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Abstract
A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon

nanotube–silicon (CNT–Si) heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped

silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm

thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on

different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the

photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of
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applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength

range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to

be used as a large area photodetector with very low, intrinsic dark current and noise.
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Figure 1: (a) Schematic front view and (b) side view of the Si substrate produced by Fondazione Bruno Kessler (FBK) in Povo, Trento (Italy).

Introduction
Negative differential resistance (NDR), where the current

decreases as a function of voltage, has been observed in the

current–voltage curves of several types of structures (e.g.,

heavily doped p–n junction, double and triple barrier, quantum

well, quantum wires and quantum dots, nanotubes and

graphene) [1-7]. In general, it has been associated with the

occurrence of a process at the junction that allows the electrons

to tunnel between energy levels that are aligned only at a certain

applied voltage. In the case of carbon nanotubes (CNTs), a

number of cases have been reported in which this effect has

been observed both for single-walled as well as for double-

walled CNTs [3-5].

In this work, a photosensitive junction was fabricated which

exhibits a current–voltage characteristic showing a marked

tunneling-like shape with a NDR in the region between 1.5 and

2.2 V of excitation light. In fact, in this region, the observed

current decreases and varies with the incident photon wave-

length. The effect of the incident radiation is so strong it allows

the carriers to cross the junction through the 2.4 V barrier, even

at voltages of a few hundred mV.

The optoelectronic properties of semiconducting carbon

nanotubes are advantageous for the development of photode-

tector devices in the near-to-mid-infrared region (from ≈1 to

≈15 μm) [8]. The mechanisms behind the infrared sensitivity of

CNTs have been discussed by various authors [9,10]. The

photoconductivity of individual CNTs, as well as ropes and

films of CNTs have been studied extensively both in the visible

[11] and the infrared [12] range. The variations in the photocon-

ductivity of CNT-based devices have been attributed to the

photon-induced generation of charge carriers in single-wall

CNTs and the subsequent charge separation across the carbon

nanotube–metal contact interface [11]. To the best of our

knowledge, there is a lack of measurements in the UV region

[8], and moreover, there are no reports on the observation of the

NDR generated by light radiation to date.

In this paper, we report on the device characteristics, optoelec-

tronic properties and, for the first time, a portion of the I–V

curve showing a bell-shape tunneling behavior with a marked

presence of a NDR. The tunneling current is generated by the

incident radiation and it is function of the wavelength and the

incident power intensity.

Experimental
In a similar manner to that described [13], the photodevice was

realized by growing a film of multiwall carbon nanotubes

(MWCNTs) on an n-doped silicon substrate. The substrates

used to build the photodetector were fabricated by Fondazione

Bruno Kessler (FBK) in Povo, Trento (Italy), unlike the sub-

strate of the devices shown in Figure 1 of [13]. On the upper

part of the n-doped silicon wafer (1 × 1 cm2, 300 μm thickness

and resistivity of 3–12 Ω∙cm) an insulating layer of 60 nm of

silicon nitride (Si3N4) is grown by plasma-enhanced chemical

vapor deposition (PECVD). Two, circular, metallic Ti/Pt elec-

trodes of 1 mm in diameter are placed at a distance of 4 mm

from each other (Figure 1a) on the silicon nitride surface. A
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Figure 2: (a) Scanning electron microscopy (SEM) image of MWCNT samples grown on the implantation area. The inset shows a Raman spectrum of
the same sample (b) Side view of electrical readout connections.

metallic guard ring, 1 mm wide, serves to inhibit superficial

current dispersions during electrical measurements. In the

bottom part of the silicon wafer, a thin n+ implanted layer

ensures ohmic contact between the silicon and the metallic Ti/Pt

electrodes, covering the entire back surface (Figure 1b). Thus,

the main differences between the FBK substrate used in this

work and the substrate used in [13] are: the Si3N4 insulation

layer on the upper part of the Si is much thinner (60 nm instead

of 140 nm), the different thickness of Si (300 μm instead of

500 μm), the different Si resistivity (3–12 Ω∙cm instead of

40 Ω∙cm) and the absence of a Si3N4 insulating layer in the

bottom part of the Si layer. Due to these differences, the results

from this work are different from those obtained in earlier work

reported in [13].

The FBK substrate was then covered with a uniform layer of

MWCNTs grown on the implantation area by CVD. The

MWCNTs grow due to the presence of catalytic particles of

about 60 nm in diameter, which are obtained by annealing a

3 nm thick Ni film at 700 °C for 20 min in a hydrogen atmos-

phere. The film was deposited on the substrate by thermal evap-

oration at a pressure of 10−6 Torr. The diffusion of Ni on Pt

guarantees the absence of catalyst particles directly on the elec-

trodes, and the growth of MWCNTs only on the Si3N4 sub-

strate. The MWCNTs were grown by keeping the substrate at a

temperature of 700 °C for 10 min in an acetylene atmosphere.

In Figure 2a, a scanning electron microscopy image of the

resulting MWCNT is reported and in the inset a Raman spec-

trum of MWCNT exhibits two main peaks attributed to the D-

and G-bands. The G-band at ≈1600 cm−1 corresponds to the

splitting of the E2g stretching mode of graphite. The intense

D-band indicates the presence of defective graphitic structures

or amorphous carbon [14].

Regarding the electrical measurements performed, a drain

voltage was applied between the topside and backside of the

Figure 3: Dark current comparison of the Si substrate and the CNT–Si
heterojunction.

electrodes (Figure 2b). The topside electrodes were both

connected to ground. The investigation of the device behavior

as a radiation detector was performed with continuous emitting

laser diodes (LDs) at several wavelengths. The LD intensity

was controlled by a low voltage power supply and measured

with a power meter. Measurements were performed at room

temperature, at LD powers from 0.1 to 1.0 mW with a 0.1 mW

step, with a drain voltage ranging from −5 to 30 V with a step

of 0.1 V, and at fixed excitation wavelengths of 378, 405, 532,

650, 685, 785, 880 and 980 nm. The current was measured with

a Keithley 2635 source meter, which also provided the drain

voltage. The measurement procedure was controlled by

LabView routines running on a PC.

Results and Discussion
Measurements were carried out on both the CNT–Si heterojunc-

tion and the Si substrates to compare the behavior of the pure

substrate and the CNT–Si junction. Figure 3 shows the compari-

son between the dark currents of the bare substrate and of the

CNT–Si heterojunction. The curves were obtained after

stressing the junctions through different sweep voltages in the
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Figure 4: (a) Details of the dark current around the threshold voltage with a curve fit. (b) C–V plot of the heterojunction.

range between −30 and 30 V. Both of the devices showed a

rectifying behavior after the conditioning – an indication that

the conduction channels are open through the nitride layer by

the voltage sweeps.

The reverse current for positive voltages, however, is very

different. As the substrate shows a linear trend due to internal

thermionic emission and a low shunt resistance, the CNT–Si

junction exhibits a null dark current until a threshold is reached.

For this device, the threshold was found at 2.4 V. Above this

threshold, the current assumes a linear trend. In any case, the

thermionic current through the heterojunction is less than that

present in the substrate alone.

The detailed characteristics of the dark current around the

threshold voltage are shown in Figure 4a, and Figure 4b shows

the plot of the capacitance–voltage (C–V) measurement, which

evidence the rapid decrease of the charge accumulation layer of

the heterojunction around the threshold.

The CNT–Si junction exhibits interesting photosensitivity prop-

erties. While the substrate is light insensitive, the device with

CNT deposited on the Si3N4 layer is greatly sensitive to radia-

tion in the range from 378 to 980 nm.

Figure 5a reports the photocurrent measured in the configur-

ation shown in Figure 2b. When the drain voltage exceeds the

threshold voltage shown in Figure 3, the reverse photocurrent

begins to grow linearly until reaching a plateau, which is

constant over a large voltage range. The photocurrent depends

quite linearly on the intensity of the illumination, as shown in

Figure 5b. No saturation effects were observed up to tens of

mW. The photodetector is sensitive to light radiation over a

wide range of wavelengths.

Figure 5c shows the measured photoresponsivity (photocurrent

generated by 1 mW of light intensity) for incident light of

wavelengths ranging from 378 to 980 nm. When illuminated by

the monochromatic intensity of a filtered xenon lamp, the

external quantum efficiency (EQE) trend is similar to that of the

LED illuminated experiment, as shown in Figure 5d.

It should be noted the efficiency of the detector for near-ultravi-

olet radiation is well above that of the Si photodetectors. This

effect was observed in several similar devices as reported in

[13,15-17]. However, in this report, there are some relevant,

new aspects to be noted. The first one is that the EQE of the

present device exhibits a maximum around 700 nm, which is at

a wavelength much shorter than observed in earlier works [13].

In addition, the EQE shape is more symmetric over a large

wavelength range and remains high at wavelengths from the

near-UV to near-IR. The second important difference is the

smaller threshold value obtained in this case. Both of these

results lead to improved performance of the current device.

Moreover, for these devices, we observed for the first time a

non-zero current in the reverse voltage region below the 2.4 eV

junction threshold under light. The shape of the current–voltage

curve presents a NDR and resembles that of a resonant

tunneling junction.

Figure 6b–d shows the photocurrent measured at three incident

light powers (0.1, 0.5 and 1.0 mW) for three wavelengths (378,

650 and 980 nm). The drain voltage at maximum photocurrent

varies weakly as a function of the wavelength of the incident

radiation and is at about 1.8 V for 378 nm, 1.5 V for 650 nm

and 1.7 V for 980 nm. The ratio between the peak and valley

tunnel photocurrent depends on the light intensity and wave-

length, as well as the NDR. The peak current is proportional to

the EQE of photoconversion to any intensity and any wave-
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Figure 5: (a) Photocurrent induced by a 730 nm continuous wave, low power light source at various illumination intensities. (b) Photocurrent linearity
at a drain voltage 15 V and wavelength of 730 nm. (c) Photocurrent induced at different wavelengths. (d) Comparison between the device external
quantum efficiency (EQE) measured with an LD and a xenon lamp, filtered at different wavelengths.

Figure 6: (a) Dark current and photocurrent tunneling in a CNT–Si heterojunction under 378 nm light illumination at different intensities. (b) The same
as in (a) after subtracting the dark current. (c) The same as in (b) but for 650 nm and (d) 980 nm.
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length, and is about 5 × 10−4 times the corresponding reverse

current (at plateau) for all intensities and at all wavelengths.

These effects were tested in a number of samples. Figure 5 and

Figure 6 show the data obtained for two of these samples. Thus,

the values reported for the ratio between the NDR peak current

and the reverse current at plateau cannot be calculated given the

current values reported in the two figures.

These observations clearly indicate that incident light and (as a

consequence) the photogenerated charges play a fundamental

role in the heterojunction behavior. The similarity in the current

shape with that of a typical resonant tunneling junction suggests

that a kind of electronic resonance process induced by the

photogenerated charges may be present. Recently, Castrucci et

al. [18] stressed that multiwall CNTs can contribute to the

photocurrent because their density of states shows the same van

Hove singularities as the single-walled CNTs. The excitation of

electron–hole pairs is the responsible for this effect in each

single wall of the multiwall CNT. In the present case, the inci-

dent light produces the sizeable absorption band observed

around 1.5–2.4 eV that is a convolution of the several elec-

tronic transitions occurring in each nanotube. The contacts

among the nanotubes ensure the charge transfer between the

nanotubes and the observation in the I–V curve. The bell shape

of the absorption band detected in the I–V spectra mimics that

observed in the tunneling effect between a highly doped p–n

junction; however, in our case, the physics behind this process

is completely different. However, several questions are still

open regarding the interpretation of the experimental data, for

which we cannot exclude the presence of different mechanisms.

Conclusion
In this paper, we report the results of a negative differential

resistance behavior generated by the incident radiation, which

varies as a function of wavelength and incident power intensity

for a new photosensitive device consisting of MWCNTs grown

at 700 °C on a Si substrate. The junction presents rectifying

properties with a 2.4 V threshold to the flow of reverse current,

a strong photosensitivity to light radiation at wavelengths

between 378 and 980 nm, a very broad plateau extended over a

large range of drain voltages, and a good linearity of the

photoresponsivity versus light intensity. The conversion effi-

ciency of light radiation to photocurrent is maximum at 730 nm,

with an external quantum efficiency of ≈92%, and an EQE of

≈43% at 378 nm. No saturation phenomena were observed at

high intensity, and no significant differences between the

diffuse light of a xenon lamp and the directed light of LDs were

observed.

The most surprising result was the observation of a remarkable

photoinduced resonant tunneling-like current, which was

completely absent in dark conditions, and which was absent in

the substrate without CNTs. Therefore, the resonant tunnel-like

current is generated only under light radiation and it is function

of the wavelength as well as of the power intensity. The ratio

between the resonant tunneling-like peak photocurrent and the

plateau of the reverse photogenerated current was about

5 × 10−4 for all intensities and wavelengths. These features,

which are currently still under investigation, suggest the poten-

tial use of the device for optoelectronics applications.
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