About
180
Publications
35,930
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,202
Citations
Introduction
Miha Ravnik currently works at the Faculty of Mathematics and Physics, University of Ljubljana. Miha does research in Condensed Matter Physics, Materials Science and Theoretical Physics with focus on Physics of Soft Matter, Surfaces and Nanostructures.
Current institution
Additional affiliations
September 2009 - March 2012
September 2004 - present
Publications
Publications (180)
We demonstrate the generation of diverse material flow regimes in nematic liquid cells as driven by time-variable active surface anchoring, including no-net flow, oscillatory flow, steady flow, and pulsating flow. Specifically, we numerically simulate a passive nematic fluid inside a cell bounded with two flat solid boundaries at which the time-dep...
A novel design and approach for the realization of liquid crystal optical waveguides using photopatterning as a manufacturing method is presented. The developed method is used to demonstrate straight waveguides of different widths and curved waveguides with different radius of curvature. The waveguides are terminated with +1 or −1 surface defects t...
Photonic defect modes are explored as a viable alternative to standard photonic band edge modes in photonic crystal applications, especially due to their typically high Q-factors and local density of states. For example, they can be used in nonlinearity enhancement, lasing, and cavity quantum electrodynamics. However, they are strongly dependent on...
Thin polymer films (TPFs) are indispensable elements in numerous technologies ranging from liquid encapsulation to biotechnology to electronics. However, their production typically relies on wet chemistry involving organic solvents or chemical vapor deposition, necessitating elaborate equipment and often harsh conditions. Here, an eco‐friendly, fas...
A novel material‐constrained method for the design of liquid crystal optical devices – computer‐generated liquid crystal‐based holograms – and their manufacture using photo‐patterning is demonstrated. The developed topology optimization method is compared to the Gerchberg‐Saxton algorithm, and key advantages and disadvantages are outlined. The key...
Various active materials exhibit strong spatio-temporal variability of their orientational order known as active turbulence, characterised by irregular and chaotic motion of topological defects, including colloidal suspensions, biofilaments, and bacterial colonies.In particular in three dimensions, it has not yet been explored how active turbulence...
Thin polymer films are indispensable elements in numerous technologies ranging from liquid encapsulation to biotechnology to electronics. However, their production typically relies on wet chemistry involving organic solvents or chemical vapor deposition, necessitating elaborate equipment and often harsh conditions. Here, we demonstrate the eco-frie...
The last years have witnessed remarkable advances in our understanding of the emergence and consequences of topological constraints in biological and soft matter. Examples are abundant in relation to (bio)polymeric systems and range from the characterization of knots in single polymers and proteins to that of whole chromosomes and polymer melts. At...
Active nematics are driven, non-equilibrium systems relevant to biological processes including tissue mechanics and morphogenesis, and to active metamaterials in general. We study the three-dimensional spontaneous flow transition of an active nematic in an infinite slab geometry using a combination of numerics and analytics. We show that it is dete...
Mechanical properties of biological tissues fundamentally underlie various biological processes and noncontact, local, and microscopic methods can provide fundamental insights. Here, we present an approach for quantifying the local mechanical properties of biological materials at the microscale, based on measuring the spectral shifts of the optical...
Cholesteric liquid crystals exhibit a periodic helical structure that partially reflects light with wavelengths comparable to the period of the structure, thus performing as a one-dimensional photonic crystal. Here, we demonstrate a combined experimental and numerical study of light transmittance spectra of finite-length helical structure of choles...
In this work, we demonstrate selected optimization changes in the simple design of filtration masks to increase particle removal efficiency (PRE) and filter quality factor by combining experiments and numerical modeling. In particular, we focus on single-layer filters fabricated from uniform thickness fibers and double-layer filters consisting of a...
We demonstrate the emergence of slow-light in dual-periodic dielectric one-dimensional photonic crystals with self-similar features at different length scales. Specifically, using numerical modelling, we explore self-similar photonic crystals which are formed as effective combinations of dual periodic stacks of dielectric layers and show that the e...
Photonic crystals can prevent or allow light of certain frequencies to propagate in distinct directions in anomalous and useful ways for use as waveguides, laser cavities, and topological light propagation. However, there exist limited approaches for fundamental reconfiguration of photonic crystals, such as changing the unit cell to various and on‐...
Adopting a spintronics-inspired approach, we study the reciprocal coupling between ionic charge currents and nematic texture dynamics in a uniaxial nematic electrolyte. Assuming quenched fluid dynamics, we develop equations of motion analogously to spin torque and spin pumping. Based on the principle of least dissipation of energy, we derive the ad...
Supervised machine learning and artificial neural network approaches can allow for the determination of selected material parameters or structures from a measurable signal without knowing the exact mathematical relationship between them. Here, we demonstrate that material nematic elastic constants and the initial structural material configuration c...
Using high-resolution microscope observations, we show that both the static cubic (BPI) and the dynamic amorphous (BPIII) blue phases consist of fractional skyrmion filaments that transform into the same quasi two-dimensional structure of ‘baby’ half-skyrmions upon confinement to ultra-thin layers. We confirm this using numerical simulations of BPI...
Active matter is naturally out of equilibrium which results in the emergence of diverse dynamic steady states, including the omnipresent chaotic state known as the active turbulence. However, much less is known how active systems dynamically depart out of these configurations, such as get excited or damped to a different dynamic steady state. In th...
Supervised machine learning and artificial neural network approaches can allow for the determination of selected material parameters or structures from a measurable signal without knowing the exact mathematical relationship between them. Here, we demonstrate that material nematic elastic constants and the initial structural material configuration c...
Geometric phase optical elements made of space-variant anisotropic media customarily find their optimal operating conditions when a half-wave retardance condition is fulfilled, which allows imparting polarization-dependent changes to an incident wavefront. In practice, intrinsic limitations of a man-made manufacturing process or a finite spectrum o...
Synthetic active matter is emerging as the prime route for the realisation of biological mechanisms such as locomotion, active mixing, and self-organisation in soft materials. In particular, passive nematic complex fluids are known to form out-of-equilibrium states with topological defects, but their locomotion, activation and experimental realizat...
Shaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on m...
Vector and vortex laser beams are desired in many applications and are usually created by manipulating the laser output or by inserting optical components in the laser cavity. Distinctly, inserting liquid crystals into the laser cavity allows for extensive control over the emitted light due to their high susceptibility to external fields and birefr...
Adopting a spintronics-inspired approach, we study the reciprocal coupling between ionic charge currents and nematic texture dynamics in a uniaxial nematic electrolyte. Assuming quenched fluid dynamics, we develop equations of motion analogously to spin torque and spin pumping. Based on the principle of least dissipation of energy, we derive the ad...
Geometric phase optical elements made of space-variant anisotropic media customarily find their optimal operating conditions when the half-wave retardance condition is fulfilled, which allows imparting polarization-dependent changes to an incident wavefront. In practice, intrinsic limitations of man-made manufacturing process or the finite spectrum...
Topological defects on colloids rotating in nematic liquid crystals form far-from-equilibrium structures that perform complex swim strokes in which the defects periodically extend, depin, and contract. These defect dynamics propel the colloid, generating translation from rotation. The swimmer's speed and direction are determined by the topological...
Physically intelligent micro‐robotic systems exploit information embedded in micro‐robots, their colloidal cargo, and their milieu to interact, assemble, and form functional structures. Nonlinear anisotropic fluids such as nematic liquid crystals (NLCs) provide untapped opportunities to embed interactions via their topological defects, complex elas...
Active matter naturally performs out-of-equilibrium which results in the emergence of diverse dynamic steady-states, including the omnipresent chaotic dynamic state known as active turbulence. However, much less is known how such active systems dynamically depart out of these configurations, such as get excited or damped to a different dynamic stea...
Vector and vortex laser beams are desired in many applications and are usually created by manipulating the laser output or by inserting optical components in the laser cavity. Distinctly, inserting liquid crystals into the laser cavity allows for extensive control over the emitted light due to their high susceptibility to external fields and birefr...
Physically intelligent micro-robotic systems exploit information embedded in micro-robots, their colloidal cargo, and their milieu to interact, assemble and form functional structures. Nonlinear anisotropic fluids like nematic liquid crystals (NLCs) provide untapped opportunities to embed interactions via their topological defects, complex elastic...
Shaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on m...
Skyrmions are topologically protected, vortexlike formations of a field that cannot be removed by any smooth transformation and emerge in a range of fundamentally different, either quantum or classical systems, from spin textures to chiral ferromagnets and chiral complex fluids. Notably, they are generally observed in thin ordered or disordered qua...
Significance
Liquid crystals (LCs) are used in a number of optical devices including lasers. However, until now, only relatively simple LC structures have been employed inside laser cavities. LCs enable the self-assembly of extremely complex birefringent structures, which would be impossible to manufacture in any other way. LC molecules also orient...
Long-term stability of monoclonal antibodies to be used as biologics is a key aspect in their development. Therefore, its possible early prediction from accelerated stability studies is of major interest, despite currently being regarded as not sufficiently robust. In this work, using a combination of accelerated stability studies (up to 6 months)...
Non-equilibrium dynamics of topological defects can be used as a fundamental propulsion mechanism in microscopic active matter. Here, we demonstrate swimming of topological defect-propelled colloidal particles in (passive) nematic fluids through experiments and numerical simulations. Dynamic swim strokes of the topological defects are driven by col...
In this brief review, we give an introduction to selected colloidal and microfluidic nematic microstructures, as enabled by the inherent anisotropy and microscopic orientational ordering in complex liquid crystalline materials. We give a brief overview of the mesoscopic theory, for equilibrium and dynamics, of nematic fluids, that provides the fram...
We present a perspective on several current research directions relevant to the mathematical design of new materials. We discuss: (i) design problems for phase-transforming and shape-morphing materials, (ii) epitaxy as an approach of central importance in the design of advanced semiconductor materials, (iii) selected design problems in soft matter,...
Charge profiles in liquid electrolytes are of crucial importance for applications such as supercapacitors, fuel cells, batteries, or the self-assembly of particles in colloidal or biological settings. However, creating localized (screened) charge profiles in the bulk of such electrolytes generally requires the presence of surfaces—for example, prov...
The physical behavior of anisotropic charged colloids is determined by their material dielectric anisotropy, affecting colloidal self-assembly, biological function, and even out-of-equilibrium behavior. However, little is known about anisotropic electrostatic screening, which underlies all electrostatic effective interactions in such soft or biolog...
Topological constraints have long been known to provide efficient mechanisms for localizing and storing energy across a range of length scales, from knots in DNA to turbulent plasmas. Despite recent theoretical and experimental progress on the preparation of topological states, the role of topology in the discharging dynamics is not well understood...
Charge profiles in liquid electrolytes are of crucial importance for applications, such as supercapacitors, fuel cells, batteries, or the self-assembly of particles in colloidal or biological settings. However, creating localised (screened) charge profiles in the bulk of such electrolytes, generally requires presence of surfaces -for example provid...
Sub-wavelength periodic nanostructures give rise to interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such structures are usually metallic which results in high dissipative losses and limitations for use; therefore, dielectric nanostructures are increasingly considered as a strong alternative...
We perform energy spectrum analysis of the active turbulence in 3D bulk active nematic using continuum numerical modelling. Specifically, we calculate the spectra of two main energy contributions---kinetic energy and nematic elastic energy---and combine this with the geometrical analysis of the nematic order and flow fields, based on direct defect...
Structured light with designable intensity, polarization and phase fields is today of high relevance, with application ranging from imaging, metrology, optical trapping, ultracold atoms, classical and quantum communications and memory. Specifically, vortex and vector beams can be generated directly in the laser cavity, however, a controllable, geom...
We show that topological defects in an ion-doped nematic liquid crystal can be used to manipulate the surface charge distribution on chemically homogeneous, charge-regulating external surfaces, using a minimal theoretical model. In particular, the location and type of the defect encodes the precise distribution of surface charges and the effect is...
We investigate the effects of electric double layers and flexoelectricity on the surface anchoring in general nematic fluids. Within a simplified model, we demonstrate for a nematic electrolyte how the surface anchoring strength can be affected by the surface charge, bulk ion concentration and/or flexoelectricity, effectively changing not only the...
Controlling the viscosity of concentrated protein solutions – usually reducing – is an open challenge, with major recent relevance in protein formulations for biopharmaceutical, medical, food, and other applications. The addition of viscosity-reducing additives generally not only changes the viscosity of the protein solutions but also the actual se...
Charged systems where ions, DNA, proteins and/or charged colloidal particles are dispersed in an isotropic fluid, are found in a range of prominent materials and biological systems. However, generally the role of the host material dielectric anisotropy in charged colloidal materials is ignored, despite frequent relevance in defining colloidal self-...
We show that topological defects in an ion-doped nematic liquid crystal can be used to manipulate the surface charge distribution on chemically homogeneous, charge-regulating external surfaces. In particular, the location and type of the defect encodes the precise distribution of surface charges and the effect is enhanced when the liquid crystal is...
We show that the design of electric double layers and flexoelectricity can be used to tune the surface anchoring in general nematic fluids. Specifically, we demonstrate for a nematic electrolyte that the surface anchoring strength can be efficiently controlled by the surface charge, bulk ion concentration and/or flexoelectricity, effectively changi...
Topological constraints have long been known to provide efficient mechanisms for localizing and storing energy across a range of length scales, from knots in DNA to turbulent plasmas. Despite recent theoretical and experimental progress on the preparation of topological states, the role of topology in the discharging dynamics is not well understood...
We describe the flows and morphological dynamics of topological defect lines and loops in three-dimensional active nematics and show, using theory and numerical modeling, that they are governed by the local profile of the orientational order surrounding the defects. Analyzing a continuous span of defect loop profiles, ranging from radial and tangen...
Generation of flow is an important aspect in microfluidic applications and generally relies on external pumps or embedded moving mechanical parts which pose distinct limitations and protocols on the use of microfluidic systems. A possible approach to avoid moving mechanical parts is to generate flow by changing some selected property or structure o...
Purpose:
The ability to predict an antibody's propensity for aggregation is particularly important during product development to ensure the quality and safety of therapeutic antibodies. We demonstrate the role of container surfaces on the aggregation process of three mAbs under elevated temperature and long-term storage conditions in the absence o...
We perform energy spectrum analysis of the active turbulence in 3D bulk active nematic using continuum numerical modelling. Specifically, we calculate the spectra of two main energy contributions---kinetic energy and nematic elastic energy---and combine this with the geometrical analysis of the nematic order and flow fields, based on direct defect...
This chapter on mesoscopic approach to nematic fluids gives a brief introduction to the selected topics of the science of complex nematic fluids, which are fluids with internal orientational order of the building blocks, specifically focusing at the mesoscopic scale. We introduce basic approaches used to characterise and understand nematic fluids a...
Active nematics contain topological defects that (under sufficient activity) move, create, and annihilate in a chaotic quasi-steady state, called active turbulence. However, understanding active defects under confinement is an open challenge, especially in three dimensions. Here, we demonstrate the topology of three-dimensional active nematic turbu...
We describe the flows and morphological dynamics of topological defect lines and loops in three-dimensional active nematics and show, using theory and numerical modelling, that they are governed by the local profile of the orientational order surrounding the defects. Analysing a continuous span of defect loop profiles, ranging from radial and tange...
Active nematics contain topological defects which under sufficient activity move, create and annihilate in a chaotic quasi-steady state, called active turbulence. However, understanding active defects under confinement is an open challenge, especially in three-dimensions. Here, we demonstrate the topology of three-dimensional active nematic turbule...
The fabrication of orientationally and positionally ordered colloidal clusters is of interest to several fields from materials science to photonics. An interesting possibility to obtain such colloidal crystalline structures is by the self-assembly of colloidal particles in a liquid crystal matrix. This work demonstrates the self-assembly in a nemat...
The fabrication of 3D bulk metamaterials, optical materials with sub-wavelength building blocks, is an open challenge, along with the tuning of their optical properties, such as transmissivity or exit polarization where a possible approach is to embed liquid crystalline materials into metamaterials and use their tunable birefringence. In this work,...
Achieving and exceeding diversity of colloidal analogs of chemical elements and molecules as building blocks of matter has been the central goal and challenge of colloidal science ever since Einstein introduced the colloidal atom paradigm. Recent advances in colloids assembly have been achieved by exploiting the machinery of DNA hybridization but r...
Achieving and exceeding the diversity of colloidal analogs of chemical elements and molecules as building blocks of matter has been the central goal and challenge of colloidal science ever since Einstein introduced the colloidal atom paradigm. Recent significant advances have been achieved by exploiting the powerful machinery of DNA hybridization t...
We demonstrate that birefringent profiles of double-twist cylinders, found in some chiral nematic systems such as blue phases, can perform as polarization-selective microlenses and waveguides in the regime of negative birefringence. Specifically, we solve Maxwell’s equation using the finite-difference time-domain (FDTD) method, to simulate light pr...
Charged surfaces in contact with liquids containing ions are accompanied in equilibrium by an electric double layer consisting of a layer of electric charge on the surface that is screened by a diffuse ion cloud in the bulk fluid. This screening cloud determines not only the interactions between charged colloidal particles or polyelectrolytes and t...
Charged surfaces in contact with liquids containing ions are accompanied in equilibrium by an electric double layer consisting of a layer of electric charge on the surface that is screened by a diffuse ion cloud in the bulk fluid. This screening cloud determines not only the interactions between charged colloidal particles or polyelectrolytes and t...
Liquid crystalline blue phase (BP) II sandwiched between a pair of confining surfaces with specifically designed patterns is studied using numerical simulation based on the Landau-de Gennes phenomenological approach. Directed by the surface patterns, quasi-two-dimensional half-Skyrmion lattices form. Specifically, we observe the formation of square...
Periodic birefringence is today extensively explored as an interesting route for controlling the flow of light. Distinctly, complex fluids with periodic modulations of birefringence can perform as photonic crystals, with the main examples being cholesteric and blue phases birefringent profiles. Here we demonstrate the characteristics of light propa...
Protein aggregation is a field of increasing importance in the biopharmaceutical industry. Aggregated particles decrease the effectiveness of the drug and are associated with other risks, such as increased immunogenicity. This article explores the possibility of using the Smoluchowski coagulation equation and similar models in the prediction of agg...
Two‐photon laser writing is a powerful technique for creating intricate, high resolution features in polymerizable materials. Here, using a single‐step process to microfabricate polymer inclusions, the ability to generate read‐on‐demand images and identification codes in a liquid crystal (LC) device is demonstrated. These micrometer‐sized polymer f...
Quasicrystalline ordering was first observed in synthetic multi-component metallic alloys. These solid state materials exhibit quasicrystalline atomic ordering at nanometer length scales. Softmatter systems are another class of versatile materials that can exhibit quasicrystalline ordering across supra-nanometer (>10 nm) to supra-micrometer (>10 μm...
The role of environment in shaping the material properties is of great significance, but less is known about how nontrivial topology of the environment couple to the material states which can be of nontrivial topology themselves. In this paper, we demonstrate the role of the topology of the environment on the formation of complex nematic fields and...
The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equ...
Analytic formulations of elementary flow field profiles in weakly anisotropic nematic fluid are determined, which can be attributed to biological or artificial micro-swimmers, including Stokeslet, stresslet, rotlet and source flows. Stokes equation for a nematic stress tensor is written with the Green function and solved in the k-space for anisotro...
Purpose:
Characterization of the monoclonal antibody aggregation process and identification of stability factors that could be used as indicators of aggregation propensity with an emphasis on a large number of samples and low protein material consumption.
Methods:
Differential scanning calorimetry, dynamic light scattering and size exclusion chr...
We explore equilibrium structures and flow-driven deformations of nematic liquid crystals confined to 3D junctions of cylindrical micropores with homeotropic surface anchoring. The topological state of the nematic ordering field in such basic unit of porous networks is controlled by nematic orientation profiles in individual pores, anchoring frustr...
Significance
Topological defects play a defining role in systems as extensive as the universe and as minuscule as a microbial colony. Despite significant advances in our understanding of topological defects and their mutual interactions, little is known about the formation and dynamics of defects across different material fields embedded within the...
Refraction of light at a boundary between an isotropic dielectric and an optically anisotropic material – liquid crystalline or metamaterial – is elaborated, especially the dependence on the anisotropic material birefringence optical axis and the material surface. Different regimes of negative and positive refraction are shown, caused by the liquid...