forward  kinematics  (FK)  explicitly  resolves  the 
position and orientation of each segment in Cartesian 
coordinates  at  a  specific  time using joint  angles  as 
input, as seen in Eq. (1).

nnk ZYXF −− = 11 );;()(φ          (1)

Given the angles Φ for each of the 1-n joints, Fk 
provides the Cartesian coordinates (X;Y;Z).

For most robotic structures the main goal of FK is 
to determine the position and orientation of the last 
link (the end-effector).

A  commonly  used  convention  for  selecting 
frames  of  reference  in  robotic  applications  is  the 
Denavit-Hartenberg (D-H). The basic idea behind D-
H algorithm is to assign coordinate frames to each 
joint from the chain (Spong et al., 2005). Each new 
frame  provides  a  new homogeneous  transformation 
matrix.  While  applying  D-H  for  Powercube  arm, 
some  conventions  specific  to  our  case  have  been 
made.  One  major  approximation  which  deeply 
simplifies our problem is the suppressing of joint 3 
movements. Joint 3 can be safely blocked if it can be 
proved that the solution space remains the same. As 
our manipulator is redundant and its base is mobile, it 
is  trivial  that  each  solution  is  available  to  the 
constrained link chain (as the mobile property of the 
manipulator’s  base  introduces  2  more  DOF  –  by 
suppressing  1  DOF,  PowerCube  still  remains 
redundant).

Another  factor for this particular link structure is 
the small length of L1, which is only 13 cm. Being 
the only rotary joint after OZ axis, this characteristic 
enables  a better formed solution space and reduces 
singularity problems. 

While  fixed  manipulators  need  redundancy  for 
secondary tasks like obstacle avoidance or trajectory 
optimization,  a  mobile  manipulator  can  always 
change its position, thus changing the origin point of 
the  main  chosen  coordinate  frame.  Our  approach 
considers  providing  the  robot  possibly  movement 
instructions for cases where targets are out of reach, 
for  cases  where  we  have  obstacles  or  for  better 
grasping  motions  with  fixed  orientation  and 
positioning of the last body of the kinematic chain. 
Later  in this article  it  will  be presented an optimal 
end-effector  region  that  is  used  in  cases  where  no 
solution is found.

Another convention that has been made is fixing 
the  main  coordinate  frame  as  seen  in  Fig.  2.  The 
origin O has been chosen in the middle of the first 
joint,  just  over  the  rotary base.  Axis  OX has  been 

chosen along the straight line given by the zero angle 
position for each joint. 

The links 2 and 3 are merged into L23 and the 
links 5 and 6 are merged into L56 (where L1 = 13cm, 
L23 = 36 cm, L4 = 18 cm, L56 = 26 cm). 

The resulting coordinates for the end-effector (the 
point  is  placed  in  the  center  of  the  gripper)  are 
calculated as the product between all the homogenous 
matrices resulted from D-H table (see Eq. (2), Eq (3) 
and Eq. (4)).

The D-H table for this link structure is presented 
in Tab. 1.

Tab. 1. D-H table for PowerCube

Link ai αi di Φi

1 L1 90º 0 Φ1*
23 L23 0 0 Φ2*

4 L4 0 0 Φ4*
56 L56 0 0 Φ5*
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4. Inverse kinematics and motion 
planning

Opposite to FK that computes the position of the end-
effector,  inverse  kinematics  (IK)  provides  direct 
control  over  the  position  of  the  end-effector  by 
solving each of the joint angles from the kinematic 
chain (Kang, 2000).

)();;();;( 1
1
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The  Eq.  (5)  doesn’t  have a  unique  solution  in 
most cases, since Fk may not have an inverse.

There are 2 different  approaches to IK problem: 
analytical and numerical. Analytical methods attempt 
to give an exact solution by directly inverting the FK 
equations. This is only possible on relatively simple 
chains.  Numerical  methods  use  approximation  and 
iteration to converge to a solution. These tend to have 
a more general purpose but require most of the times 
computational resources.
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   Fig. 3. Geometric model of PowerCube

The most used numerical method for solving IK is 
based on Jacobian matrices  (Rotenberg,  2005).  The 
main idea that stands behind this approach is that a 
Jacobian  matrix  contains  all  the  information 
necessary to relate a change in any component of x to 
a change in any other component of the Fk function 
we  wish  to  invert.  The  approximation  which  is 
usually made is presented in Eq. (6), where ∆EE is 
the  desired  incremental  change  of  the  end-effector 
position. 

EEJ ∆⋅=∆ −1φ          (6)

All it needs to be done now is to pick a step and 
iterate  the equation on a loop until  EE reaches  the 
goal or a position which is fairly satisfying near the 
goal. 

Variations on this technique rely on constructing 
J-1;  most  used are  the  pseudo-inverse  (J+)-1 and the 
transposed (JT)-1. 

Another IK numerical approach is the Lagrangian 
method. This one tries to extend an underconstrained 
redundant system to a perfectly constrained one using 
Lagrange multipliers (Kang, 2000). 

Another interesting IK numerical method is called 
Reach  Hierarchy  (RH).  The  main  idea  behind  this 
algorithm is that each subset of links has a working 
environment. RH relies on pre-computed workspaces 
for the kinematic chain, for each link subset of the 
kinematic chain and for each link body in particular 
(Kang, 2000). 

For the specific case of the PowerCube arm,  we 
propose a solution based on a combination between 
the analytical approach and RH. 

This approach ensures fast computation times, lowers 
self-collision  opportunities  and  can  be  easily 
implemented because it is clearly separated into logic 
cases.

RH will be used for link bodies L1 and L23 and 
the exact analytical solution will be computed for the 
last 2 links.  Using RH, the value of the first angle 
will be determined. Once the first link is aligned, the 
last 3 links will be coplanar with the goal, as it can be 
seen in Fig. 4. There are also represented in the figure 
the workspaces for L1 (W1) and L23-L4 (W45). We 
will later refer to the workspace for L23-L4-L56 as 
W456. 

From  the  motion  planning  point  of  view,  a 
sample-based hierarchic approach will be used. If  a 
solution is computed, it will be tested on a loop using 
static  grade  sampling  to  ensure  that  no  collisions 
occur and if the solution passes the test, joints will be 
commanded  in  hierarchic  order,  starting  from  the 
base and ending with the end-effector. If an error is 
received, there are many possible scenarios that can 
be followed (changing angle 2 – by ameliorating RH 
algorithm, moving the robot and others).

If a specific direction to the end-effector is given, 
the  solution  can  be  further  constrained  to  the 
analytical approach that will solve the configuration 
of L23 and L4. In this case, if no solution is suitable 
after  applying  the  collision  test  function,  the  only 
escape  is  to  move  the  robot  until  a  solution  is 
validated.

Other  constrains  that  must  be  imposed  are  the 
physical  rotation capabilities  of  each  joint,  limiting 
the collision with ground (Gz > H_robot),  with  the 
robot itself. A collision test between the link bodies 
of the kinematic chain is also imposed.
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Fig. 6.  Main program structure

5. Software architecture

The   arm   controlling   program   has been built 
around the libraries provided by Active Robots, in C/
C++  environment.   One  of  the  most  important 
features  of  the  software  is  its  flexibility. 
Sophisticated  manipulation  capabilities  will  be 
needed for real time interaction within dynamic test 
scenes. 

As it can be seen in Fig. 4, each characteristic of 
our problem has been separated in an object oriented 
style. Subscribing to this approach ensures that other 
modules  can  be  later  added  and  the  ones  that  are 
already functioning can be easily modified.

Fig. 4. Software architecture  

The  encoders  from  each  joint  provide  angle 
information that is used by FK module to find out the 
actual position of link of the arm. The information is 
transmitted to IK module which provides the 4 angles 
presented in Fig. 3: Ф1, Ф 2, Ф 4 and Ф 5. Ф 1 can have 
only 2 values for any goal set in the main coordinate 
frame.  After  setting  up  Ф1,  L23,  L4  and  L56  are 
coplanar with the goal. We will further be analyzing 
the inverse kinematics of 3 links in 2D space. 

This  also  deeply  simplifies  the  collision  test 
function. After setting up angle restrictions for each 
joint,  the only link collisions that  have to be taken 
care of are the ones between L1-L56 and L23-L56, as 
all the other combinations are neighbors. Also L4 can 
not reach L1 because of the length of L23 (see Eq. 
(7), where ∆d is added because of the link width).

2341 LdLL <∆++          (7)

If  the  IK  module  returns  a  set  of  solutions  but 
none of them passes  the collision test,  the program 
enables  the robot control  module which commands 
the robot to move in a desired position where the goal 
is reachable. For this type of cases it has been defined 
an optimal end-effector region (based on the work in 
(Hadi  and Sukhan,  2005) where  the manipulator  is 
having a well defined solution, considering link and 
environment  constrains  (see  Fig.  5;  at  left  -  the 
optimal  zone  is  presented  facing  the  profile  of  the 
robot, at right – the optimal zone is viewed from the 
top  of  the  robot,  which  is  represented  as  the  gray 
rectangle). 

Fig. 5. Optimal end-effector space
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Based on the cited research and on our specific case 
constrains, we have concluded that the optimal region 
is a space solution where Ф 4 is zero.      

Because  it sometimes is preferred to control the 
direction  of  the  end-effector,  special  attention  is 
given  to  IK  module.  This  module  accepts  optional 
parameters like the value of Ф5, or other restrictions 
to middle links. 

The grasping motion itself can be improved using 
different  techniques.  The  most  used  approach  is  to 
define  a  set  of  primitives  that  will  guide  the grasp 
module to achieve a desired direction and orientation. 
Although this research hasn’t yet been conducted on 
this field, the possibility of achieving a certain target 
with restrictions on the end-effector’s position has to 
be  maintained.  Sometimes  this  implies  setting  up 
fixed values or boundaries to Ф 5. It has been decided 
to include this case in our software; that is why the 
program has been split  into 2 parts:  one where the 
user  doesn’t  set  up  Ф 5  and  one  where  the  user 
chooses  a  value  for  this  angle.  In  this  way  the 
architecture  can  be  further  developed  and  the  IK 
function can be limited to solving angle configuration 
for just 2 links (Fig. 6).

6. Research issues and further 
development

There are still some issues opened to research while 
implementing the solution described above. 

While most   tasks   can   be easily satisfied by 
this simple approach, but the limitations imposed on 
joint  3  reflect  in  the  narrowing  of  the  dextrous 
workspace (the positions which can be reached by the 
end-effector with arbitrary direction).  It  hasn’t been 
taken in consideration any dynamical factors (which 
are resolved by each motor encoder). 

Optimizing the trajectory for achieving the lowest 
consumed  energy  would  grant  the  robot  a  higher 
flexibility  by  increasing  its  autonomy,  a  highly 
desirable aspect. Collision avoidance should seldom 
be performed without moving the robot base.  Both 
needs described above can be satisfied by including 
joint 3 in the kinematic chain and reconsidering the 
IK approach.   

Further  development  will  conducted  into 
integrating  higher  lever  grasping  structures  (like 
Barett  robotic  hand)  with  PowerCube  platform.  A 
driver for Player/Stage/Gazebo (P/S/G) environment 
should also be created. 

The  arm  controller  will  be  further  integrated 
within  a  shell  that  will  also  support  vision 
computation,  speech  recognition,  scene  mapping 
creation and other features that will improve human-
robot interaction, as our goal is to combine research 
results from these fields within a cognitive robot.
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