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1. Introduction

There has been a recent interest in the links between Finsler Geometry and the
geometry of relativistic spacetimes. A well-known reason comes from the viewpoint
of foundations: Finsler metrics are much more general than Riemannian ones and,
accordingly, if one replaces the Lorentz metric of a spacetime by a Finslerian coun-
terpart, the possibility to model physical effects is richer. A more practical reason
comes from a purely mathematical correspondence: the geometry of a concrete class
of Finsler manifolds (Randers spaces) is closely related to the conformal structure
of a class of spacetimes (standard stationary ones). So, results in one of these two
fields can be translated into results on the other one —and, sometimes, this can be
generalized to more general Finsler and Lorentz spaces. The purpose of this paper
is to make a brief revision of this topic, emphasizing the applications to Physics.
After some preliminary definitions and motivations on Finsler metrics (Section
2)), we focus on the problem of describing spacetimes by using Finsler elements
(Section B]). We introduce and discuss a notion of Lorentz-Finsler metric which


http://arxiv.org/abs/1311.4770v1

December 16, 2013 20:3 WSPC/INSTRUCTION FILE Sanchez Javaloyes

2 Miguel A. Javaloyes And Miguel Sdnchez

leads to (conic) Finsler spacetimes. Our definition is quite general and, so, several
previous notions in the literature fit in it. Such a Finsler spacetime provides a cone
structure. This notion has been studied systematically very recently [14], and it
allows us to introduce classical Causality in the framework of Finsler spacetimes.
In particular, some of the key results on this topic can be recovered, Theorem [l
It is worth pointing out: (a) the cone structure of a Finsler spacetime generalizes
the one provided by the chronological futures of a classical spacetime, and defines
implicitly a past cone structure (but no further assumption on reversibility should
be necessary if one liked to include in the definition of conic Finsler spacetime
the two cones at each point), and (b) in classical spacetimes, the cone structure is
equivalent to the conformal one, but in Finsler spacetimes many non-conformally
related Lorentz Finsler metrics will have the same cone structure and, thus, the same
Causality —that is, the information of the Lorentz-Finsler metric not contained in
the cone structure is much richer than in classical spacetimes.

Finally, in Section [l we make a brief survey on the recent developments of
the geometric correspondence between standard stationary spacetimes and Ran-
ders spaces. We focus in those questions with more clear applications to relativistic
spacetimes and, so, topics such as the causal structure of standard stationary space-
times or the gravitational lensing are emphasized.

2. Finsler metrics and their applications

Let us introduce the very general notion of (conic) pseudo-Finsler metric in a man-
ifold M. Let TM denote the tangent bundle of M, 7 : TM — M, the natural
projection and A C TM \ 0, an open subset satisfying that it is conic (that is, if
v e Aand X >0, then \v € A), and it projects on all M (i.e., 7(A) = M). We say
that a smooth function L : A C TM \ 0 — R is a (conic) pseudo-Finsler metric
if L is positive homogeneous of degree 2, namely, L(\v) = A\?L(v) for any v € A
and A > 0, and the fundamental tensor g, defined as the Hessian of %L at every
v € A, is nondegenerate. In other words, given v € A, the bilinear symmetric form
in T ()M defined as

12
T2 9sot

L(v + tu + sw) (1)

t=s=0

go(u, w)

for any u,w € Ty (,)M, is non-degenerate.

Let us remark that classical Finsler metrics are a particular case of pseudo-
Finsler metrics. More specifically, L is a Finsler metric if A = TM \ 0 and the
fundamental tensor g is positive definite for every v € A. In this case, L is always
positive, since by homogeneity L(v) = g,(v,v) for every v € A and we can consider
F = /L, which is positive homogeneous of degree one. The function F is usually
called the Finsler metric function, and it is determined by its indicatriz, i.e. the set
of its unit vectors.

Among the most classical examples of Finsler metrics, we will use Randers
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metrics, which are given by
F(v) = a(v) + B(v) (2)

for every v € TM, where a(v) = y/h(v,v) and h and § are a Riemannian metric
and a one-form in M respectively. In fact, the fundamental tensor of F' is positive
definite in v € TM if and only if a(v) + B(v) > 0 (see [22, Corollary 4.17]); this
restriction is satisfied everywhere if the h-norm of § is smaller than 1, so defining a
Randers metric. These metrics appear naturally in several contexts as in Zermelo
navigation problem, which aims to describe the trajectories that minimize the time
in the presence of a mild wind or current modelled by a vector field W. Then, these
trajectories are given by geodesics of a Randers metric defined as

_ _g(qu)+ \/g(U,W)2+g(U,U)(1 —g(W, W)) (3)
1—g(W, W)

where v € TM, g is a Riemannian metric and g(W, W) < 1 in all M [2]. Ob-
serve that Zermelo metrics are always positive for every v € TM \ 0 and then its

F(v)

fundamental tensor is positive definite. As we will see later, Randers metrics also
appear naturally associated to stationary spacetimes describing their causal prop-
erties (see Section H)). Other remarkable example is given by Matsumoto metric,
which describes trajectories minimizing time in the presence of a slope —recall
that going up is slower than going down. This metric is defined as

for every v € TM, and its fundamental tensor is positive definite in v € TM\0 if and
only if (a(v) — S(v))(a(v) — 28(v)) > 0 [22, Corollary 4.15]. Therefore, Matsumoto
metric is properly conic if this inequality is not satisfied by some v # 0. Randers and
Matsumoto metrics are particular examples of the class of («, 8)-metrics, which are
defined as F'(v) = a¢(f(v)/a(v)), being ¢ an arbitrary non-negative real function
(see [22] and references therein).

3. Finsler-Lorentz metrics and spacetimes

In classical General Relativity, a spacetime is a (connected, Hausdorfl) n-manifold
M endowed with a Lorentzian metric g and a time orientation, i.e., a continuous
choice of one of the two timelike cones at each point, which will be regarded as
future-directed. There are some speculative applications of the replacement of g
by a (generalization of a) Finsler metric F', as modeling possible anisotropies of
the spacetime even at an infinitesimal level, or admitting speeds higher than light.
At any case, the possibility to model a general action functional (homogeneous of
degree two, but not necessarily coming from a quadratic form) justifies the study
of the Lorentz-Finsler approach.

There are different possibilities in order to define a Finsler spacetime. Recall
that, for a Riemannian metric gr, the unit vectors constitute the indicatrix of a
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(standard) Finsler metric; in particular, each unit sphere S, C T,M is convex (as
the boundary of the unit ball) at each point. Nevertheless, if g is a Lorentzian metric,
one has to consider the subsets S;‘ ,S, CT,M containing, resp. the spacelike and
timelike unit vectors at p. Notice that S, always contains two connected parts, each
one concave. For n = 2 these properties also hold for S;‘ , but for higher dimensions
S;‘ is connected and, at each point p, its second fundamental form (say, with respect
to any auxiliary Euclidean product at T),M) has Lorentzian signature. From the
physical viewpoint, the most important elements of the spacetime are the causal
vectors of the metric, since they model the trajectories of massive and massless
particles. Observe in particular that the length of a causal curve v : [0,1] = M in
the spacetime is computed as

@q(v)=/0 vV —=9(%,%)ds

and a fundamental property in the spacetime is that causal geodesics locally max-
imize this length. If we want to define a more general way of measuring the length
of curves (but preserving that the length does not depend on the parametrization
of the curve and geodesics are local length-maximizers), then we must consider a
positive one-homogeneous function F : A C TM \ 0 — (0, +00) with fundamental
tensor of signature n — 1 (see [23]). This would be enough for timelike curves de-
scribing the trajectories of massive particles, but if in addition we want to describe
the trajectories of massless particles, we will consider a positive two-homogeneous
function L, rather than a one-homogeneous function, —since for a Lorentzian met-
ric g, v/—g(v,v) is not smooth when v is lightlike. Summing up, we say that a
(conic) Finsler spacetime is a manifold endowed with a conic pseudo-Finsler metric
L: A —[0,400) which satisfies the following properties:

(i) each A, := ANT,M is convex in T, M (i.e., the segment in T, M connecting
each two vectors v,, w, € A, is entirely contained in A,), in particular, each
Ay, must be strictly included in a half-plane of T, M,

(ii) A has a smooth boundary in TM \ 0,

(iii) the extension of L as 0 to the closure A of A is smooth at A := A\ 0
(notice that the extension is always continuous at 0 by homogeneity, and
this extension cannot be smooth there even for a classical Finsler metric,
except if it comes from a Riemannian metric), and

(iv) both the fundamental tensor ¢ in (1) and its extension to the points in
0A\ 0 have signature n — 1.

For practical purposes, we will consider always that L is extended to A and g to
T,(T,M) for all p € M and v € A, \ 0. In order to make computations related
to lightlike geodesics, one can also assume that L is smoothly extended (in a non-
unique way) on a neighborhood of A. We will call F = VL the LorentzFinsler
metric (defined on A) of the Finsler spacetime.
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Observe that our definition of Finsler spacetime is more general than most of
the previous ones in literature. In particular:

(1) In [4], the function L is defined in all T M and the fundamental tensor is assumed
to have signature n — 1. The restriction to one connected component of the
subset L0, +00) \ 0 in every point p € M gives a (conic) Finsler spacetime
as defined here. In [27], the definition is the same as in [4] with the opposite
sign of L.

(2) In [I], the author gives the same definition as we do, but excluding the boundary
—mnamely, he does not pay much attention to lightlike vectors.

(3) In [28], the definition of Finsler spacetime is more involved, since they introduce
an r-homogeneous function L, with » > 2 endowed with a fundamental tensor
of signature one. Then, they associate a homogeneous Finsler function F = /L
—it is not clear if, again, the fundamental tensor of F' would have signature
one, but they prove that it is at least non-degenerate.

(4) In [24], the author obtains a positively homogeneous function as the following:

F(U) =V —go(’U, U) + 90(U7 a) + \/go(’l), b)2 - 90(b7 b)QO(Uv U)

where go is the standard metric of Minkowski spacetime R}, v is any timelike
vector and a,b are two prescribed vector fields in R}. This is related to our
notion but, when b = 0, it is easy to compute the fundamental tensor of F [22]
Proposition 4.17], which is degenerate when F'(v) = \/—go(v,v) + go(v,a) =0
(and this is always possible for some timelike vector v).

Notice that our definition of Finsler spacetime is a generalization of the struc-
ture obtained in a classical spacetime when one considers only its future causal
cones. In the case of Lorentzian metrics, however, the value of the metric on the
causal vectors is enough to determine the metric on all the vectors and, moreover,
the lightlike vectors are enough to determine the metric up to a conformal factor.
So, the cone structure for Lorentzian metrics is equivalent to the conformal struc-
ture. Nevertheless, this does not hold by any means in the case of (conic) Finsler
spacetimes: clearly two Lorentz Finsler metrics F, F' on M with the same domain
A may not be equal up to a multiplicative function. However, the domain A is a
cone structure and, thus, one can reconstruct all the Causality Theory for Finsler
spacetimes. Let us review this briefly.

Given a Finsler spacetime (M, L) a tangent vector v € TM is called (future-
directed) timelike if v € A, causal if v € A, lightlike if v € A\ A and null if either
v is lightlike or the zero vector. A (piecewise smooth) curve v on M is also called
timelike, causal etc. depending on the character of its velocity at all the points. If
p,q € M, we say that p lies in the chronological (resp. causal) past of ¢ if there
exists a (future-directed) timelike (resp. causal or null) curve starting at p and
ending at ¢; in this case we write p < ¢ (resp. p < ¢) and we also say that ¢ lies
in the chronological (resp. causal) future of p. The chronological and causal futures
of p, as well as its corresponding pasts, are then defined formally as in the case of
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Lorentzian metrics:

I"(p) ={ge M :p<q}, J"(p) ={g € M :p < g};
I=(p)={qeM:q<q}, J-(p)={q€ M:q<p}.

One says also that a second Lorentz Finsler metric F’ has cones wider than F,
denoted F < F’ when their corresponding domains A, A’ satisfy A ¢ A’. With
these definitions, one can extend directly the causal ladder of classical spacetimes
(see for example |26]) to Finsler spacetimes. We recall some of the steps of this
ladder. A Finsler spacetime will be called chronological (resp. causal) when it does
not admit closed timelike (resp. causal) curves, stably causal when there exists a
causal Lorentz-Lorentz metric F’ with wider cones F' < F', and globally hyperbolic
when it is stably causal and the following property holds: J*(p)NJ~(q) is compact
for any p,q € M. Trivially:

chronological < causal < stably causal < globally hyperbolic.

Taking into account the case of spacetimes, one realizes that there are more
intermediate levels of the ladder as well as many subtle properties and relations
among them to be considered for Finsler spacetimes. However, we focus here just
on a pair of them, with deep implications for the global structure. To this aim, we
define for a Finsler spacetime (M, L):

(a) a spacelike hypersurface is a smooth hypersurface S such that no causal vector
v is tangent to S,

(b) a (spacelike) Cauchy hypersurface is a spacelike hypersurface S such that any
causal curve which is inextendible in a continuous way, intersects S exactly
once,

(c) a temporal function is a smooth function ¢ such that dt(v) > 0 for all (future-
directed) causal vector v (thus, its levels ¢ =constant are spacelike hypersur-
faces) and,

(d) a Cauchy temporal function is a temporal function such that all its levels are
Cauchy hypersurfaces.

In the case of classical spacetimes, results by Geroch [17] and Hawking [19] obtained
at a topological level, plus their improvements to the smooth and metric cases by
Bernal and Sanchez [6l7], prove the equivalence between being stably causal (resp,
globally hyperbolic) and admitting a temporal (resp. Cauchy temporal) function.
By using different arguments coming from KAM theory, these results were re-proved
and extended to general cone structures by Fathi and Siconolfi [14]. So, as a conse-
quence of the latter we get the following result.

Theorem 1. Let (M, F) be a Finsler spacetime.

(1) (M, F) is stably causal if and only if it admits a temporal function (and,
thus, it can be globally foliated by spacelike hypersurfaces).

(2) (M, F) is globally hyperbolic if and only if it admits a Cauchy hypersurface,
and if and only if it admits a Cauchy temporal function.
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Recall, however, that the Finsler spacetime has elements that are not char-
acterized by the cone structure. For example, one can define a Finler separation
d(p, q) € [0, 0] between any p,q € M by taking the supremum of the lengths of the
(future-directed) causal curves from p to ¢ —in a close analogous to the Lorentzian
separation or distance for spacetimes with Lorentzian metric. The analogies and dif-
ferences of d with the Lorentzian case (in particular, its interplay with Causality)
deserve to be studied further.

4. Stationary to Randers correspondence and beyond

From a classical viewpoint, a correspondence between some purely geometric el-
ements of Lorentzian and Finslerian manifolds has been developed recently. Such
a correspondence provides a precise description of certain objects in (classical)
spacetimes in terms of an associated Finsler space. The precise correspondence
is developed between a particular class of spacetimes, the standard complete-
conformastationary ones, or just stationary, for short, and a precise class of Finsler
manifolds, the Randers ones (see (2)). But some consequences and techniques can
be extrapolated to general Lorentzian and Finslerian manifolds.

We start with a trivial observation. Probably the simplest examples of
Lorentzian manifolds are the products (R x M,gr, = —dt®> + n*go), where 7 :
RxM — Mandt: R x M — R are the natural projections. The geometric
properties of (R x M, gr) depend on those of (M, go). In particular, each curve
(R D)I 5t~ c(t) € M parametrized with unit speed yields naturally two lightlike
curves t — (£t,¢(t)) (future-directed with the sign “ 4+ ” and past-directed with
“ —7 for the natural time orientation of the spacetime), which are geodesics iff
¢ is a geodesic in (M, go). A less trivial spacetime is obtained if we admit cross
terms between the time and space parts (independent of the time ¢). This can be
described by using a 1-form w on M, namely, we consider the spacetime:

V=[RxM,gy), gr = —dt* + T'w @ dt + dt @ T w + T go. (4)
Now, we introduce the following Finslerian Fermat metrics associated to ({@):
F* = /go+w? tw,

notice that these are metrics of Randers type, and F'~ is the reverse Finsler metric
of F, so, we will write simply F for the latter and F for the former. If we consider
curves ¢ and ¢~ in M which are unit for F and F resp., the curves in the spacetime
t — (£t,c*(t)) are again (future or past directed) lightlike curves in V, and each
one is a geodesic up to parametrization iff so is the corresponding original curve ¢
or ¢ (see the details in [I1] or [12]). This suggests the possibility of describing the
properties related to the Causality and conformal structure in (@) in terms of the
geometry of the corresponding Randers space (M, F).

It is worth pointing out that, as only conformally invariant properties will be

taken into account, the class of spacetimes to be considered includes those conformal
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to (). This class of spacetimes can be characterized intrinsically as those which
are distinguishing (a causality condition less restrictive than strong causality) and
admit a complete timelike conformal vector field. In fact, the conformal change of
the metric g by —g/g(K, K), plus the result in [22], allows one to find the expression
@), which defines a normalized standard stationary spacetime. So, one will find a
correspondence between the conformal properties of the elements in this class of
metrics (V,gr) and the geometric properties of Randers spaces (M, F'). This has
been carried out at different levels (see [QIQITOTIIT2ITOITRIZT] or [20] for a review),
and we will focus here in three of them, with clear physical applications.

4.1. Causal structure

Nicely, Fermat metrics allow one to determine the chronological and causal future
and past of any point in the stationary spacetime (4)). For example, if we take
(0,p) € {0} x M then the intersection of I (0,p) with the slice ¢t = ¢y of the
spacetime is equal to {tq} x BT (p,tg), where BT (p,to) is the open ball of center p
and radius to for the Fermat metric F(= F'T). From these considerations, one can
describe in a precise way the causal structure of the spacetime. Concretely, one has
[12:

Theorem 2. A stationary spacetime () is always causally continuous and it is

e Causally simple (i.e., it is causal, and the causal futures and pasts J*(p) are
closed) if and only if (M, F) is convez, i.e. any pair (p,q) in M can be connected
by means of an FT-geodesic of length equal to the Finslerian distance dp(p,q).

e Globally hyperbolic if and only if the closed balls for the symmetrized distance
of dp are compact.

o Globally hyperbolic with slices t =constant that are Cauchy hypersurfaces if and
only if dp is forward and backward complete.

Other causal elements which are described naturally with the Finslerian ele-
ments are the Cauchy horizons and developments. For example, given a subset
A c {0} x M, its future Cauchy horizon H*(A) is the graph, in R x M of the
function which maps each y € A to dr(M \ A,y), i.e., the dr-distance from the
complement of A to y.

Remark 3. The results in stationary spacetimes can also be translated to results
in Randers metrics, sometimes generalizable to any Finsler manifold. Among them,
we point out (see [12]):

e The theorem above suggests that the compactness of the closed symmetrized
balls of dp, which is a weaker hypothesis than the commonly used (forward
or backward) completeness of dp, can substitute the last hypothesis in many
results. And, in fact, this is the case in classical theorems of Finsler Geometry,
such as Myers’ theorem or the sphere theorem.
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e From the known fact that any globally hyperbolic spacetime admits a smooth
spacelike Cauchy hypersurface, one can deduce that any Randers metric R with
compact symmetrized balls admits a trivial projective change (R — R + df)
such that the corresponding new Randers metric has the same pregeodesics as
R, and it is forward and backward complete. This result has been extended by
Matveev [25] for any Finsler metric.

e The results on horizons (a substantial topic in Lorentzian Geometry) in sta-
tionary spacetimes, yield directly results on Randers spaces. For example, the
translation of a well-known result by Beem and Krolak [5] yields the following
property for any subset A of a Randers manifold (M, R): p € M is a differen-
tiable point of the distance from p if and only if it can be crossed by exactly one
minimizing segment. This result has been extended to any Finslerian manifold
by Sabau and Tanaka [29].

4.2. Visibility and gravitational lensing

Assume that in our spacetime (@), a point w represents an event and a line [,
obtained as an integral curve of 0y, represents the trajectory of a stellar object. We
wonder if there exist lightlike geodesics from [ to w (i.e., whether an observer at w
can see the object [) and, in this case, if there are many of such geodesics (i.e., the
existence of a lens effect such that [ is seen in two different directions). This situation
is applicable to cosmological models such as Friedmann-Lemaitre-Robertson-Walker
ones, as they are conformally stationary (I would represent a “comoving observer”
of the model). The problem becomes more realistic if we choose some (open) region
R x D C R x M which contains w and [, and search for geodesics contained in this
region.

These problems are related to the convexity of D for the Fermat metric (in
the sense of the last subsection) which turns to be related to the convexity of its
boundary 0D. There are several different notions for the latter, as the local and
infinitesimal convezxity and, as shown in [3], they are equivalent to its geometric
convezity. The latter means that, given any pair of points of D, any geodesic con-
necting them and contained in the closure D, must be entirely contained in D. The
(geometric) convexity of D turns out equivalent to the light (geometric) convexity
of the boundary of R x D(C R x M) (i.e., the property of convexity holds when
restricted to lightlike geodesics) and, finally, this is equivalent to the question of
existence of connecting geodesics, yielding [9]:

Theorem 4. Assume that the closed balls of D computed for the restriction of the
symmetrized distance d% are compact (which happens for example, if the intersec-
tions with D of the closed symmetrized balls in M are compact or, simply, if dp is
complete on all M ). Then, the following assertions are equivalent:

(i) (D xR,gr) is causally simple (i.e. (D, F) is convex, Theorem [3).
(i) OD is convex for the Fermat metric F.
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(ii) R x 0D is light-convex for the Lorentzian metric gi,.
(v) Any point w = (t,,p) € R x D and any line Iy := {(1,q) € Rx D : 7 € R},
with p # q, can be joined in R x D by means of a future-directed lightlike

geodesic z(s) = (t(s),z(s)),s € [a,b], which minimizes the (future) arrival
time T = t(b) — t(a) (i.e., such that x minimizes the F-distance in D from p
to q).

(v) Idem to the previous property but replacing “future” by “past” and “F-
distance” by (the reverse) “F-distance”.

Remark 5. The previous result solves the question of existence of connecting
lightlike geodesics. The question of multiplicity has some possibilities. First, the
existence of a conjugate point of the lightlike geodesic z at w. This is equivalent to
the existence of a conjugate point at p for its projection = [10, Theorem 13|, and
it is regarded as trivial. Second, the non-triviality of the topology of D may yield
a topological lensing. In fact, one can prove that, whenever D is not contractible,
infinitely many connecting lightlike geodesics (with diverging arrival times) will
exist.

The results can be also extended to the case of timelike geodesics, prescribing
its length (i.e., the lifetime of the massive particles represented by such geodesics).
The idea relies on a reduction of the problem to the lightlike one, by considering
an extra spacelike dimension, see [12] Section 4.3] and [9, Section 5.2].

4.3. Causal boundaries and further questions

The studied stationary to Randers correspondence can be also applied to the study
of the causal boundary of the spacetime in terms of Finsler elements. We recall that,
in Mathematical Relativity, the Penrose conformal boundary is commonly used, in
spite of the fact that it is not an intrinsic construction, and there are problems to
ensure its existence or uniqueness. The causal boundary is a conformally invariant
alternative, which is intrinsic and can be constructed systematically in any strongly
causal spacetime (see [I5] for a comprehensive study of this boundary). The com-
putation of the causal boundary and completion of a stationary spacetime (@) has
been carried out in full generality in [16]. It must be emphasized that this boundary
has motivated the definition of a new Busemann boundary in any Finslerian mani-
fold. Even more, this has stimulated the study of further properties of the Gromov
boundary in both, Riemannian and Finlerian manifolds.

It is also worth mentioning two further topics of current interest. The first one
is the correspondence at the level of curvatures between the Weyl tensor of the
stationary spacetime and the flag curvature of the Randers space, see [I8]. The
second one is the possibility to extend the studied correspondence to the case of
spacetimes with a nonvasnishing complete Killing vector field, whose causal type
may change from timelike to lightlike and spacelike. Such metrics are related to
a generalization of the Zermelo metrics which includes the possibility of a strong
wind (i.e., with a speed higher than the one which can be reached by the engine of
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the ship), see [13].
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