Objective

Solve the localization task despite clutter in a non-polygonal dynamic environment using a range finder.

Localization involves:
Solving a correspondence problem in which measurements in the robot’s local coordinate system must be matched to map elements in global coordinates.
Motivation

• Self-localization is an essential task for autonomous navigation.

• Limitations of common localization approaches:

 ▪ Feature-based matching approaches assume structured environments and polygonal models, e.g. line-to-line via Split-and-Merge.

 ▪ Point-to-point matching approaches are more susceptible to misalignments due to occlusions. These methods often seek the alignment of consecutive scans to solve a robot tracking problem and thus are less suitable for global localization.

Geo-referenced Satellite Image and Radar Scan

Concepción Bay, 36° 42’ S - 73° 05’ W

Satellite Image (reference)
Landsat, resolution 15 m
UTM Zone 18H

Radar Scan (measurement)
Range resolution 7.5 m
Bearing resolution 0.5°
Matching the Measurement to the Reference

Before Matching

After Matching

General Localization Scheme

Odometry
- IMU/Compass
- Internal States

Position Prediction
- (Motion Model)

Position Update
- (eg. EKF Estimation)
- Pose Estimate
- Position/Heading Observation (inferred from matching)

Range Finder
- Raw or Interpreted Sensor Data
- (Perception)
- Environment Description

Scan Matching
- Predicted Position

Maps DB
- External States
Shape Recognition Using the Hausdorff Distance

• Minimize the **dissimilarity** (largest deviations) between the reference set \(A \) (model) and the measurement set \(B \) (scan).

 \[
 \rightarrow \text{Translate, rotate and scale } B \text{ until the } \textit{best match} \text{ with respect to } A \text{ is found.}
 \]

Hausdorff Distance (HD)

The **Hausdorff distance** between to sets of points:

\[
A \overset{def}{=} \{a_1, a_2, \ldots, a_p\} \\
B \overset{def}{=} \{b_1, b_2, \ldots, b_q\}
\]

is defined as

\[
H(A, B) \overset{def}{=} \max(h(A, B), h(B, A))
\]

where

\[
h(A, B) \overset{def}{=} \max_{a \in A} \min_{b \in B} ||a - b||
\]

is the **directed Hausdorff distance**.

Thus the **Hausdorff distance** is the “greatest distance between closest” points from \(A \) to \(B \) and viceversa.
Hausdorff Distance (HD)

Step 1: \(d_B(a) \stackrel{def}{=} \min_{b \in B} \|a - b\| \quad \forall a \in A \)

The Hausdorff distance ensures that every point in set \(\psi \) will be at most at a distance \(\psi(\psi,\psi) \) from set \(\psi \).

In order words, \(\psi(\psi,\psi) \) yields a measure of the largest "deviation" of set \(\psi \) from \(\psi \).

All point in \(\psi \) are at most a distance \(\psi(\psi,\psi) \) from \(\psi \).

\[\textbf{Step 2:} \quad h(A, B) \stackrel{def}{=} \max_{a \in A} d_B(a) \]

Averaged Partial Hausdorff Distances

Define the mapping that returns the distance from a point \(x \) to the closest point in some set \(\Omega \) as:

\[d_\Omega : x \rightarrow d_\Omega(x) = \min_{\omega \in \Omega} \|x - \omega\| \]

The partial HD of the \(K \) best matching points in the measurements set \(B \) to the model set \(A \) can then be defined recursively for \(K = q, q - 1, q - 2, \ldots, 2, 1 \) as:

\[h_K(B, A) = \max_{b \in B^K} d_A(b) \]

where

\[B^K = B^{K+1} - \{b^*_K+1\} \]

\[b^*_K = \arg \max_{b \in B^K} d_A(b) \]

and with initial values:

\[B^{q+1} = B, \quad b^{q+1}_* = \{\emptyset\} \]
Averaged Partial Hausdorff Distances

Note that:

\[h_q(B, A) = h(B, A) \]

Hence, \(h_K(B, A) \Rightarrow \exists K \) measurements in \(B \) within a distance \(h_K(B, A) \) from \(A \).

The average of partial Hausdorff distances, also called modified Hausdorff distance (despite not being formally a distance), is simply defined as:

\[
\bar{h}_K(B, A) \overset{\text{def}}{=} \frac{1}{K} \sum_{i=1}^{K} h_i(B, A)
\]
Final Match

Distance Transform Map (L1-norm)
Distance Transform Map (L1-norm)

Robustness of the Approach

Ladar distance measurements
Reference map
Simulation Results: Matching Accuracy

<table>
<thead>
<tr>
<th>Noise Percentage [%]</th>
<th>Noise Level σ [pixels]</th>
<th>Final Match Position Error [pixels]</th>
<th>Final Match Heading Error [°]</th>
<th>Initial $h_K(A, B)$ [pixels]</th>
<th>Final $h_K(A, B)$ [pixels]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2.67</td>
<td>88.99</td>
<td>0.65</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0.33</td>
<td>88.66</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0.33</td>
<td>88.98</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>0</td>
<td>0.33</td>
<td>88.76</td>
<td>0.76</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>0</td>
<td>0.17</td>
<td>87.73</td>
<td>1.64</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>2.83</td>
<td>0.67</td>
<td>88.93</td>
<td>4.65</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>1.41</td>
<td>1.33</td>
<td>87.65</td>
<td>8.36</td>
</tr>
</tbody>
</table>

1. **Low final matching error** when percentage of spurious/noisy measurements is below the specified threshold (30%).
2. Averaged partial HD increases proportionally to the number of noisy samples and the magnitude of the noise.

The matching approach is robust to spurious measurements!
Averaged Partial Hausdorff Distances vs. Iteration

Partial Hausdorff Distances
Motion Model

The state space model can be stated as:

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\theta} \\
\dot{v}_R \\
\dot{v}_L \\
\dot{\beta}_R
\end{bmatrix}
= \begin{bmatrix}
\frac{v_R + v_L}{2} \sin(\theta) + \xi_x \\
\frac{v_R + v_L}{2} \cos(\theta) + \xi_y \\
v_R - v_L \xi_\theta \\
u_1 + \xi_{u_1} \\
u_2 + \xi_{u_2} \\
u_3 + \xi_{u_3}
\end{bmatrix}
\overset{\text{def}}{=} f(x, u)
\]

where \(x, y \) are the global position coordinate,
\(v_R, v_L \) are the right/left wheel velocities,
\(\theta \) is the heading angle wrt the \(x \)-axis,
\(\beta_R \) is the range bias,
\(\xi \)'s are zero-mean, i.i.d., Gaussian disturbances.

Observation Model

The observation model (output of the matching process) is given by:

\[
\begin{bmatrix}
z_1 \\
z_2 \\
z_3 \\
z_4
\end{bmatrix}
= \begin{bmatrix}
x + \zeta_x \\
y + \zeta_y \\
\theta + \zeta_\theta \\
\beta_R + \zeta_{\beta_R}
\end{bmatrix}
\overset{\text{def}}{=} h(x)
\]

where \(\zeta \)'s are assumed to be zero-mean, i.i.d., Gaussian noises.
ActivMedia® Pioneer 3-AT

Seminar on Visual Servoing – UFSC – 2011
M. Torres-Torriti
Initial Measurement

Final Matching
Estimated Trajectory

Estimated Position Error
Performance Results (using Sick PLS-101)

- Position Accuracy < Sensor Resolution (7 cm)
- Precision < Map Resolution (15 cm)
- Computation Time:
 - In Matlab: 30 s on first iteration, .1 s on following iterations.
 - Computational complexity for N_s samples:

 $W \cdot N_s \log(N_s)$

 where W is the largest axis of the reference map.
Conclusions

- The proposed approach for scan-to-map matching is very accurate and precise thanks to its robustness to occlusions or unspecified environment elements.

- Accuracy is mostly limited by the resolution of the rasterized maps.

- Precision is affected by the amount of occlusions and objects that do not appear in the reference map, as well as the number K of samples used in the modified HD.

- Accurate estimates of the robot’s position, heading and velocity can be obtained in real-time.

Ongoing Research

- Improving the scan-matching technique to reduce the computation time by introducing multi-scale techniques.

- Developing methods to adjust the MHD threshold dynamically.

- Extending the approach to MCL in order to improve the robustness under multiple matching solutions.

- Extending the technique to solve the SLAM problem.
Range Finder Measurements Model

The range finder measurement model is given by:

\[
\begin{bmatrix}
 z_{iw}^x \\
 z_{iw}^y
\end{bmatrix} =
\begin{bmatrix}
 (r_i^s + \beta_r) \cos(\theta_i^s + \theta + \beta_\theta) + x + \eta_x \\
 (r_i^s + \beta_r) \sin(\theta_i^s + \theta + \beta_\theta) + y + \eta_y
\end{bmatrix}
\]

where:
- \(r_i^s, \theta_i^s \) are the \(i \)-th range and bearing measurements in (local) sensor coordinates
- \(x, y \) are the ship’s position coordinates in the global frame
- \(\theta \) is the ship’s heading in the global coordinates
- \(\beta_r, \beta_\theta \) are range and bearing biases
- \(\eta_x, \eta_y \) are zero-mean Gaussian noises
HD-computed and Filtered Trajectory

The data corresponds to a sequence of 54 radar scans taken over a time interval of 135 seconds from a patrol boat in the Concepcion Bay, Chile (36° 42’ S - 73° 05’ W) sailing East (90° heading) with diminishing speed from 12 to 2 knots.

Estimated Heading
Estimated Velocity

![Graph showing estimated speed and log datum over scans]

Estimated Range Bias

![Graph showing filtered range bias and computed range bias over scans]
Estimated Bearing Bias

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0 1 0 2 0 3 0 4 0 5 0 6

degrees

scan #

filtered angular bias
computed angular bias