
Michelle van MierloUniversity of Twente | UT · Technical Medicine Program
Michelle van Mierlo
About
13
Publications
993
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
47
Citations
Publications
Publications (13)
Humans prioritize regulation of the whole-body angular momentum (WBAM) during walking. When perturbed, modulations of the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) assist in recovering WBAM. For sagittal-plane perturbations of the WBAM given at toe off right (TOR), horizontal GRF modulations and not cent...
Background
Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity.
Methods
Humans restore balance after a perturbation by adjusting activity of the muscles actuating...
Cerebral hypoxic vasodilation is poorly understood in humans, which undermines the development of therapeutics to optimize cerebral oxygen delivery. Across four investigations (total n = 195) we investigated the role of nitric oxide (NO) and hemoglobin-based S-nitrosothiol (RSNO) and nitrite (NO2-) signaling in the regulation of cerebral hypoxic va...
Increasing knowledge on human balance recovery strategies is important for the development of balance assistance strategies using assistive devices like a powered lower-limb exoskeleton. One of the postures which is relevant for this scenario, but underexposed in research, is staggered stance, a posture with one foot in front. We therefore aimed to...
Spatiotemporal gait characteristics change during very slow walking, a relevant speed considering individuals with movement disorders or using assistive devices. However, we lack insights in how very slow walking affects human balance control. Therefore, we aimed to identify how healthy individuals use balance strategies while walking very slow. Te...
Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in propor...
Walking very slowly increases the time spent in the double support phase, which could be resembled by the staggered stance posture. Maintaining balance in this posture is important in order to continue walking safely. We therefore aimed to increase the understanding of balance recovery in staggered stance. We studied balance responses on joint- and...
Healthy individuals highly regulate their whole body angular momentum (WBAM) during walking. Since WBAM regulation is essential in maintaining balance, a better understanding is required on how healthy individuals recover from WBAM perturbations. We therefore studied how healthy individuals recover WBAM in the sagittal plane. WBAM can be regulated...
Background
In the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskeleton control strategy to assist in balance recovery after unexpected dist...
Centre of mass (CoM) motion during human balance recovery is largely influenced by the ground reaction force (GRF) and the centre of pressure (CoP). During gait, foot placement creates a region of possible CoP locations in the following double support (DS). This study aims to increase insight into how humans modulate the CoP during DS, and which Co...
Background
In the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskeleton control strategy to assist in balance recovery after unexpected dist...