

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: https://www.tandfonline.com/loi/gopt20

Gradient methods with selection technique for the multiple-sets split feasibility problem

Yonghong Yao, Mihai Postolache & Zhichuan Zhu

To cite this article: Yonghong Yao, Mihai Postolache & Zhichuan Zhu (2019): Gradient methods with selection technique for the multiple-sets split feasibility problem, Optimization, DOI: <u>10.1080/02331934.2019.1602772</u>

To link to this article: https://doi.org/10.1080/02331934.2019.1602772

Taylor 6.1 m

Published online: 04 Apr 2019.

 ${\mathscr S}$ Submit your article to this journal ${\mathbb C}$

View Crossmark data 🕑

Check for updates

Gradient methods with selection technique for the multiple-sets split feasibility problem

Yonghong Yao^{a,b,c}, Mihai Postolache^{d,e,f} and Zhichuan Zhu^g

^aSchool of Mathematical Sciences, Tianjin Polytechnic University, Tianjin, China; ^bThe Key Laboratory of Intelligent Information and Data Processing of NingXia Province, North Minzu University, Yinchuan, China; ^cSchool of Mathematics and Information Science, North Minzu University, Yinchuan, China; ^dCenter for General Education, China Medical University, Taichung, Taiwan; ^eRomanian Academy, Gh. Mihoc-C. Iacob Institute of Mathematical Statistics and Applied Mathematics, Bucharest, Romania; ^fDepartment of Mathematics and Informatics, University "Politehnica" of Bucharest, Bucharest, Romania; ^gSchool of Economics, Liaoning University, Shenyang, China

ABSTRACT

In this paper, we present two new iterative algorithms for approximating a solution of the multiple-sets split feasibility problem. The suggested algorithms are based on the gradient method with selection technique. Weak and strong convergence theorems are demonstrated.

ARTICLE HISTORY

Received 19 September 2018 Accepted 23 March 2019

KEYWORDS

Multiple-sets split feasibility problem; gradient method; projection; iterative algorithm

2010 MATHEMATICS SUBJECT CLASSIFICATIONS 47J25; 47J20; 49N45; 65J15

1. Introduction

Inverse problems in various disciplines can be expressed as split feasibility problems and their generalizations, such as the multiple-sets split feasibility problem (MSSFP) and the split common fixed point problem (see, e.g. [1-8]), and many iterative algorithms have been presented to solve these problems, see for example [9-28] and references therein.

In the present paper, we focus on the multiple-set split feasibility problem which is a general way to characterize various inverse problems arising in many real-world application problems, such as medical image reconstruction and intensity-modulated radiation therapy.

Let H_1 and H_2 be two real Hilbert spaces with their own inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. Let *s* and *t* be positive integers and let $\{C_i\}_{i=1}^s$ and $\{Q_j\}_{j=1}^t$ be two finite families of closed convex subsets of H_1 and H_2 , respectively. Let $A: H_1 \to H_2$ be a bounded linear operator with its adjoint operator A^* . MSSFP

CONTACT Mihai Postolache 🖾 emscolar@yahoo.com

© 2019 Informa UK Limited, trading as Taylor & Francis Group

2 😔 Y. YAO ET AL.

is to find a point x^* such that

$$x^* \in \bigcap_{i=1}^{s} C_i$$
 and $Ax^* \in \bigcap_{j=1}^{t} Q_j$. (1)

Assume MSSFP (1) is consistent, i.e. it is solvable, and $\emptyset \neq \Omega$ denotes its solution set.

The case where s = t = 1, called the split feasibility problem (SFP), was introduced by Censor and Elfving [29], modelling phase retrieval and other image restoration problems, and further studied and extended by many researchers; see, for instance, [30–41].

Note that x^* solves the MSSFP (1) implies that the distance from x^* to each C_i is zero and the distance from Ax^* to each Q_j is also zero. This motivates us to consider the proximity function

$$g(x) = \frac{1}{2} \sum_{i=1}^{s} \alpha_i \|x - P_{C_i} x\|^2 + \frac{1}{2} \sum_{j=1}^{t} \beta_j \|Ax - P_{Q_j} Ax\|^2$$
(2)

where $\{\alpha_i\}$ and $\{\beta_j\}$ are positive real numbers, and P_{C_i} and P_{Q_j} are the metric projections onto C_i and Q_j , respectively.

It is known that x^* is a solution of MSSFP (1) iff $g(x^*) = 0$. Since $g(x) \ge 0$ for all $x \in H_1$, a solution of MSSFP (1) is a minimizer of g over any closed convex subset, with minimum value of zero. Note that this proximity function is convex and differentiable with gradient

$$\nabla g(x) = \sum_{i=1}^{s} \alpha_i (I - P_{C_i}) x + \sum_{j=1}^{t} \beta_j A^* (I - P_{Q_j}) A x.$$

Since the gradient $\nabla g(x)$ is *L*-Lipschitz continuous [35] with constant

$$L = \sum_{i=1}^{s} \alpha_i + \sum_{j=1}^{t} \beta_j ||A||^2,$$

one of the most popular methods for solving the minimization problem

$$\min_{x\in\Gamma}g(x) \tag{3}$$

is the gradient method that takes the following iterative manner

$$x_{n+1} = x_n - \tau_n \nabla g(x_n)$$

= $x_n - \tau_n \bigg(\sum_{i=1}^s \alpha_i (I - P_{C_i}) x_n + \sum_{j=1}^t \beta_j A^* (I - P_{Q_j}) A x_n \bigg), \quad n \ge 0.$ (4)

Here, the stepsize τ_n may be selected using various ways.

When s = t = 1, we have the following gradient algorithm for solving two-sets split feasibility problem

$$x_{n+1} = x_n - \tau_n ((I - P_C)x_n + A^*(I - P_Q)Ax_n), \quad n \ge 0.$$
 (5)

On the other hand, we note that x^* is a solution of MSSFP (1) iff $f(x^*) = 0$, where

$$f(x) = \frac{1}{2} \max_{1 \le i \le s} \|x - P_{C_i} x\|^2 + \frac{1}{2} \max_{1 \le j \le t} \|Ax - P_{Q_j} Ax\|^2$$
$$= \frac{1}{2} \|x - P_{C_{i(x)}} x\|^2 + \frac{1}{2} \|Ax - P_{Q_{j(x)}} Ax\|^2,$$
(6)

in which

$$i(x) \in \left\{ i \mid \max_{1 \le i \le s} \|x - P_{C_i} x\| \right\},\$$

$$j(x) \in \left\{ j \mid \max_{1 \le j \le t} \|Ax - P_{Q_j} Ax\| \right\}.$$

Hence, we can construct a version of (5) to solve MSSFP (1). In each iteration, our algorithm needs to compute only two projections, one from $\{P_{C_{i_n}}x_n\}_{i=1}^s$ and another one from $\{(I - P_{Q_{i_n}})Ax_n\}_{i=1}^t$.

It is our main purpose in this paper to present two new iterative algorithms for approximating a solution of MSSFP (1). The suggested algorithms are based on the gradient method with selection technique. Weak and strong convergence theorems are demonstrated.

2. Preliminaries

Let *C* be a nonempty closed convex subset of a real Hilbert space *H*. The (nearest point or metric) projection, denoted by P_C , from *H* onto *C* has the following characteristic [30] (for $v^{\dagger} \in H$)

$$\langle v^{\dagger} - P_C v^{\dagger}, v - P_C v^{\dagger} \rangle \le 0,$$
 (7)

for all $v \in C$.

It then follows that [42]

$$\langle v^{\dagger} - P_C v^{\dagger}, v^{\dagger} - v \rangle \ge \|v^{\dagger} - P_C v^{\dagger}\|^2, \tag{8}$$

for all $v \in C$ and $v^{\dagger} \in H$.

It is obvious that P_C is nonexpansive, i.e. $||P_C u - P_C u^{\dagger}|| \le ||u - u^{\dagger}||$ for all $u, u^{\dagger} \in H$.

Lemma 2.1 ([43]): Let C be a nonempty closed convex of a real Hilbert space H. Let T: $C \rightarrow C$ be a nonexpansive mapping. Then I-T is demi-closed at 0, i.e. if $x_n \rightarrow x \in C$ and $x_n - Tx_n \rightarrow 0$, then x = Tx. 4 😉 Y. YAO ET AL.

Given a sequence $\{x_n\}$ in H_1 , $\omega_w(x_n)$ stands for the set of cluster points in the weak topology, that is,

$$\omega_w(x_n) = \{x : \exists x_{n_i} \to x \text{ weakly}\}.$$

Lemma 2.2 ([44]): Let H be a real Hilbert space and $\{x_n\}$ a sequence in H such that there exists a nonempty closed set $\Omega \in H$ satisfying

(i) For every $z \in \Omega$, $\lim_{n\to\infty} ||x_n - z||$ exists;

(ii) $\omega_w(x_n) \subset \Omega$.

Then, there exists $\overline{z} \in \Omega$ such that $\{x_n\}$ weakly converges to \overline{z} .

Lemma 2.3 ([45]): Assume that $\{\delta_n\}$ is a sequence of nonnegative real numbers such that

$$\delta_{n+1} \le (1-\xi_n)\delta_n + \xi_n \sigma,$$

where $\{\xi_n\}$ is a sequence in (0, 1) and $\{\sigma_n\}$ is a sequence in \mathbb{R} such that

(i) $\sum_{n=1}^{\infty} \xi_n = \infty$; (ii) $\limsup_{n \to \infty} \sigma_n \le 0 \text{ or } \sum_{n=1}^{\infty} |\xi_n \sigma_n| < \infty$.

Then $\lim_{n\to\infty} \delta_n = 0$.

3. Main results

Let H_1 and H_2 be two real Hilbert spaces. Let *s* and *t* be positive integers and let $\{C_i\}_{i=1}^s$ and $\{Q_j\}_{j=1}^t$ be two finite families of closed convex subsets of H_1 and H_2 , respectively. Let $A: H_1 \to H_2$ be a bounded linear operator with its adjoint operator A^* . Throughout, assume

$$\Omega = \left\{ \bar{z} : \bar{z} \in \bigcap_{i=1}^{s} C_i \text{ and } A\bar{z} \in \bigcap_{j=1}^{t} Q_j \right\} \neq \emptyset.$$

Next we present the following iterative algorithm to solve MSSFP (1).

Algorithm 3.1: Choose an arbitrary initial value $x_1 \in H_1$. Assume x_n has been constructed. Compute

$$z_n = P_{C_{i_n}} x_n,$$

$$y_n = A^* (I - P_{Q_{j_n}}) A x_n, \quad n \ge 1,$$
(9)

where

$$i_{n} \in \left\{ i \mid \max_{i \in I_{1}} \|x_{n} - P_{C_{i}}x_{n}\|, I_{1} = \{1, 2, \dots, s\} \right\},$$

$$j_{n} \in \left\{ j \mid \max_{j \in I_{2}} \|Ax_{n} - P_{Q_{j}}Ax_{n}\|, I_{2} = \{1, 2, \dots, t\} \right\}.$$
(10)

If

$$\|x_n + y_n - z_n\| = 0, (11)$$

then stop (in this case $x_n \in \Omega$ by Remark 3.1 below); otherwise, continue and construct x_{n+1} via the manner

$$x_{n+1} = x_n - \tau_n (x_n + y_n - z_n), \tag{12}$$

where

$$\tau_n = \lambda_n \frac{\|x_n - z_n\|^2 + \|y_n\|^2}{2\|x_n + y_n - z_n\|^2},$$

in which $\lambda_n > 0$.

Remark 3.1: The equality (11) holds if and only if x_n is a solution of MSSFP (1). First, assume the equality (11) holds. For any $z \in \Omega$, by (8), we have

$$0 = \langle x_n + y_n - z_n, x_n - z \rangle$$

= $\langle x_n - P_{C_{i_n}} x_n, x_n - z \rangle + \langle A^*(I - P_{Q_{j_n}})Ax_n, x_n - z \rangle$
= $\langle x_n - P_{C_{i_n}} x_n, x_n - z \rangle + \langle (I - P_{Q_{j_n}})Ax_n, Ax_n - Az \rangle$
 $\geq \|x_n - P_{C_{i_n}} x_n\|^2 + \|(I - P_{Q_{j_n}})Ax_n\|^2$ (13)

which implies that

$$||x_n - P_{C_{i_n}}x_n|| = 0$$
 and $||(I - P_{Q_{j_n}})Ax_n|| = 0.$ (14)

According to the definitions of i_n and j_n , it follows from (14) that

$$||x_n - P_{C_i}x_n|| = 0$$
 for all $i \in I_1$ and $||Ax_n - P_{Q_i}Ax_n|| = 0$ for all $j \in I_2$.

Hence, $x_n \in \bigcap_{i=1}^{s} C_i$ and $Ax_n \in \bigcap_{j=1}^{t} Q_j$. Therefore, $x_n \in \Omega$.

Assume that the sequence $\{x_n\}$ generated by Algorithm 3.1 is infinite. In other words, Algorithm 3.1 does not terminate in a finite number of iterations. Next, we demonstrate the convergence analysis of the sequence $\{x_n\}$ generated by Algorithm 3.1.

Theorem 3.1: If $0 < \liminf_{n \to \infty} \lambda_n \le \limsup_{n \to \infty} \lambda_n < 4$, then the sequence $\{x_n\}$ generated by Algorithm 3.1 converges weakly to a solution of MSSFP (1).

6 🔄 Y. YAO ET AL.

Proof: Firstly, we show that the sequence $\{x_n\}$ is bounded. Picking up $z \in \Omega$, from (13), we have

$$\langle x_n + y_n - z_n, x_n - z \rangle \ge ||x_n - z_n||^2 + ||y_n||^2.$$
 (15)

By (12) and (15), we deduce

$$\|x_{n+1} - z\|^{2} = \|x_{n} - z - \tau_{n}(x_{n} + y_{n} - z_{n})\|^{2}$$

$$= \|x_{n} - z\|^{2} - 2\tau_{n}\langle x_{n} + y_{n} - z_{n}, x_{n} - z\rangle$$

$$+ \tau_{n}^{2}\|x_{n} + y_{n} - z_{n}\|^{2}$$

$$\leq \|x_{n} - z\|^{2} - \frac{\lambda_{n}(\|x_{n} - z_{n}\|^{2} + \|y_{n}\|^{2})^{2}}{\|x_{n} + y_{n} - z_{n}\|^{2}}$$

$$+ \frac{\lambda_{n}^{2}(\|x_{n} - z_{n}\|^{2} + \|y_{n}\|^{2})^{2}}{4\|x_{n} + y_{n} - z_{n}\|^{2}}$$

$$= \|x_{n} - z\|^{2} - \lambda_{n}\left(1 - \frac{\lambda_{n}}{4}\right)\frac{(\|x_{n} - z_{n}\|^{2} + \|y_{n}\|^{2})^{2}}{\|x_{n} + y_{n} - z_{n}\|^{2}}.$$
 (16)

This implies that $\lim_{n\to\infty} ||x_n - z||$ exists. Thus, the sequence $\{x_n\}$ is bounded, and so are the sequences $\{Ax_n\}, \{P_{Q_i}x_n\}(j \in I_2)$ and $\{P_{C_i}x_n\}(i \in I_1)$.

We next show that every weak cluster point of the sequence $\{x_n\}$ belongs to the solution set, i.e. $\omega_w(x_n) \subset \Omega$.

In terms of (16), we get

$$\lambda_n (1 - \frac{\lambda_n}{4}) \frac{(\|x_n - z_n\|^2 + \|y_n\|^2)^2}{\|x_n + y_n - z_n\|^2} \le \|x_n - z - \|x_{n+1} - z\|^2$$

It follows that

$$\lim_{n \to \infty} \frac{(\|x_n - z_n\|^2 + \|y_n\|^2)^2}{\|x_n + y_n - z_n\|^2} = 0.$$

This together with the boundedness of the sequence $\{x_n + y_n - z_n\}$ implies that

$$\lim_{n \to \infty} \|x_n - z_n\| = 0 \quad \text{and} \quad \lim_{n \to \infty} \|y_n\| = 0.$$

Hence,

$$\lim_{n\to\infty} \|x_n - P_{C_i} x_n\| = 0 \quad \text{for all } i \in I_1,$$

and

$$\lim_{n \to \infty} \|Ax_n - P_{Q_j}Ax_n\| = 0 \quad \text{for all } j \in I_2$$

By the demiclosedness (Lemma 2.1) of $I - P_{C_i}$ (for all $i \in I_1$) and $I - P_{Q_j}$ (for all $j \in I_2$), we deduce immediately $\omega_w(x_n) \subset \Omega$. To this end, the conditions of Lemma 2.2 are all satisfied. Consequently, the sequence $\{x_n\}$ converges weakly to a solution of MSSFP (1). This completes the proof.

Algorithm 3.1 has only weak convergence. Now, we present a new algorithm with strong convergence.

Algorithm 3.2: Let $u \in H_1$ and choose an arbitrary initial value $x_1 \in H_1$. Assume x_n has been constructed. Compute

$$z_{n} = P_{C_{i_{n}}} x_{n},$$

$$y_{n} = A^{*} (I - P_{Q_{i_{n}}}) A x_{n}, \quad n \ge 1,$$
(17)

where

$$i_{n} \in \left\{ i \mid \max_{i \in I_{1}} \|x_{n} - P_{C_{i}}x_{n}\|, I_{1} = \{1, 2, \dots, s\} \right\},$$

$$j_{n} \in \left\{ j \mid \max_{j \in I_{2}} \|Ax_{n} - P_{Q_{j}}Ax_{n}\|, I_{2} = \{1, 2, \dots, t\} \right\}.$$
(18)

If

$$||x_n + y_n - z_n|| = 0, (19)$$

then stop; otherwise, continue and construct x_{n+1} via the manner

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) [x_n - \tau_n (x_n + y_n - z_n)],$$
(20)

where $\alpha_n \in (0, 1)$ and

$$\tau_n = \lambda_n \frac{\|x_n - z_n\|^2 + \|y_n\|^2}{2\|x_n + y_n - z_n\|^2},$$

in which $\lambda_n \in (0, 4)$.

Assume that the sequence $\{x_n\}$ generated by Algorithm 3.2 is infinite. In other words, Algorithm 3.2 does not terminate in a finite number of iterations.

Theorem 3.2: Suppose the sequences $\{\alpha_n\}$ and $\{\lambda_n\}$ satisfying the following conditions:

(C1) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$; (C2) $0 < \liminf_{n\to\infty} \lambda_n \le \limsup_{n\to\infty} \lambda_n < 4$.

Then the sequence $\{x_n\}$ generated by Algorithm 3.2 converges strongly to $z = P_{\Omega}u$.

8 😧 Y. YAO ET AL.

Proof: Set $u_n = x_n - \tau_n(x_n + y_n - z_n)$ for all $n \ge 0$. By (16), we have

$$\|u_n - z\|^2 \le \|x_n - z\|^2 - \lambda_n \left(1 - \frac{\lambda_n}{4}\right) \frac{(\|x_n - z_n\|^2 + \|y_n\|^2)^2}{\|x_n + y_n - z_n\|^2}.$$
 (21)

In particular, we have $||u_n - z|| \le ||x_n - z||$. Thus, from (20), we obtain

$$\|x_{n+1} - z\| = \|\alpha_n u + (1 - \alpha_n)u_n - z\|$$

$$\leq \alpha_n \|u - z\| + (1 - \alpha_n)\|u_n - z\|$$

$$\leq \alpha_n \|u - z\| + (1 - \alpha_n)\|x_n - z\|$$

$$\leq \max\{\|x_n - z\|, \|u - z\|\}.$$

By induction, we derive

$$||x_{n+1} - z|| \le \max\{||x_0 - z||, ||u - z||\}.$$

Hence, $\{x_n\}$ is bounded and so are the sequences $\{Ax_n\}$, $\{P_{Q_j}x_n\}(j \in I_2)$ and $\{P_{C_i}x_n\}(i \in I_1)$.

From (20), we have

$$\|x_{n+1} - z\|^{2} = \|\alpha_{n}(u - z) + (1 - \alpha_{n})(u_{n} - z)\|^{2}$$

$$\leq (1 - \alpha_{n})\|u_{n} - z\|^{2} + 2\alpha_{n}\langle u - z, x_{n+1} - z\rangle.$$
(22)

By virtue of (21) and (22), we deduce

$$\|x_{n+1} - z\|^{2} \leq (1 - \alpha_{n}) \|x_{n} - z\|^{2} + 2\alpha_{n} \langle u - z, x_{n+1} - z \rangle$$

$$- (1 - \alpha_{n}) \lambda_{n} (1 - \frac{\lambda_{n}}{4}) \frac{(\|x_{n} - z_{n}\|^{2} + \|y_{n}\|^{2})^{2}}{\|x_{n} + y_{n} - z_{n}\|^{2}}$$

$$= (1 - \alpha_{n}) \|x_{n} - z\|^{2} + \alpha_{n} \left[2 \langle u - z, x_{n+1} - z \rangle - \frac{(1 - \alpha_{n})}{\alpha_{n}} \lambda_{n} \left(1 - \frac{\lambda_{n}}{4} \right) \frac{(\|x_{n} - z_{n}\|^{2} + \|y_{n}\|^{2})^{2}}{\|x_{n} + y_{n} - z_{n}\|^{2}} \right].$$
(23)

Set $\theta_n = ||x_n - z||^2$ and

$$\delta_n = 2\langle u - z, x_{n+1} - z \rangle - \frac{(1 - \alpha_n)}{\alpha_n} \lambda_n \left(1 - \frac{\lambda_n}{4} \right) \frac{(\|x_n - z_n\|^2 + \|y_n\|^2)^2}{\|x_n + y_n - z_n\|^2}$$

for all $n \ge 1$. Then, from (23), we have

$$0 \le \theta_{n+1} \le (1 - \alpha_n)\theta_n + \alpha_n \delta_n, \quad n \ge 1.$$
(24)

It is obvious that

$$\delta_n \leq 2\langle u-z, x_{n+1}-z \rangle \leq 2 ||u-z|| ||x_{n+1}-z||.$$

So,

$$\limsup_{n\to\infty}\delta_n<\infty.$$

Next, we show that $\limsup_{n\to\infty} \delta_n \ge -1$ by contradiction. Assume that $\limsup_{n\to\infty} \delta_n < -1$. Then there exists *m* such that $\delta_n \le -1$ for all $n \ge m$. It follows from (24) that

$$\theta_{n+1} \le (1 - \alpha_n)\theta_n + \alpha_n \delta_n$$
$$= \theta_n + \alpha_n (\delta_n - \theta_n)$$
$$\le \theta_n - \alpha_n,$$

for all $n \ge m$.

Thus,

$$\theta_{n+1} \leq \theta_m - \sum_{i=m}^n \alpha_i.$$

Hence, by taking lim sup as $n \to \infty$ in the last inequality, we obtain

$$0 \leq \limsup_{n \to \infty} \theta_{n+1} \leq \theta_m - \limsup_{n \to \infty} \sum_{i=m}^n \alpha_i = -\infty,$$

which is a contradiction. Therefore, $\limsup_{n\to\infty} \delta_n \ge -1$ and it is finite. Consequently, we can take a subsequence $\{n_k\}$ such that

$$\lim_{n \to \infty} \sup \delta_{n} = \lim_{k \to \infty} \delta_{n_{k}}$$

$$= \lim_{k \to \infty} \left[-\frac{(1 - \alpha_{n_{k}})}{\alpha_{n_{k}}} \lambda_{n_{k}} \left(1 - \frac{\lambda_{n_{k}}}{4} \right) \frac{(\|x_{n_{k}} - z_{n_{k}}\|^{2} + \|y_{n_{k}}\|^{2})^{2}}{\|x_{n_{k}} + y_{n_{k}} - z_{n_{k}}\|^{2}} + 2\langle u - z, x_{n_{k}+1} - z \rangle \right].$$
(25)

Since $\{x_{n_k+1}\}$ is bounded, there exists a subsequence $\{x_{n_k+1}\}$ of $\{x_{n_k+1}\}$ such that the limit $\lim_{i\to\infty} \langle u-z, x_{n_k+1}-z \rangle$ exists. Consequently, from (25), the following limit also exists

$$\lim_{i \to \infty} -\frac{(1 - \alpha_{n_{k_i}})}{\alpha_{n_{k_i}}} \lambda_{n_{k_i}} \left(1 - \frac{\lambda_{n_{k_i}}}{4}\right) \frac{(\|x_{n_{k_i}} - z_{n_{k_i}}\|^2 + \|y_{n_{k_i}}\|^2)^2}{\|x_{n_{k_i}} + y_{n_{k_i}} - z_{n_{k_i}}\|^2}$$

This together with conditions (C1) and (C2) implies that

$$\lim_{k \to \infty} \frac{(\|x_{n_{k_i}} - z_{n_{k_i}}\|^2 + \|y_{n_{k_i}}\|^2)^2}{\|x_{n_{k_i}} + y_{n_{k_i}} - z_{n_{k_i}}\|^2} = 0,$$

which yields

$$\lim_{i\to\infty}\|x_{n_{k_i}}-z_{n_{k_i}}\|=0\quad\text{and}\quad\lim_{i\to\infty}\|y_{n_{k_i}}\|=0.$$

10 😧 Y. YAO ET AL.

By a similar proof as in Theorem 3.1, we conclude that any weak cluster point of $\{x_{n_k}\}$ belongs to Ω . Note that

$$\begin{aligned} \|x_{n_{k_{i}}+1} - x_{n_{k_{i}}}\| &\leq \alpha_{n_{k_{i}}} \|u - x_{n_{k_{i}}}\| + \|u_{n_{k_{i}}} - x_{n_{k_{i}}}\| \\ &= \alpha_{n_{k_{i}}} \|u - x_{n_{k_{i}}}\| + \tau_{n_{k_{i}}} \|x_{n_{k_{i}}} + y_{n_{k_{i}}} - z_{n_{k_{i}}}\| \\ &= \alpha_{n_{k_{i}}} \|u - x_{n_{k_{i}}}\| + \frac{\|x_{n_{k_{i}}} - z_{n_{k_{i}}}\|^{2} + \|y_{n_{k_{i}}}\|^{2}}{\|x_{n_{k_{i}}} + y_{n_{k_{i}}} - z_{n_{k_{i}}}\|} \\ &\to 0. \end{aligned}$$

This indicates that $\omega_w(x_{n_{k_i}+1}) \subset \Omega$. Without loss of generality, we assume that $x_{n_{k_i}+1}$ converges weakly to $x^{\dagger} \in \Omega$. Now by (25), we infer that

$$\begin{split} \limsup_{n \to \infty} \delta_n &= \lim_{i \to \infty} \delta_{n_{k_i}} \\ &= \lim_{i \to \infty} \left[-\frac{(1 - \alpha_{n_{k_i}})}{\alpha_{n_{k_i}}} \lambda_{n_{k_i}} (1 - \frac{\lambda_{n_{k_i}}}{4}) \frac{(\|x_{n_{k_i}} - z_{n_{k_i}}\|^2 + \|y_{n_{k_i}}\|^2)^2}{\|x_{n_{k_i}} + y_{n_{k_i}} - z_{n_{k_i}}\|^2} \\ &+ 2\langle u - z, x_{n_{k_i}+1} - z \rangle \right] \\ &\leq \lim_{i \to \infty} 2\langle u - z, x_{n_{k_i}+1} - z \rangle \\ &= 2\langle u - z, x^{\dagger} - z \rangle \\ &\leq 0 \end{split}$$

due to the fact that $z = P_{\Omega}u$ and (8). Finally, applying Lemma 2.3 to (23), we conclude that $x_n \to z$. This completes the proof.

4. Concluding remarks

In this paper, we present two new iterative algorithms with selection technique for approximating a solution of the multiple-sets split feasibility problem. In each iteration, our algorithm needs to compute only two projections, one from $\{P_{C_{i_n}}x_n\}_{i=1}^s$ and another one from $\{(I - P_{Q_{j_n}})Ax_n\}_{j=1}^t$. The suggested algorithms are based on the gradient method. We prove that the presented two algorithms have weak and strong convergence, respectively.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was partially supported by Jilin Provincial Science and Technology Development Plan funded project (20170520050JH).

References

- [1] Censor Y, Elfving T, Kopf N, et al. The multiple-sets split feasibility problem and its applications for inverse problem. Inverse Probl. 2005;21:2071–2084.
- [2] Cegielski A. General method for solving the split common fixed point problem. J Optim Theory Appl. 2015;165:385–404.
- [3] Censor Y, Segal A. The split common fixed point problem for directed operators. J Convex Anal. 2009;16:587–600.
- [4] Cho SY, Qin X, Yao JC, et al. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J Nonlinear Convex Anal. 2018;19:251–264.
- [5] Kraikaew P, Saejung S. On split common fixed point problems. J Math Anal Appl. 2014;415:513–524.
- [6] Moudafi A. The split common fixed-point problem for demicontractive mappings. Inverse Probl. 2010;26:055007.
- [7] Takahashi W. The split common fixed point problem and strong convegence theorems by hybrid methods in two Banach spaces. J Nonlinear Convex Anal. 2016;17:1051–1067.
- [8] Yao YH, Yao JC, Liou YC, et al. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J Math. 2018;34:459–466.
- [9] Al-Mazrooei AE, Latif A, Qin X, et al. Fixed point algorithms for split feasibility problems. Fixed Point Theory. 2019;20(1):245–254.
- [10] Yao YH, Liou YC, Yao JC. Split common fixed point problem for two quasipseudo-contractive operators and its algorithm construction. Fixed Point Theory Appl. 2015;2015:127.
- [11] Yao YH, Liou YC, Postolache M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization. 2018;67:1309–1319.
- [12] He S, Zhao Z, Luo B. A relaxed self-adaptive CQ algorithm for the multiple-sets split feasibility problem. Optimization. 2015;64:1907–1918.
- [13] Raeisi M, Zamani Eskandani G, Eslamian M. A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings. Optimization. 2018;67:309–327.
- [14] Buong N. Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer Algorithms. 2017;76:783–798.
- [15] Dong Q, He S, Zhao Y. On global convergence rate of two acceleration projection algorithms for solving the multiple-sets split feasibility problem. Filomat. 2016;30:3243-3252.
- [16] Yao YH, Agarwal RP, Postolache M, et al. Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem. Fixed Point Theory Appl. 2014;2014:183.
- [17] Yao YH, Liou YC, Yao JC. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J Nonlinear Sci Appl. 2017;10:843–854.
- [18] Yao YH, Postolache M, Liou YC. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013;2013:201.
- [19] Shehu Y. Strong convergence theorem for multiple sets split feasibility problems in Banach spaces. Numerical Funct Anal Optim. 2016;37:1021–1036.
- [20] Dang Y, Xue Z. Iterative process for solving a multiple-set split feasibility problem. J Inequal Appl. 2015;2015:47.

12 😔 Y. YAO ET AL.

- [21] Dong QL, Tang YC, Cho YJ, et al. Optimal choice of the step length of the projection and contraction methods for solving the split feasibility problem. J Global Optim. 2018;71:341–360.
- [22] Maingé PE. Strong convergence of projected reflected gradient methods for variational inequalities. Fixed Point Theory. 2018;19:659–680.
- [23] Gibali A. Two simple relaxed perturbed extragradient methods for solving variational inequalities in Euclidean spaces. J Nonlinear Var Anal. 2018;2:49–61.
- [24] Takahashi W, Wen CF, Yao JC. An implicit algorithm for the split common fixed point problem in Hilbert spaces and applications. Appl Anal Optim. 2017;1:423–439.
- [25] Qin X, Yao JC. Projection splitting algorithms for nonself operators. J Nonlinear Convex Anal. 2017;18:925–935.
- [26] Yao Y, Postolache M, Qin X, et al. Iterative algorithms for the proximal split feasibility problem. U Politeh Buch Ser A. 2018;80(3):37–44.
- [27] Yao Y, Leng L, Postolache M, et al. Mann-type iteration method for solving the split common fixed point problem. J Nonlinear Convex Anal. 2017;18:875–882.
- [28] Qin X, Cho SY, Wang L. Strong convergence of an iterative algorithm involving nonlinear mappings of nonexpansive and accretive type. Optimization. 2018;67:1377–1388.
- [29] Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numer Algorithms. 1994;8:221–239.
- [30] Bauschke HH, Borwein JM. On projection algorithms for solving convex feasibility problems. SIAM Rev. 1996;38:367–426.
- [31] Byrne C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002;18:441–453.
- [32] Censor Y, Bortfeld T, Martin B, et al. A unified approach for inversion problems in intensity-modulated radiation therapy. Phys Med Biol. 2006;51:2353–2365.
- [33] Takahashi W. The split feasibility problem in Banach spaces. J Nonlinear Convex Anal. 2014;15:1349–1355.
- [34] Wang F, Xu HK. Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 2011;74:4105–4111.
- [35] Xu HK. A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006;22:2021–2034.
- [36] Petrot N, Suwannaprapa M, Dadashi V. Convergence theorems for split feasibility problems on a finite sum of monotone operators and a family of nonexpansive mappings. J Inequal Appl. 2018;2018:205.
- [37] Suantai S, Shehu Y, Cholamjiak P, et al. Strong convergence of a self-adaptive method for the split feasibility problem in Banach spaces. J Fixed Point Theory Appl. 2018;20:UNSP68.
- [38] Yao YH, Qin X, Yao JC. Self-adaptive step-sizes choice for split common fixed point problems. J Nonlinear Convex Anal. 2018;11:1959–1969.
- [39] Xu HK, Alghamdi MA, Shahzad N. An unconstrained optimization approach to the split feasibility problem. J Nonlinear Convex Anal. 2017;18:1891–1899.
- [40] Ceng LC, Liou YC, Sahu DR. Multi-step hybrid steepest-descent methods for split feasibility problems with hierarchical variational inequality problem constraints. J Nonlinear Sci Appl. 2016;9:4148–4166.
- [41] Ceng LC, Wong NC, Yao JC. Hybrid extragradient methods for finding minimum-norm solutions of split feasibility problems. J Nonlinear Convex Anal. 2015;16:1965–1983.
- [42] Yao YH, Qin X, Yao JC. Projection methods for firmly type nonexpansive operators. J Nonlinear Convex Anal. 2018;19:407–415.
- [43] Goebel K, Kirk WA. Topics in metric fixed point theory. Cambridge: Cambridge Univ Press; 1990. (Cambridge studies in advanced mathematics).

- [44] Bauschke HH, Combettes PL. A weak-to-strong convergence principle for Fejérmonotone methods in Hilbert spaces. Math Oper Res. 2001;26:248–264.
- [45] Xu HK. Iterative algorithms for nonlinear operators. J London Math Soc. 2002;66: 240–256.