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Abstract Rainbow trout introduced into Hokkaido in
1920 have become widely distributed due to extensive
release into many reservoirs and lakes for sport-
fishing; their presence often results in reductions of
native fish populations. We analyzed and predicted
the relationship between the probability of occurrence
of rainbow trout and the proximity of dams (or
attributed reservoirs), using a database of the presence
or absence of rainbow trout collected during 1960–
2004 in Hokkaido to clarify the spread patterns of
exotic species (e.g., rainbow trout) due to large-scale
damming over a long period. Rainbow trout were
abundant in streams within approximately 10 km of

dams in recent years, regardless of whether the stream
was up- or down-stream from the dam and after
accounting for the effects of other environmental
variables (e.g. elevation, population density, and survey
year). A delayed increase in trout occurrence below
dams as compared with above dams suggests that the
occurrence below dams may be largely due to escape-
ment of stocked populations and a continuously increas-
ing abundance since 1970. The management of dams
and reservoirs is necessary to prevent further spread of
rainbow trout because they can threaten habitats of
native Japanese salmonids through various mechanisms.
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Introduction

Dam construction fundamentally alters river and
stream ecosystems in several ways: modification of
the downstream flux of water and sediment, change of
water temperature, and creation of barriers (Poff and
Hart 2002). These alterations induce the extirpation
and loss of some freshwater fishes (Joy and Death
2001; Fukushima et al. 2007). Besides these funda-
mental changes, another serious impact of damming is
the increased success of invasive species due to the
reductions in variability of the hydrologic regime
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(Poff and Hart 2002). The expansion of invasive
species also results from intentional or unintentional
stocking, frequently into reservoirs. In addition, the
lacustrine environment created in a reservoir supports
a habitat favorable to exotic fishes, which may
compete with the native fish communities (Holmquist
et al. 1998; Quist et al. 2005; Marchetti et al. 2006).
Although exotic fishes have been more commonly
introduced and increased in reservoirs and their
downstream areas, most studies have focused only
on comparisons between sites with and without dams
or before and after dam construction. Few studies
have explicitly clarified the spread patterns of the
exotic fishes due to damming at a spatial large-scale
for a long period.

In Hokkaido (the northern island of Japan), 167
dams (>15 m high) have been constructed over a
broad area during the past 80 years. In addition,
several often predatory, exotic species have been
introduced, such as rainbow trout, Oncorhynchus
mykiss, and brown trout Salmo trutta. In particular,
rainbow trout have almost become established in
Hokkaido river basins. The rainbow trout were first
introduced in Hokkaido in 1920, and their distribution
has continued to expand since the 1970s for sport-
fishing, mainly in lakes and reservoirs (Takami and
Aoyama 1999). According to the fishery census of
Japan, although a number of young rainbow trout
were released in 1988, intentional stocking of them
sharply decreased after 1990.1 Introduced rainbow
trout negatively impact the native white spotted charr
(Salvelinus leucomaenis) populations by dislodging
the latter’s spawning redds (Taniguchi et al. 2000) and
by competing for feeding habitats in Japanese
streams, especially in Hokkaido (Morita et al. 2004).
In this study, we examine the relationship between the
occurrence of rainbow trout and various environmen-
tal variables, including the spatial relation between
dams and fish survey locations in Hokkaido, by
analyzing the long-term fish database compiled using
a geographical information system (GIS). Our main
objectives were to (1) examine whether damming
affects the distributions of rainbow trout and (2)
estimate rainbow trout distribution patterns and their
temporal changes in relation to the up- and down-
stream distance from dams or reservoirs.

Methods

Study area and fish data

Hokkaido is the northernmost island of Japan (area=
78,423 km2; 41°21′–45°33′N, 139°20′–148°53′E;
Fig. 1a). Its climate is temperate to sub-arctic with
average annual temperature ranging from 6–10°C and
average annual precipitation in the range of 800–
1,500 mm.

Fish data were taken from the database compiled
by Fukushima et al. (2007). A total of 6,634 fish
surveys conducted between 1960 and 2004 were
chosen from the database by selecting the sites where
multiple fish species were observed. Fish were
captured using either netting (e.g., cast net, gill net,
fyke net) or electrofishing in habitats including pools,
riffles, and reservoirs ranging from sea level to over
1,400 m a.s.l. The fish data were transformed into
presence/absence observations and merged into 1625
“sub-basins,” which were defined as the catchment
above a river confluence less the catchment above the
next upstream confluence, encompassing individual
stream reaches (mean length±SD=5.21±3.77 km,
range=0.123–62.76 km; Fig. 1b). In order to reduce
errors associated with false absences, only the most
recent survey year was used (treated as one indepen-
dent record) when multiple surveys were conducted
within a single sub-basin. Of the 1,625 sub-basins
merged, 75.5% (1,227 sub-basins) were sampled
multiple times.

Environmental data

As predictors for the occurrence of rainbow trout, we
considered the following nine independent variables:
drainage area (km2), annual rainfall (mm), annual air
temperature (°C), elevation (m), gradient (°), human
population density (person/km2), survey year, the
location of survey sites relative to dams (hereafter
referred to as the dam variable) and spatial autocor-
relation. Drainage area and fish survey year were
derived from GIS; elevation, gradient, rainfall, and air
temperature were derived from the grid data of the
Digital National Information.2 Information on popu-
lation density was based on the grid data of the

1 http://www.tdb.maff.go.jp/toukei/a02smenu?TokID=J126&
TokKbn=C&TokIDI=J126C-006&TokKbnName=. 2 http://nlftp.mlit.go.jp/ksj.
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Population Census of Japan (2000). Using GIS, the
dam variable was made categorical, with categories
corresponding to one of the following: (1) above dam:
sub-basin was located in one of the inlet streams of a
reservoir; (2) below dam: sub-basin was located
below a dam; or (3) no dam: sub-basin had no dams
downstream to the river mouth inlet stream. Neigh-
boring points in space are more similar than would be
expected by chance because species’ distributions and
associated environments are spatially autocorrelated
(Legendre and Fortin 1989; Lichstein et al. 2002). We
defined a spatial autocorrelation term for each sub-
basin by estimating the presence/absence of rainbow
trout in all sub-basins bordering that sub-basin. The
spatial autocorrelation term took a value of 1 if at
least one bordering sub-basin showed a positive
observation (i.e., presence) of rainbow trout. It took
a value of 0 if no bordering sub-basin had a positive
observation. The absolute correlation coefficients
between all pairs of all environmental variables were
ranged between −0.58 and 0.61.

We examined the proximity of sub-basins to
reservoirs because rainbow trout might spread into
stream sites from reservoirs. The minimum distance
above and below dams of model 2 and model 3 was
considered as a potential predictor by replacing the
dam term of model 1 to predict the probability of
occurrence for rainbow trout at sub-basins above the
dam and at sub-basins below the dam (Table 1). The
distance above and below dams was calculated as
the watercourse distance from the upstream confluence
point in the sub-basin to the nearest dam for each fish
survey.

Statistical analysis

We used generalized additive models (GAMs) with a
binomial error distribution to model the probability of
occurrence for rainbow trout and to assess the effects
of damming on this probability. GAMs are nonpara-
metric extensions of generalized linear models and
allow nonlinear response surfaces to be fitted using a
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range of different error structures (Hastie and Tibshirani
1990). GAMs were expressed as follows:

logit P ¼ a þ
X

i¼1

fi Xið Þ

where P is the response variable, α is the intercept, and
fi is a smooth function for the ith predictor variable Xi.
To select the best set of predictor variables, we used a
backward elimination procedure based on the Akaike
Information Criterion (Akaike 1974). The predictor
variables were considered significant if P≤0.01, based
on log-likelihood ratio tests. The significance of
nonparametric functions of each variable that was
transformed using a smoothing spline was judged by
estimating the change in deviance from the linear to
non-linear term (i.e., smoothing spline) using a chi-
square test (Venables and Ripley 1994). These non-
parametric effects were considered to be significant
only when P≤0.001.

The validity of the GAMs was tested with the 10-
fold cross-validation technique (Neter et al. 1996), in
which the total sub-basins within a given model were
divided into 10 groups; nine groups were used to
construct a model, which was then used to predict the
probabilities of occurrence for the remaining group.
This was repeated by switching the group to be set
aside 10 times until the probabilities of occurrence for
all sub-basins had been predicted. We further repeated
this whole process 10 times by randomly dividing all
sub-basins. We then averaged the predicted probabil-
ities of occurrence across all sub-basins to obtain a
single set of validation data. We calculated the area

under the curve (AUC) of the receiver operating
characteristic (Fielding and Bell 1997) to evaluate the
discrimination accuracy of each GAM between
presence and absence.

Results

Fish data were collected from total 1,625 sub-basins;
with 171 sub-basins in 1970s, 289 sub-basins in
1980s, 822 sub-basins in 1990s, and 343 sub-basins
in 2000s. Rainbow trout was detected from 478 of
1,625 sub-basins examined (Fig. 1b); with 23 sub-
basins (13.5%) in 1970s (Fig. 1c), 78 sub-basins
(27.0%) in 1980s (Fig. 1d), 253 sub-basins (30.8%) in
1990s (Fig. 1e), and 124 sub-basins (36.2%) in 2000s
(Fig. 1f). The proportion of sub-basins with rainbow
trout increased in recent time period.

The three final models of occurrence of rainbow
trout had moderate to high accuracy (AUC>0.80;
Swets 1988). Among the nine variables considered,
the multiple regression model for the total sub-basins
identified seven variables—drainage area, survey
year, elevation, population density, rainfall, spatial
autocorrelation, and dam—as the best predictors for
occurrence of rainbow trout (Table 1: model 1;
Fig. 2a–f: spatial autocorrelation term was eliminated
from the plot because it is only used to reduce spatial
autocorrelation error). The five continuous predictors
except rainfall were significantly nonlinear (P<0.01).
The occurrence of rainbow trout decreased with
increasing drainage area (Fig. 2a) and rainfall

Variable Total sub-basins
(model 1)

Sub-basins above dams
(model 2)

Sub-basins below dams
(model 3)

Drainage area 43.2
Annual rainfall 24.3
Elevation 67.1 24.6
Population density 49.7 27.8
Survey year 46.1 23.6 29.7
Dam 31.3 – –
Distance above dams – 18.7 –
Distance below dams – – 17.9
Spatial autocorrelation 133.7 27.7 28.1
Null deviance 1968 368 328
Residual deviance 1476 265 217
Deviance explained 0.25 0.28 0.34
Degrees of freedom 1625 270 277
AUC 0.89 0.88 0.92

Table 1 Changes in devi-
ance when dropping a vari-
able from the final models
of occurrence of rainbow
trout. Predictors denoted in
by italics were selected as a
nonparametric smooth func-
tion in GAMs
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(Fig. 2d) and appeared to reach a maximum at the
elevation of about 500 m (Fig. 2b). It increased with
population density (Fig 2c) and survey year (Fig. 2e).
Rainbow trout had significantly higher occurrence at
sub-basins above and below dams (especially above)
than at sub-basins without dams (Fig. 2f).

The GAMs to predict the occurrence of rainbow trout
across the sub-basins above a dam included population
density, survey year, distance above dams and spatial
autocorrelation (Table 1: model 2). In the regression for
the sub-basins below a dam, elevation, survey year,
distance below dams, and spatial autocorrelation were
selected as the significant predictors (Table 1: model
3). Although we did not illustrate the response curves
for each predictor variable of these two models, the
responses for the occurrence of rainbow trout were
similar to each panel in Fig. 2. For different survey
years, we predicted the relationships between the
probabilities of occurrence and the minimum distance
above and below dams using model 2 (Fig. 3a) and

model 3 (Fig. 3b), respectively. Regardless of whether
the sub-basins were up- or down-stream from dams,
rainbow trout had the greatest occurrence at sites near
dams, but the occurrence decreased dramatically away
from dams (i.e., >10 km from dam). Reductions in
proximity to dams obscured the direct effects of
damming on rainbow trout because of inflows from
tributaries. The probability of occurrence increased
continuously with survey year, although it did not
change significantly after 1990.

Discussion

Although the occurrence of this species was not
correlated to watershed area, this result does not
preclude the conclusion of an unsuccessful invasion of
rainbow trout in larger watersheds. Trout possibly have
a non-random distribution in larger watersheds because
they tend to live in the impoundments (i.e., reservoir and
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lake) as well as up- and down-stream of them. Human
activity may help the spread of invading fishes (Padilla
et al. 1996) by providing intentional or unintentional
pathways (e.g., the aquaculture, bait, sport, and pet
industries, the ballast water and hulls of ships) for
introduction of non-native fishes and by producing an
altered habitat (e.g., agriculture and landscape) com-
monly favored by non-native species (Kolar and Lodge
2002; Stohlgren et al. 2006). High occurrence at
relatively high elevation may be related to stocking in
reservoirs located at higher elevations and the suitable
habitat (e.g., cold water temperature) of the upper
reach of a river (Coleman and Fausch 2007).

The presence of dams was a significant predictor of
occurrence of rainbow, suggesting that rainbow trout
were more common in sites above and below dams
than sites without dams. This result supports previous
studies that suggested a positive relationship between
damming and exotic species diversity (Holmquist et
al. 1998). Streams regulated by damming may
increase the invasive success of exotic species due
to the suppression of natural disturbance regimes
(Walker 1985; Raymond 1988).

Rainbow trout in Hokkaido streams showed in-
creased relative abundance closer to the dams (i.e.,
associated reservoirs). Although rainbow trout may be
directly stocked in unimpounded stream reaches, their
movement out of reservoirs may largely control their
spread in Hokkaido streams. High occurrence in sites
above dams is inevitable because the fish are able to
move freely upstream from a reservoir (Holmquist et
al. 1998; Valdez et al. 2001). Spread into streams
below dams may be attributed to various displacements,
such as water releases from reservoirs and downstream
fish ladders. In addition, the trout can expand further
downstream by high water velocities that result from
flooding (Lamberti et al. 1991). Slow and shallow
reaches due to suppression of peak flow (Raymond
1988; Scheidegger and Bain 1995) and a more
extensive food base (Blinn et al. 1995; Benenati et al.
1998) may also facilitate the reproduction and spread
of rainbow trout in streams below dams. Although this
study does not include interaction terms in the
modeling process, distance below a dam generally
have negative correlation with elevation. Therefore,
given the negative relationship between distance below
a dam and probability of occurrence, there is the
possibility of overestimation of these terms because of
the distance below a dam-elevation interaction.

Furthermore, although changes of occurrence both
up- and down-stream of dams immediately after 1990
were unremarkable, the occurrence of rainbow trout
increased in recent years. One possible reason for
these patterns is that fish sampling efficiency was
improved due to the introduction of electrofishing;
another reason may be the continuous stocking of
rainbow trout and their reproduction. However,
differences in response to survey years both above
and below dams are probably caused by the latter or
by other reasons (e.g., movement from another
location) rather than by the former reason. Occur-
rences above and below dams largely increased in
1980 and in 1990. As mentioned in the introduction
section, rainbow trout were broadly introduced in the
1970s for fishing in lakes and reservoirs (Takami and
Aoyama 1999), thus explaining a large increase in
occurrence between 1970 and 1980 at sites above
dams. However, as compared with responses to
survey year at the upstream of dams, rainbow trout
response at the downstream of dams showed a
delayed pattern, i.e., low occurrence between 1970
and 1980. The increased occurrence below dams in
1990 probably resulted from escapement of rainbow
trout stocked in reservoirs and the continuously
increasing abundance of these species in reservoirs
since 1970 (Martinez et al. 1994).

The presence of dams has significant influences on
the occurrence of introduced rainbow trout in Hokkaido.
Also, their population has increased continuously since
introduction. Elimination and controlled stocking of
them in reservoirs are important and necessary steps to
protect populations of native fishes. Although our
target species was only rainbow trout, brown trout
(Salmo trutta) on Hokkaido Island have rapidly
increased since 1980 (Takami and Aoyama 1999;
Kaeriyama 2002), and the establishment of a repro-
ducing population of Brook trout (Salvelinus fontina-
lis) has been reported in Nijibetsu Creek (Hikita et al.
1959). These exotic species were commonly released
into reservoirs or lakes so that they could spread into
streams from impoundments, like rainbow trout.
Though intended to restore native fishes, fish ladders
and beach/habitat-building flows released from dams
may, at times, facilitate exotic species’ spread into
extended areas, regardless of their original proposes.
Therefore, managers should consider both positive
and negative effects of the dam operation and the fish
ladder.
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