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ABSTRACT
In this paper, we present two new iterative algorithms for
approximating a solution of the multiple-sets split feasibility
problem. The suggested algorithms are based on the gradient
method with selection technique. Weak and strong conver-
gence theorems are demonstrated.
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1. Introduction

Inverse problems in various disciplines can be expressed as split feasibility prob-
lems and their generalizations, such as the multiple-sets split feasibility problem
(MSSFP) and the split common fixed point problem (see, e.g. [1–8]), and many
iterative algorithms have been presented to solve these problems, see for example
[9–28] and references therein.

In the present paper, we focus on the multiple-set split feasibility problem
which is a general way to characterize various inverse problems arising in many
real-world application problems, such as medical image reconstruction and
intensity-modulated radiation therapy.

LetH1 andH2 be two realHilbert spaceswith their own inner product 〈·, ·〉 and
norm ‖ · ‖, respectively. Let s and t be positive integers and let {Ci}si=1 and {Qj}tj=1
be two finite families of closed convex subsets of H1 and H2, respectively. Let
A : H1 → H2 be a bounded linear operator with its adjoint operator A∗. MSSFP
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is to find a point x∗ such that

x∗ ∈
s⋂

i=1
Ci and Ax∗ ∈

t⋂
j=1

Qj. (1)

AssumeMSSFP (1) is consistent, i.e. it is solvable, and ∅ 	= � denotes its solution
set.

The case where s= t=1, called the split feasibility problem (SFP), was intro-
duced by Censor and Elfving [29], modelling phase retrieval and other image
restoration problems, and further studied and extended bymany researchers; see,
for instance, [30–41].

Note that x∗ solves the MSSFP (1) implies that the distance from x∗ to each
Ci is zero and the distance from Ax∗ to each Qj is also zero. This motivates us to
consider the proximity function

g(x) = 1
2

s∑
i=1

αi‖x − PCix‖2 + 1
2

t∑
j=1

βj‖Ax − PQjAx‖2 (2)

where {αi} and {βj} are positive real numbers, and PCi and PQj are the metric
projections onto Ci and Qj, respectively.

It is known that x∗ is a solution of MSSFP (1) iff g(x∗) = 0. Since g(x) ≥ 0 for
all x ∈ H1, a solution of MSSFP (1) is a minimizer of g over any closed convex
subset, with minimum value of zero. Note that this proximity function is convex
and differentiable with gradient

∇g(x) =
s∑

i=1
αi(I − PCi)x +

t∑
j=1

βjA∗(I − PQj)Ax.

Since the gradient ∇g(x) is L-Lipschitz continuous [35] with constant

L =
s∑

i=1
αi +

t∑
j=1

βj‖A‖2,

one of the most popular methods for solving the minimization problem

min
x∈�

g(x) (3)

is the gradient method that takes the following iterative manner

xn+1 = xn − τn∇g(xn)

= xn − τn

( s∑
i=1

αi(I − PCi)xn +
t∑

j=1
βjA∗(I − PQj)Axn

)
, n ≥ 0. (4)

Here, the stepsize τn may be selected using various ways.
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When s= t=1, we have the following gradient algorithm for solving two-sets
split feasibility problem

xn+1 = xn − τn((I − PC)xn + A∗(I − PQ)Axn), n ≥ 0. (5)

On the other hand, we note that x∗ is a solution ofMSSFP (1) iff f (x∗) = 0, where

f (x) = 1
2
max
1≤i≤s

‖x − PCix‖2 + 1
2
max
1≤j≤t

‖Ax − PQjAx‖2

= 1
2
‖x − PCi(x)x‖2 + 1

2
‖Ax − PQj(x)Ax‖2, (6)

in which

i(x) ∈
{
i | max

1≤i≤s
‖x − PCix‖

}
,

j(x) ∈
{
j | max

1≤j≤t
‖Ax − PQjAx‖

}
.

Hence, we can construct a version of (5) to solve MSSFP (1). In each iteration,
our algorithm needs to compute only two projections, one from {PCin xn}si=1 and
another one from {(I − PQjn )Axn}tj=1.

It is our main purpose in this paper to present two new iterative algorithms
for approximating a solution of MSSFP (1). The suggested algorithms are based
on the gradient method with selection technique. Weak and strong convergence
theorems are demonstrated.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert spaceH. The (nearest
point or metric) projection, denoted by PC, from H onto C has the following
characteristic [30] (for v† ∈ H)

〈v† − PCv†, v − PCv†〉 ≤ 0, (7)

for all v ∈ C.
It then follows that [42]

〈v† − PCv†, v† − v〉 ≥ ‖v† − PCv†‖2, (8)

for all v ∈ C and v† ∈ H.
It is obvious that PC is nonexpansive, i.e. ‖PCu − PCu†‖ ≤ ‖u − u†‖ for all

u, u† ∈ H.

Lemma 2.1 ([43]): Let C be a nonempty closed convex of a real Hilbert space H.
Let T : C → C be a nonexpansive mapping. Then I−T is demi-closed at 0, i.e. if
xn ⇀ x ∈ C and xn − Txn → 0, then x=Tx.



4 Y. YAO ET AL.

Given a sequence {xn} in H1, ωw(xn) stands for the set of cluster points in the
weak topology, that is,

ωw(xn) = {x : ∃xni → x weakly}.

Lemma 2.2 ([44]): Let H be a real Hilbert space and {xn} a sequence in H such
that there exists a nonempty closed set � ∈ H satisfying

(i) For every z ∈ �, limn→∞ ‖xn − z‖ exists;
(ii) ωw(xn) ⊂ �.

Then, there exists z̄ ∈ � such that {xn} weakly converges to z̄.

Lemma 2.3 ([45]): Assume that {δn} is a sequence of nonnegative real numbers
such that

δn+1 ≤ (1 − ξn)δn + ξnσ ,

where {ξn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(i)
∑∞

n=1 ξn = ∞;
(ii) lim supn→∞ σn ≤ 0 or

∑∞
n=1 |ξnσn| < ∞.

Then limn→∞ δn = 0.

3. Main results

Let H1 and H2 be two real Hilbert spaces. Let s and t be positive integers and
let {Ci}si=1 and {Qj}tj=1 be two finite families of closed convex subsets of H1 and
H2, respectively. Let A : H1 → H2 be a bounded linear operator with its adjoint
operator A∗. Throughout, assume

� =
⎧⎨
⎩z̄ : z̄ ∈

s⋂
i=1

Ci and Az̄ ∈
t⋂

j=1
Qj

⎫⎬
⎭ 	= ∅.

Next we present the following iterative algorithm to solve MSSFP (1).

Algorithm 3.1: Choose an arbitrary initial value x1 ∈ H1. Assume xn has been
constructed. Compute

zn = PCin xn,

yn = A∗(I − PQjn )Axn, n ≥ 1,
(9)
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where

in ∈
{
i | max

i∈I1
‖xn − PCixn‖, I1 = {1, 2, . . . , s}

}
,

jn ∈
{
j | max

j∈I2
‖Axn − PQjAxn‖, I2 = {1, 2, . . . , t}

}
.

(10)

If

‖xn + yn − zn‖ = 0, (11)

then stop (in this case xn ∈ � by Remark 3.1 below); otherwise, continue and
construct xn+1 via the manner

xn+1 = xn − τn(xn + yn − zn), (12)

where

τn = λn
‖xn − zn‖2 + ‖yn‖2
2‖xn + yn − zn‖2 ,

in which λn > 0.

Remark 3.1: The equality (11) holds if and only if xn is a solution of MSSFP (1).
First, assume the equality (11) holds. For any z ∈ �, by (8), we have

0 = 〈xn + yn − zn, xn − z〉
= 〈xn − PCin xn, xn − z〉 + 〈A∗(I − PQjn )Axn, xn − z〉
= 〈xn − PCin xn, xn − z〉 + 〈(I − PQjn )Axn,Axn − Az〉
≥ ‖xn − PCin xn‖2 + ‖(I − PQjn )Axn‖2 (13)

which implies that

‖xn − PCin xn‖ = 0 and ‖(I − PQjn )Axn‖ = 0. (14)

According to the definitions of in and jn, it follows from (14) that

‖xn − PCixn‖ = 0 for all i ∈ I1 and ‖Axn − PQjAxn‖ = 0 for all j ∈ I2.

Hence, xn ∈ ⋂s
i=1 Ci and Axn ∈ ⋂t

j=1Qj. Therefore, xn ∈ �.

Assume that the sequence {xn} generated by Algorithm 3.1 is infinite. In other
words, Algorithm 3.1 does not terminate in a finite number of iterations. Next,
we demonstrate the convergence analysis of the sequence {xn} generated by
Algorithm 3.1.

Theorem 3.1: If 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 4, then the sequence
{xn} generated by Algorithm 3.1 converges weakly to a solution ofMSSFP (1).
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Proof: Firstly, we show that the sequence {xn} is bounded. Picking up z ∈ �,
from (13), we have

〈xn + yn − zn, xn − z〉 ≥ ‖xn − zn‖2 + ‖yn‖2. (15)

By (12) and (15), we deduce

‖xn+1 − z‖2 = ‖xn − z − τn(xn + yn − zn)‖2

= ‖xn − z‖2 − 2τn〈xn + yn − zn, xn − z〉
+ τ 2n‖xn + yn − zn‖2

≤ ‖xn − z‖2 − λn(‖xn − zn‖2 + ‖yn‖2)2
‖xn + yn − zn‖2

+ λ2n(‖xn − zn‖2 + ‖yn‖2)2
4‖xn + yn − zn‖2

= ‖xn − z‖2 − λn

(
1 − λn

4

)
(‖xn − zn‖2 + ‖yn‖2)2

‖xn + yn − zn‖2 . (16)

This implies that limn→∞ ‖xn − z‖ exists. Thus, the sequence {xn} is bounded,
and so are the sequences {Axn}, {PQjxn}(j ∈ I2) and {PCixn}(i ∈ I1).

We next show that every weak cluster point of the sequence {xn} belongs to
the solution set, i.e. ωw(xn) ⊂ �.

In terms of (16), we get

λn(1 − λn

4
)
(‖xn − zn‖2 + ‖yn‖2)2

‖xn + yn − zn‖2 ≤ ‖xn − z − ‖xn+1 − z‖2

It follows that

lim
n→∞

(‖xn − zn‖2 + ‖yn‖2)2
‖xn + yn − zn‖2 = 0.

This together with the boundedness of the sequence {xn + yn − zn} implies that

lim
n→∞ ‖xn − zn‖ = 0 and lim

n→∞ ‖yn‖ = 0.

Hence,

lim
n→∞ ‖xn − PCixn‖ = 0 for all i ∈ I1,

and

lim
n→∞ ‖Axn − PQjAxn‖ = 0 for all j ∈ I2.

By the demiclosedness (Lemma 2.1) of I − PCi (for all i ∈ I1) and I − PQj (for
all j ∈ I2), we deduce immediately ωw(xn) ⊂ �. To this end, the conditions of
Lemma 2.2 are all satisfied. Consequently, the sequence {xn} converges weakly to
a solution of MSSFP (1). This completes the proof. �
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Algorithm 3.1 has only weak convergence. Now, we present a new algorithm
with strong convergence.

Algorithm 3.2: Let u ∈ H1 and choose an arbitrary initial value x1 ∈ H1.
Assume xn has been constructed. Compute

zn = PCin xn,

yn = A∗(I − PQjn )Axn, n ≥ 1,
(17)

where

in ∈
{
i | max

i∈I1
‖xn − PCixn‖, I1 = {1, 2, . . . , s}

}
,

jn ∈
{
j | max

j∈I2
‖Axn − PQjAxn‖, I2 = {1, 2, . . . , t}

}
.

(18)

If

‖xn + yn − zn‖ = 0, (19)

then stop; otherwise, continue and construct xn+1 via the manner

xn+1 = αnu + (1 − αn)[xn − τn(xn + yn − zn)], (20)

where αn ∈ (0, 1) and

τn = λn
‖xn − zn‖2 + ‖yn‖2
2‖xn + yn − zn‖2 ,

in which λn ∈ (0, 4).

Assume that the sequence {xn} generated by Algorithm 3.2 is infinite. In other
words, Algorithm 3.2 does not terminate in a finite number of iterations.

Theorem 3.2: Suppose the sequences {αn} and {λn} satisfying the following
conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 4.

Then the sequence {xn} generated by Algorithm 3.2 converges strongly to z =
P�u.
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Proof: Set un = xn − τn(xn + yn − zn) for all n ≥ 0. By (16), we have

‖un − z‖2 ≤ ‖xn − z‖2 − λn

(
1 − λn

4

)
(‖xn − zn‖2 + ‖yn‖2)2

‖xn + yn − zn‖2 . (21)

In particular, we have ‖un − z‖ ≤ ‖xn − z‖. Thus, from (20), we obtain

‖xn+1 − z‖ = ‖αnu + (1 − αn)un − z‖
≤ αn‖u − z‖ + (1 − αn)‖un − z‖
≤ αn‖u − z‖ + (1 − αn)‖xn − z‖
≤ max{‖xn − z‖, ‖u − z‖}.

By induction, we derive

‖xn+1 − z‖ ≤ max{‖x0 − z‖, ‖u − z‖}.
Hence, {xn} is bounded and so are the sequences {Axn}, {PQjxn}(j ∈ I2) and
{PCixn}(i ∈ I1).

From (20), we have

‖xn+1 − z‖2 = ‖αn(u − z) + (1 − αn)(un − z)‖2

≤ (1 − αn)‖un − z‖2 + 2αn〈u − z, xn+1 − z〉. (22)

By virtue of (21) and (22), we deduce

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈u − z, xn+1 − z〉

− (1 − αn)λn(1 − λn

4
)
(‖xn − zn‖2 + ‖yn‖2)2

‖xn + yn − zn‖2

= (1 − αn)‖xn − z‖2 + αn

[
2〈u − z, xn+1 − z〉

− (1 − αn)

αn
λn

(
1 − λn

4

)
(‖xn − zn‖2 + ‖yn‖2)2

‖xn + yn − zn‖2
]
. (23)

Set θn = ‖xn − z‖2 and

δn = 2〈u − z, xn+1 − z〉 − (1 − αn)

αn
λn

(
1 − λn

4

)
(‖xn − zn‖2 + ‖yn‖2)2

‖xn + yn − zn‖2

for all n ≥ 1. Then, from (23), we have

0 ≤ θn+1 ≤ (1 − αn)θn + αnδn, n ≥ 1. (24)

It is obvious that

δn ≤ 2〈u − z, xn+1 − z〉 ≤ 2‖u − z‖‖xn+1 − z‖.
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So,

lim sup
n→∞

δn < ∞.

Next, we show that lim supn→∞ δn ≥ −1 by contradiction. Assume that
lim supn→∞ δn < −1. Then there exists m such that δn ≤ −1 for all n ≥ m. It
follows from (24) that

θn+1 ≤ (1 − αn)θn + αnδn

= θn + αn(δn − θn)

≤ θn − αn,

for all n ≥ m.
Thus,

θn+1 ≤ θm −
n∑

i=m
αi.

Hence, by taking lim sup as n → ∞ in the last inequality, we obtain

0 ≤ lim sup
n→∞

θn+1 ≤ θm − lim sup
n→∞

n∑
i=m

αi = −∞,

which is a contradiction. Therefore, lim supn→∞ δn ≥ −1 and it is finite. Conse-
quently, we can take a subsequence {nk} such that

lim sup
n→∞

δn = lim
k→∞

δnk

= lim
k→∞

[
− (1 − αnk)

αnk
λnk

(
1 − λnk

4

)
(‖xnk − znk‖2 + ‖ynk‖2)2

‖xnk + ynk − znk‖2

+ 2〈u − z, xnk+1 − z〉
]
. (25)

Since {xnk+1} is bounded, there exists a subsequence {xnki+1} of {xnk+1} such
that the limit limi→∞〈u − z, xnki+1 − z〉 exists. Consequently, from (25), the
following limit also exists

lim
i→∞ −(1 − αnki )

αnki
λnki

(
1 − λnki

4

)
(‖xnki − znki‖2 + ‖ynki‖2)2

‖xnki + ynki − znki‖2
.

This together with conditions (C1) and (C2) implies that

lim
i→∞

(‖xnki − znki‖2 + ‖ynki‖2)2
‖xnki + ynki − znki‖2

= 0,

which yields

lim
i→∞ ‖xnki − znki‖ = 0 and lim

i→∞ ‖ynki‖ = 0.
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By a similar proof as in Theorem 3.1, we conclude that any weak cluster point of
{xnki } belongs to �. Note that

‖xnki+1 − xnki‖ ≤ αnki‖u − xnki‖ + ‖unki − xnki‖
= αnki‖u − xnki‖ + τnki‖xnki + ynki − znki‖

= αnki‖u − xnki‖ + ‖xnki − znki‖2 + ‖ynki‖2
‖xnki + ynki − znki‖

→ 0.

This indicates that ωw(xnki+1) ⊂ �. Without loss of generality, we assume that
xnki+1 converges weakly to x† ∈ �. Now by (25), we infer that

lim sup
n→∞

δn = lim
i→∞ δnki

= lim
i→∞

[
− (1 − αnki )

αnki
λnki (1 − λnki

4
)
(‖xnki − znki‖2 + ‖ynki‖2)2

‖xnki + ynki − znki‖2

+ 2〈u − z, xnki+1 − z〉
]

≤ lim
i→∞ 2〈u − z, xnki+1 − z〉

= 2〈u − z, x† − z〉
≤ 0

due to the fact that z = P�u and (8). Finally, applying Lemma 2.3 to (23), we
conclude that xn → z. This completes the proof. �

4. Concluding remarks

In this paper, we present two new iterative algorithms with selection technique
for approximating a solution of the multiple-sets split feasibility problem. In
each iteration, our algorithm needs to compute only two projections, one from
{PCin xn}si=1 and another one from {(I − PQjn )Axn}tj=1. The suggested algorithms
are based on the gradient method. We prove that the presented two algorithms
have weak and strong convergence, respectively.
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