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B Abstract Folsomia candida Willem 1902, a member of the order Collembola
(colloquially called springtails), is a common and widespread arthropod that occurs
in soils throughout the world. The species is parthenogenetic and is easy to maintain
in the laboratory on a diet of granulated dry yeast. F. candida has been used as a
“standard” test organism for more than 40 years for estimating the effects of pesticides
and environmental pollutants on nontarget soil arthropods. However, it has also been
employed as a model for the investigation of numerous other phenomena such as cold
tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic
fungi and mycorrhizae of plant roots. In this comprehensive review, aspects of the
life history, ecology, and ecotoxicology of F. candida are covered. We focus on the
recent literature, especially studies that have examined the effects of soil pollutants on
reproduction in F. candida using the protocol published by the International Standards
Organization in 1999.

INTRODUCTION

Collembolans are among the most abundant arthropods on Earth with a long evo-
lutionary history (31). Most species consume fungi in soil and leaf litter, but
they have radiated into many niches, from the littoral zone to mountaintops, and
are particularly abundant in epiphytes of tropical rain forests (54). Collembolans

*Abbreviations: a.i., active ingredient of a commercial pesticide; EC50, concentration of
a substance that causes a 50% reduction in reproduction (effect concentration). In the ISO
F. candida test, the EC50 is the estimated concentration that results in a 50% reduction
of juveniles compared with the controls. LC50, lethal concentration of a substance that
causes a 50% reduction in survival. In the ISO F. candida test, the LC50 is the estimated
concentration that results in a 50% reduction in the number of adults still alive at the end
of the experiment compared with the controls.
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certainly represent a monophyletic lineage that was an early branch off the line
that led to the higher insects. However, there is no consensus whether this occurred
before or after the divergence of the Crustacea (27, 83, 84).

Collembolans are an integral part of soil ecosystems and are vulnerable to the
effects of soil contamination. The abundance and diversity of Collembola have been
used widely to assess the environmental impact of a range of pollutants on soils.
However, field effects are difficult to reproduce in the laboratory. Anthropogenic
activities and the need for tighter controls on waste and chemical emissions have
led to the search for biological test species. An organism’s responses to chemicals
in the laboratory can be used to assess stress and inform legislative processes
(123-125).

For a number of years, interest has been shown in the unpigmented springtail
Folsomia candida Willem 1902 (Figure 1; Figures 2 and 3, see color insert). The
collembolan can be exposed to contaminants via the soil and/or food in a battery
of tests that examine life-history parameters, bioaccumulation, and/or effects on
behavior. Such tests assess the toxicity of a wide range of organic and inorganic
pollutants and have been used as bioassays to monitor the success of remediation
of contaminated soils (24, 28, 32-34, 39, 41, 62, 66, 96, 121) (Table 1). The
International Standards Organization (ISO) has recently published a protocol for
the use of F. candida as an ecotoxicological test species that employs effects on
reproduction as an endpoint (58).

However, F. candida has been used extensively as a model arthropod in many
other nonecotoxicological studies, including work on the evolution of Hox
genes (40). In this review, we provide an overview of all aspects of the biology of

PAO

th3 abd1 abd2 . ..

Figure 1 Adult female F. candida. In the living animal the furca is held in place
under the body by the tenaculum (ten). The first thoracic segment is reduced dorsally
compared with the second (th2) and third (th3). The last three abdominal segments
(abd4-6) are fused together. d, dens; m, manubrium; mu, mucro; PAO, post-antennal
organ; vms, ventral manubrial setae; VT, ventral tube. (Modified after Figure 1 in
Reference 112 with permission of the authors).
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FE candida. All work that we could find published since 1995 that refers to
F. candida is cited. Earlier references are included in the reviews by Hopkin (54)
and Wiles & Krogh (132).

BIOLOGY

Taxonomy and Distribution

The genus Folsomia includes species in the family Isotomidae that have a well-
developed furca (springing organ), no anal spines, and an abdomen with the pos-
terior three segments fused (Figure 1 and Figure 2). The original description of F.
candida by Willem in 1902 (133) was based on a single specimen floating on a
puddle in a cave at Rochefort in Belgium. The species is 1.5 to 3.0 mm in length at
maturity, is white or faintly yellowish in color, and does not bear ocelli. There is a
post-antennal organ behind the base of each antenna that probably detects airborne
chemicals (54). Like all other collembolans, F. candida has a pair of thin-walled,
closely apposed, eversible vesicles on the ventral side of the first abdominal seg-
ment. This structure is commonly known as the ventral tube, or collophore, and
is involved in fluid exchange with the external environment. The ventral tube is
an important exposure route for chemicals dissolved in soil pore water (79). The
most distinguishing feature that separates F. candida from other members of the
genus is the presence of numerous (at least 16) stout setae on the ventral side of
the manubrium of the furca [F. candida is described in detail in Synopsis on the
Palaearctic Isotomidae by Potapov (88)].

F. candidais considered a tramp species (54). Because it has been carried all over
the world in plant pots and soil (see map at http://www.collembola.org/), its original
biogeographical locations are difficult to ascertain (43). Many records are from
caves and mines (112). Elsewhere the species inhabits agricultural systems, soils
with a high level of organic matter, forests, and the edges of streams. F. candida is
occasionally the dominant collembolan. In a recent study of collembolan diversity
conducted in woodlands in Scotland, it was the most abundant species (67).

Life History and Development

This description of the life history of F. candida is based on published work (54,
132) as well as observations on our laboratory cultures that have been maintained
in Reading, United Kingdom, since 1994.

Populations of F. candida consist exclusively of parthenogenetic females. At
20°C (ISO standard test temperature) they take between 21 and 24 days to reach the
sixth, or adult, instar when they are sexually mature. About 30 to 50 eggs are laid
in each batch, which take 7 to 10 days to hatch. The eggs are white, spherical, and
80 to 110 um in diameter (Figure 3). Eggs maintained above 28°C fail to hatch.
The optimal temperature for hatching success is 21°C. At lower temperatures, the
time span for each developmental stage is extended. For example, the average
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lifespan of a female at 15°C is 240 days, whereas at 24°C it is only 111 days. At
15, 21, and 27°C, the average number of eggs laid by a female during her lifetime
is around 1100, 900, and only 100 (54, 132), respectively. Eggs are often laid in
communal heaps, in which females add to previously laid batches. Crowding (>1
animal cm~?) reduces the number of eggs laid, with some individuals developing
malformed genital plates. The causes of this reduced fecundity may be stress from
jostling, pheromones, or contamination of the substrate by waste products. There
may also be increased cannibalism of eggs. Although F. candida is blind, more
eggs are produced in constant darkness than in a light:dark cycle, which suggests
the presence of internal photoreceptors.

An adult female may go through 45 molts in her lifetime with short reproductive
instars (duration 1.5 days) alternating with longer nonreproductive instars (duration
8.5 days) (5). The lining of the midgut is also shed and voided in the feces during
molting. This provides an important route of excretion of waste products and pol-
lutants stored in the midgut cells as part of a storage detoxification system. Collem-
bolans probably follow this strategy due to their lack of Malpighian tubules (52).

Physiology and Behavior

Soil is often considered a stable environment. However, the surface layers are
subject to wide fluctuations in temperature and moisture. Levels of oxygen and
carbon dioxide may be variable in the pockets of gas within which F. candida
survives periods of flooding.

All life stages of F. candida are well adapted to dry soil conditions (47). The
species possesses physiological adaptations to desiccation and absorbs water vapor
and remains active below 98.9% relative humidity (RH) (the permanent wilting
point of plants). It can actively increase osmotic pressure of its body fluids, halt
water efflux by the synthesis of myoinositol (a polyol undetectable in control
animals at 100% RH), and reestablish hyperosmoticity within 48 h (7). F. candida
has improved survival under drought stress, if it has been exposed previously to
desiccation, owing to the induction of sugars and polyols. Below 95.5% RH, it
switches from a hyperosmotic to an anhydrobiotic strategy with an increase in
trehalose levels and a decrease in myoinositol (101). This mechanism of drought
tolerance has an overlapping adaptation with cold tolerance at the cellular level
by increasing the molar percentage of cryoprotective membrane fatty acids with
a mid-chain double bond and stimulating the synthesis of the heat shock protein
(Hsp) 70 (8, 51). Hsp70 may also be induced by exposure to pesticides (109).

Oxygen uptake is via the cuticle (F. candida does not possess tracheae). Dur-
ing hypoxia, individuals show increased heart contraction frequency, which helps
maintain partial pressure differences between the surrounding external medium,
blood, and tissues (86). Because collembolans do not possess respiratory pigments,
the oxygen capacity of the extracellular fluids is low. However, some individuals
can survive for up to 18 h in completely anaerobic conditions.

In soil, levels of carbon dioxide in pockets of trapped gas can be high (137).
F. candida has evolved to survive in such conditions for considerable periods
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and is capable of becoming the dominant species in communities of Collembola
subjected to elevated carbon dioxide (61). The species can survive up to 25%
carbon dioxide for one hour or 10% carbon dioxide for six weeks (137).

Interactions with Other Organisms

Wolbachia are obligatory, cytoplasmically inherited «-Proteobacteria that infect
the reproductive tissues of many arthropods (117). Those infecting collembolans
form a monophyletic group and are found in the ovaries and brain. In F. candida,
Wolbachia may be the cause of parthenogenesis (25).

Some researchers have attempted to use F. candida as a source of food for
cultures of carnivorous invertebrates. However, recent work on predation by lycosid
spiders has shown that F. candida contains toxins that may be poisonous to potential
predators (60). The spiderlings of Pardosa lugubris fail to develop when fed a diet
consisting exclusively of F. candida (85).

FOOD AND FEEDING

Digestive System

The digestive system of F. candida is essentially cylindrical with a cuticle-lined
foregut and hindgut, and a midgut derived from endodermal cells that produce
enzymes and absorb products of digestion. There are no gut diverticula. A per-
itrophic membrane, which is produced at the junction of the foregut and midgut,
surrounds the food on its passage through the hindgut, where water is absorbed
from the feces before they are voided.

The gut passage time of F. candida at 20°C is approximately 35 min (113).
Waste products stored in the midgut cells (including pollutants) are voided into the
lumen when the springtail molts and are lost in the feces. This excretory process is
more effective if the animal is feeding regularly. For example, well-fed F. candida
lost assimilated rubidium in 46 days, whereas starved animals needed 103 days to
excrete the element completely (29).

The digestive tract of F. candida is host to a wide range of microorganisms whose
numbers vary over the molt cycle. Heterotrophic aerobic gut bacteria increased
from only 4.9 x 10? colony-forming units (CFUs) just after molting to 2.3 x
10° colony-forming units just before the next molt (113). Eleven taxonomically
different bacteria and one filamentous fungus (Acremonium charticola) have been
isolated from the digestive tract. A new technique developed with F. candida
detects internal bacteria by means of small-subunit rRNA-targeted fluorescence in
situ hybridization microscopy (114). This technique is faster and less damaging
than more traditional techniques that use paraffin-embedded sections.

F. candida consumes and inactivates entomopathogenic fungi applied as biolog-
ical pesticides without suffering mortality, reproductive disturbance, or any other
harmful effects (11, 100). The species is unaffected by Bacillus toxins, including
those produced in transgenic cotton (3, 136). The gut of F. candida is also a site of
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transfer of conjugative genes between microbes (48). The digestive tracts of soil
arthropods may thus be important “hot spots” for gene transfer.

Food Quality and Selective Grazing

Most collembolans feed on fungal hyphae. F. candida is no exception and exhibits
strong preferences for particular species (see Reference 54 for areview of the earlier
literature). In laboratory microcosms, F. candida prefers fungi growing on the
surfaces of leaf litter rather than on soil particles (10). There is good evidence that
F. candida is an important stimulant of decomposition. For example, the presence
of F. candida in laboratory microcosms doubled the concentration of nitrates in
leachates from decomposing grassland plant litter compared with controls with no
collembolans (17). In the laboratory, F. candida consumes nematodes but it is not
clear whether they are important components of the diet in the field (56). F. candida
has also been used to test the efficacy of the bait lamina technique. This investigates
the feeding activity of soil organisms on buried plastic strips containing food (44).

The fungus on which F. candida feeds influences its growth and fecundity.
Laboratory experiments with F. candida held in different microcosms, with only
one species of fungus available in each, have shown that some taxa of fungi are
more nutritious than others. However, it is difficult to ascertain the reasons for
these differences. They may be related to protein content (although not all studies
have supported this relationship; 30) or inhibition of growth by chemicals that act
as feeding deterrents (54).

Grazing on Root Symbionts

Some studies have shown beneficial effects on plant growth of intermediate levels
of collembolan grazing on root mycorrhizae. The level of infection of the symbiotic
fungus is stimulated compared with plants grown in the absence of F. candida, or
in the company of high population densities of collembolans (80). However, the
effects are species specific and are not well understood (65).

There has been criticism of microcosm experiments on the effects of grazing by
F. candida on root symbionts where no food source other than mycorrhizal fungi
was present. Given the choice, F. candida preferred to consume the saprophytic
fungus Alternaria alternata rather than arbuscular mycorrhizal fungi (AMF). In-
deed, the springtails did not produce eggs when fed exclusively three species of
AMF (64). It was concluded that previous “clean” studies had overestimated the
effects of F. candida on AMF compared with conditions in the wild. Nevertheless,
the grazing activity of F. candida was clearly beneficial to growth of ribwort plan-
tain (Plantago lanceolata) by facilitating the transport of spores of essential AMF
to neighboring plants (65).

Control of Plant Pathogens

Collembolans have been implicated in the control of the bacterial fire blight
pathogen Erwinia amylovora, which is highly destructive to fruit trees. The
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pathogen is digested in the gut of F. candida, contributing to a decrease of bacterial
populations in the soil (46).

Sclerotinia sclerotiorum (white mold) is a fungus that attacks many plant
species, including soybeans. It produces black fleshy structures called sclerotia
that allow the fungus to survive from one cropping season to the next. The role
of F. candida in transferring the mycoparasite Coniothyrium minitans between
the sclerotia, and its use as a biocontrol agent, has been investigated. F. candida
attained a larger size when fed C. minitans than when fed yeast and another my-
coparasite. The collembolan also had the ability to inoculate uninfected sclerotia
if transferred from infected treatments, since 60% of the conidia survive gut pas-
sage in a viable form in the feces (135). F. candida may transmit the conidia for a
distance of at least 55 mm in soil (134).

A recent laboratory study on the suitability of fungi as food for F. candida has
highlighted the importance of considering not only the species of fungus involved,
but also its life stage (93). Four species of pathogenic fungi that cause rot disease
of winter cereals were examined. The mycelia of three of the species were an
adequate source of nutrition for reproduction in F. candida. However, the mycelia
of Bipolaris sorokiniana were repellent and collembolans that fed on them died.
Intriguingly though, the conidia of B. sorokiniana were eaten by F. candida and
provided a sufficient diet for successful reproduction.

F. candida has proved to be an excellent model for demonstrating the wide
range of responses that may result from collembolans grazing on mycorrhizae and
other soil and leaf litter fungi. However, almost any outcome can occur. There can
be stimulation or inhibition, the extent of which is influenced by the density of
collembolans in the soil (and indeed the species of springtails present). One major
challenge for soil biologists is to extrapolate the results of laboratory experiments
on model species such as F. candida to the vastly more complicated situation in
the field.

ECOTOXICOLOGY

Introduction

Ecotoxicology studies the effects of chemicals on organisms (129). In an ideal
world all chemicals would be tested on all animals before being released into
the environment. However, this is an impossible task. A compromise has been
reached whereby representative species are used as screening tools with the aim of
highlighting substances that are particularly toxic. For soils, earthworms (Eisenia
sp.), enchytraeids (Enchytraeus sp., Cognettia sp.), and collembolans have been
the most widely used groups because of their ease of culture in the laboratory and
relatively short generation times at room temperature (1, 91). Several species of
collembolans have been employed over the years, including the sexually reproduc-
ing Folsomia fimetaria (4, 5). However, most researchers have used F. candida,
leading to the publication in 1999 of a recommended protocol by the International
Standards Organization (ISO) (58).



4 Aug 2004 15:31 AR AR234-EN50-09.tex AR234-EN50-09.sgm LaTeX2e(2002/01/18) Pl: GCE
AR REVIEWS IN ADVANCEI10.1146/annurev.ento.50.071803.130331

FOLSOMIA CANDIDA 209

The ISO Test

ESTABLISHING AND MAINTAINING CULTURES A laboratory conducting toxicity
tests with F. candida needs a continuous supply of animals from productive cul-
tures. These are simple to maintain. Rectangular clear plastic containers (about
400 ml in volume) with tightly fitting lids are filled with a mixture of plaster of
Paris and activated charcoal (or powdered graphite) in a ratio of 9:1 by weight,
mixed with an approximately equal volume of distilled water (some formulations
of plaster of Paris contain zinc as a bactericide, which may interfere with results).
The charcoal absorbs waste gases and excretion products and facilitates obser-
vation of the white springtails against the dark background. The surface of the
plaster of Paris should be scored with a knife before it sets to provide furrows for
springtail oviposition.

Most cultures die out through desiccation. A small volume of free water should
always be present so that the substrate is permanently saturated. Tilting the con-
tainers slightly with small supports ensures that the water collects at the lower
end, leaving a drier area at the other end where eggs can be laid without becoming
waterlogged. A few milligrams of granulated dry yeast (widely available from
food stores) are placed on the surface of the plaster of Paris at the dry end. A few
(typically 10) adult F. candida are introduced to the containers. Most laboratories
with cultures of F. candida will donate these. Although there are small differences
in the responses of clones from different sources, these are not sufficient to be
considered a significant problem (14, 21, 98, 110). This is in marked contrast to
the Daphnia magna test, in which differences in responses to chemicals between
clones may be more than two orders of magnitude (129). The containers are main-
tained at 20°C in a constant temperature room in continuous light or under a 16:8 h
light:dark cycle. The lids should be removed every two to three days to aerate the
cultures and replenish water and food if necessary.

Transfer of females to fresh containers usually induces oviposition, and eggs
are soon visible under a microscope as small clusters of pale yellowish spheres
(Figure 3). After 7 to 10 days the eggs hatch and after three weeks these juveniles
are mature and begin to lay eggs of their own. Tipping out most springtails from
time to time to reduce the population density prevents overcrowding. Every few
months, it is advisable to set up fresh cultures to avoid the reduced levels of
oviposition that sometimes occur in containers that have been maintained for a
long time and become tired. Moving a culture into a refrigerator at 5°C for two
days and then moving it back to room temperature often stimulates F. candida to
start laying eggs again.

PERFORMING THE ISO REPRODUCTION TEST A variety of routes of exposure of
F. candida to chemicals have been studied. These include food, gas, water, con-
taminated leaf surfaces over which the collembolans were forced to walk, and
topical application of substances onto individual springtails (16, 36, 55, 57, 111,
115). However, the ISO test deals exclusively with contact with contaminated pore
water in soil, as this appears to be the most toxic route of exposure (92). Results
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from tests with contaminated food may underestimate toxicity, as springtails can
“taste” the chemicals in the diet and avoid it (35).

The test substrate is an artificial soil comprising (by air-dried mass) (a) 10%
Sphagnum peat, finely ground with no visible plant remains; (b) 20% kaolinite
clay containing not less than 30% kaolinite; and (¢) 70% industrial quartz fine
sand with more than 50% of particles from 0.05 mm to 0.2 mm in diameter.
Pulverized calcium carbonate is added (usually 0.5% to 1%) to bring the pH (as
measured in 1 mol liter~' KCI solution) to 6.0 £ 0.5 (the exact amount to be
added is determined by measuring the pH of subsamples of the hydrated artificial
soil).

F. candida shows a mild preference to settle on soils of pH 5.6, at which females
achieve their highest level of reproduction compared with more acidic or alkaline
conditions (43, 127). The components are thoroughly mixed, and distilled water
is added until the soil has a crumbly structure to enable springtails to penetrate
substrate cavities. The amount is normally around 35 ml per 100 g of dry soil,
which is equivalent to 40% to 60% of the total water-holding capacity, but this is
not absolutely critical (122).

The chemical to be tested is dissolved in the water at the range of concentra-
tions that will give the appropriate levels in the hydrated soil. Substances that are
insoluble in water are dissolved in organic solvents and mixed with soil. Water is
added after the solvent has evaporated. An even distribution of the contaminant
within the soil is not crucially important (68). The ISO protocol does not define
the length of any aging process for the substrate, i.e., the time interval between
making up the contaminated soils and adding the springtails. Aging of soils has
a considerable influence on the toxicity of added chemicals (74, 104, 106), so its
omission is important. A time of 48 h between making up the soil and introducing
the springtails would seem to be appropriate.

The glass test vessels should be 100 ml in volume (about 5 cm in diameter)
with tightly fitting lids. Each container is filled with 30 g wet mass of soil. The
appropriate concentrations of test substance to use in the final assay test can be
assessed by conducting a preliminary range-finding exercise (57). The number of
concentrations used in the final test will depend on the results of the preliminary
test. However, a minimum of a control plus a geometric series of four ascending
concentrations with five replicates of each (i.e., 20 test containers in total) is
recommended. The more replicates employed, the more statistically valid the test
(116), but the final number will be constrained by the resources available.

The test is conducted with 10- to 12-day-old F. candida. These are obtained by
initially placing numerous adult F. candida into fresh culture vessels. The females
are allowed to oviposit for 48 h and are then removed. About one week later the
eggs hatch and after an additional 10 days the juveniles are ready to be used in the
test. Evidence suggests that the age of these animals has a considerable influence
on the outcome of the test (22). Ten springtails are added to each replicate, about
2 mg of dry yeast is placed on the soil surface, and the lids are closed. Twice a
week, the lids are removed for aeration. After two weeks, fresh yeast is added.
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The test is run at 20°C under a light:dark cycle of between 12:12 and 16:8 h
(intensity 400-800 lux) for 28 days, allowing sufficient time for the springtails
to lay up to two batches of eggs. The soil from each container is mixed with
500 ml of water in larger vessels and the live adults and juveniles float to the
surface. Alternatively, the springtails can be heat-extracted from the soil using
Tullgren funnels. In the past, most researchers have taken photographs or have
manually removed the springtails for counting. Currently, most researchers employ
computer-aided image analysis, as this is both faster and more reliable (69).

For the test to be valid for legislative purposes, the mortality of the adults in
the controls should not exceed 20%, there should be at least 100 juveniles in
each control vessel, and the coefficient of variation of reproduction in the control
should not exceed 30%. The EC50 concentration of the test substance is that
which reduces the reproductive rate at the end of the test by 50% compared with
the control (Figure 4). The toxicities of the agricultural chemicals Betanal Plus
(a.i. 160 g liter! phenmedipham) and E 605 Forte (a.i. 507.5 g liter~! parathion)
have been determined in a ring test (Table 1). These compounds are recommended
as reference substances to be tested on F. candida at least once a year for quality
assurance (58).

RESULTS OF THE ISO TEST The ISO test has been used to assess the toxicity of a
wide range of substances to F. candida. In general, the springtail is much more
sensitive to the effects of organic chemicals than to metals (Table 1). The large
ranges for EC50s for some chemicals (particularly cadmium, copper, lead, and
zinc) are due to differences in the forms of the substances used, the types of
soil employed in the tests (some of the studies used natural soils rather than the
ISO medium), and other factors. These include variations in pH, temperature,
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Figure 4 Toxicity of dimethoate to F. candida. The EC50 for juvenile pro-

duction is approximately 0.5 mg kg~' (modified after Figure 1 in Reference
68 with permission of the author).
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Figure5 Model of the relationships between pH and cation exchange capac-
ity (CEC) of soils, and the effects of zinc on reproductive output in F. candida
(modified after Figure 1 in Reference 74 with permission of the authors).

moisture, length of aging of soils before introduction of springtails, and organic
matter (OM) content (74,94, 95, 103, 104, 106, 122). In general, small variations of
10% of the ISO values for temperature and moisture do not have a disproportionate
influence on EC50s. However, the outcomes of the test are much more sensitive to
changes in pH, cation exchange capacity, and OM content (Figure 5). In general,
for metals, the lower the pH and OM content of the soil, the more negative the
effect on reproduction of F. candida at a given concentration. The counterion is also
influential; lead nitrate is more toxic to F. candida than lead chloride (97). However,
this rule does not follow for all pollutants. Indeed, some organic chemicals such
as dimethoate and parathion become more toxic as soil OM increases (81, 92).
Bioaccumulation of chemicals can be determined by analyzing concentrations
in the collembolans at the end of the experiment. This may be important in predict-
ing food chain transfer to their predators. However, F. candida is a small animal
and it is a considerable technical challenge to determine the levels of substances in
such tiny samples. Nevertheless, graphite furnace atomic absorption spectrometry
is sensitive enough to measure accurately concentrations of metals in individ-
ual springtails (36). Studies have shown that while nonessential metals such as
cadmium and lead are accumulated roughly in proportion to their values in soil
pore water, the essential elements copper and zinc are regulated (128). Indeed,
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F. candida maintains stable internal levels of copper at food concentrations that
have detrimental effects on their growth and reproduction (13). There is little evi-
dence of antagonism between cadmium and zinc when they are both present in the
soil, which suggests that the routes of assimilation do not strongly compete (119).

Field Relevance of the ISO Test

The main purpose of carrying out ecotoxicological tests on F. candida is to provide
data for risk assessment. The risk quotient (RQ, the measure of environmental risk)
is determined from the predicted environmental concentration (PEC) of a chemical
and the predicted no-effect concentration (PNEC) of the same chemical, in this
case for F. candida (129).

RQ is calculated using the following formula:

Risk oni(R PNEC
iskQuotient(RQ) = PEC

If RO > 1, the risk is acceptable. If RQ < 1, the risk is unacceptable. The PEC
for soils is determined after consideration of field application rates (in the case
of pesticides), deposition rates (in the case of aerial pollutants), or existing levels
of contamination (for example, mine spoil). The PNEC is derived from standard
tests and may include a safety factor of 10, 100, or even 1000, but it should
be higher the less that is known about the chemical. For example, tebufenozide (a
new molt-inducing insecticide that mimics the action of ecdysone) had no effect on
F. candida at 1000 times the PEC, which suggests that under normal conditions it
should not pose a hazard to soil invertebrates (2). The toxicities of chemicals to
F. candida are, in almost all cases, considerably higher in the ISO soil than in
natural soils (12, 13, 63, 87, 128). Thus, the ISO test includes a built-in safety
factor that should be taken into account when setting PNECs. However, large
safety factors cannot be applied uncritically to essential elements such as copper.
The predicted PNEC may be below the limit of essentiality (53)!

Tests on F. candida provide direct information only about the effects of chem-
icals on F. candida. How representative is this species of all Collembola? Most
studies show that F. candida is among the most sensitive springtails to the ma-
jority of chemicals (15). F. candida is ten times more sensitive to chlorpyrifos
than Xenylla grisea (99), and it is more sensitive to this organophosphate than Iso-
tomurus palustris and Isotoma viridis (131). Nevertheless, there are exceptions.
Orchesella cincta is around four times more sensitive to cadmium in food than
F. candida (21).

Regarding other soil invertebrates, F. candida again is among the most sensitive
taxon. For example, the LC50 for euparen (a.i. 500 g kg~! tolylfluanid, used as
a protective fungicide in vineyards and orchards) for the standard test earthworm
Eisenia foetida is >1000 mg kg~!, whereas the LC50 for F. candida is only
0.072 mg kg~! (57). Euparen is even more toxic for reproduction (Table 1).

The ISO test with F. candida provides useful data to inform the development
of PNECs. However, it is important to emphasize that PNECs should be proposed
for individual species and chemicals on a case-by-case basis following informed
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debate. This should incorporate results of all laboratory tests, likely field exposure
(including concentrations in soil pore water), biology of the organisms involved,
and their interactions with other species (90, 92, 118, 126, 130). It is dangerous
to extrapolate. It cannot be assumed that if reproduction is the most sensitive
parameter in one species that it will also be in another (18).

CONCLUSIONS

F. candida is a widespread and common animal. In ecotoxicology, it has been
possible to relate soil pollution levels to the point along a pollution gradient
where the species dies out (37, 38, 42). Indeed, F. candida is increasingly be-
ing used as a bioassay of soil remediation methods. For example, addition of
metal-immobilizing agents to zinc-contaminated soil greatly reduces toxicity of
this metal to F. candida (79).

F. candida has proved to be useful in highlighting how stresses not experi-
enced in laboratory standard tests, such as dehydration, may increase sensitivities
to chemicals (26, 49, 50). Future testing methods will involve increased use of
more sophisticated endpoints that are affected by concentrations of contaminants
lower than the EC50 (45, 108, 115). These tests are likely to include locomotory
behavior (108), avoidance of contaminated food (35, 36), and effects of chemicals
on population growth rates (19).

Although there has been some criticism toward the field relevance of the ISO
test with F. candida, this species still has important roles to play in risk assessment
of industrial chemicals (22, 94, 95) and genetically modified crops (89). F. candida
will continue to be employed in the development of new environmental quality
standards such as Species Sensitivity Indices (123, 125). The ease with which
F. candida can be reared in the laboratory ensures that the species will continue to
be exploited as a standard arthropod for many years to come.
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FOLSOMIA CANDIDA C-1

Figure 2 Adult female F. candida with juveniles; the largest specimen is
2.0 mm in length (photo by S. Hopkin).

Figure 3 Adult female F. candida of 1.5 mm in length next to a batch of
eggs (photo by S. Hopkin).



