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Review
Interleukin (IL)-12 and IL-23 share the IL-12p40 molecule.
IL-12 promotes T helper (Th)1 immunity and IL-23 pro-
motes Th17 immunity, and it has recently become ap-
parent that the balance between IL-12 and IL-23 is
important in carcinogenesis. A series of studies demon-
strated that, where tumor initiation, growth, and metas-
tasis are concerned, IL-12 may act independently of
interferon (IFN)-g, and IL-23 independently of IL-17A.
This review explores the activity of IL-23 in carcinogene-
sis. In the context of the tumor-inhibitory effects of IL-12,
and tumor-promoting effects of IL-23, we discuss the use
of anti-IL-12p/23 monoclonal antibodies (mAbs) in auto-
immune inflammatory disorders and the alternative spe-
cific neutralization of IL-23.

IL-12 and IL-23
The IL-12 cytokine family is consisting of IL-12, IL-23, IL-
27, and IL-35. These are heterodimeric cytokines formed
by two subunits [1]. IL-27 is formed by the pairing of the
Ebi3 and p28 subunits, whereas IL-35 is formed by the
pairing of Ebi3 and p35 subunits. The pairing of p19
subunit with p40 subunit forms IL-23, whereas the pairing
of the p35 and p40 subunits forms IL-12 [1–3] (Figure 1).
IL-12 receptor (IL-12R) is composed of IL-12Rb1 and IL-
12Rb2, whereas IL-23 receptor (IL-23R) is composed of IL-
12Rb1 and IL-23R. IL-23R signaling is mediated by tyro-
sine kinase (Tyk)2 and Janus kinase (Jak)2, with a pre-
dominant activation of signal transducer and activator of
transcription (STAT)3, and to a minor extent STAT4
(Figure 1). By contrast, the downstream signaling molecule
of IL-12Rb2 is predominantly STAT4. Human IL-23R is
predominantly found on activated memory T cells, natural
killer (NK) cells, and innate lymphoid cells (ILCs), and at
lower levels on monocytes, macrophages, and dendritic
cells (DCs). Mouse IL-23R is found on activated T cells,
lymphoid tissue inducer (LTi) cells, ILCs, gd T cells, DCs,
and macrophages [3–6]. In this review we summarize the
well-recognized role of host IL-12 in preventing cancer
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initiation, growth, and metastasis. We then discuss more
recent evidence describing how IL-12 and IL-23 expression
is regulated and the general role of IL-23 in immune
reactions. We finish by contrasting the data that support
both the tumor-promoting effect of host IL-23 and tumor-
suppressing effect of exogenous IL-23. These findings have
implications for the clinical translation of monoclonal anti-
bodies (mAbs) targeting IL-12 and IL-23 in autoimmune
inflammation and cancer.

IL-12 in tumor immunity
Although there are similarities between IL-12 and IL-23,
there is increasing evidence that these cytokines modulate
divergent immunological activities. Other than promoting
the cytotoxic function of NK cells, IL-12 drives the develop-
ment of Th1 cells via the activation of STAT4. These cyto-
toxic IFN-g-producing Th1 cells are crucial for antimicrobial
and antitumor responses [7]. The role of IL-12 and its
downstream cytokine IFN-g in antitumor immunity has
been demonstrated [8,9] and extensively reviewed else-
where [10,11]. In addition to activating antitumor effectors,
IL-12 and IFN-g also inhibit the expansion of intratumoral T
regulatory cells (Tregs) and angiogenesis in the tumor
microenvironment, thus enhancing tumor control [9]. More
recently, engineered antigen-specific CD8+ T cells expres-
sing IL-12 have also been shown to suppress the growth of
the poorly immunogenic B16 melanoma by reprogramming
immunosuppressive myeloid-derived cells in the tumor mi-
croenvironment, in an IFN-g-dependent manner. Striking-
ly, the antitumor response elicited by these IL-12-
expressing CD8+ T cells did not require the presence of host
T cells and NK cells [12]. Another study using IL-12-pro-
ducing B16 melanomas showed that NKp46+ LTi cells
induced tumor suppression independently of T and NK cells
[13]. Clearly, the mechanism of IL-12-mediated tumor sup-
pression is context dependent. Consistent with the role of IL-
12 in activating multiple arms in antitumor immunity, IL-
12/23p40-deficient mice and IFN-g-deficient mice chal-
lenged with methylcholanthrene (MCA) have an increased
rate and frequency of tumor growth compared to the wild
type controls, suggesting a role of endogenous IL-12 and
IFN-g in protecting the host from the emergence of chemical
carcinogen-induced, and perhaps spontaneous tumors
[14,15].

Although the IL-12/IFN-g axis is important in Th1
immunity, IL-12 can also have direct effects on immune
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Figure 1. Interleukin (IL)-23 and IL-12. Composition of the IL-23 and IL-12 cytokines,

presented together with their corresponding receptors and signal transducer and

activator of transcription (STAT) signaling molecules. Abbreviation: IFN, interferon.
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cells independent of IFN-g induction [16–19]. Similarly,
IL-12p35-deficient mice have also been shown to have an
increased tumor growth in a mouse model of papilloma.
Notably, IL-12/23p40-deficient mice were resistant to the
carcinogen-induced papilloma formation, and the tumor-
promoting role of IL-23 was illustrated [20]. Mice geneti-
cally deficient in IL-12/23p40 show no increased risk of
developing tumors through their lifetime relative to nor-
mal mice [21], whereas a high incidence of lymphoid ma-
lignancy is described in mice genetically deficient only in
the IL-12 pathway, due to ablation of the gene coding for
the IL-12Rb2 subunit of the IL-12 receptor [22].

IL-23 in immune responses
By contrast, IL-23 is crucial for the development of
Th17 cells, a distinct lineage of CD4+T cells, characterized
by their production of signature cytokines IL-17A,
IL-17F, and occasionally IL-21 and IL-22 [23,24]. Endog-
enous Th17 cells mediate antimicrobial and antifungal
responses, or in a pathogenic form, promote autoimmune
diseases [23]. IL-23-driven IL-17-producing cells (Th17
cells and IL-17-producing innate cells) are generally es-
sential for an antimicrobial response [3–5,25]. IL-23 is
crucial for the function and cytokine production of Th17
cells in vivo [26,27]. In addition to Th17 cells, IL-23 also
regulates the function of innate lymphocytes (NK cells,
NKT cells, and gd T cells) and ILCs [4]. Notably, these IL-
23-regulated cells are also IL-17- and/or IL-22-producing
cells. Although it remains unknown whether IL-23 affects
the development of innate IL-17- and/or IL-22-producing
cells in vivo, independent studies have demonstrated that
IL-23 induces these cells to secrete IL-17 and/or IL-22
[4,28–31]. By using an IL-23R–GFP reporter mouse mod-
el, it has also been revealed that the IL-23R-expressing
cells are predominantly enriched in the lamina propria
(LP), in comparison to secondary lymphoid organs in naı̈ve
mice [6]. Collectively, the ready presence of IL-23R-
expressing cells (mainly on innate cells) in the LP and
mucosal interface, and the pathogen-associated signals
that induce IL-23 secretion, demonstrate a role for IL-23 in
host defense against pathogens [3,4,29].

Regulation of IL-12 and IL-23 production
DCs and macrophages are thought to be the main produ-
cers of IL-12 and IL-23 in response to Toll-like receptor
(TLR) stimulation by pathogen and viral components and/
or via CD40–CD40 ligand (CD40L) signaling [2,3,32–34].
What are the factors that induce DCs or macrophages to
produce the appropriate cytokines to drive an inflammato-
ry response? It is unlikely that there is a distinct popula-
tion of naı̈ve DCs or macrophages that are programmed to
secrete either IL-12 or IL-23 upon infection or inflamma-
tion. It is more likely that IL-12 or IL-23 production and the
levels and ratio that are secreted are regulated by micro-
environmental signals. However, in most cases, DCs acti-
vated by TLR agonists or b-glucan, a widely expressed
fungus-associated molecule, produce p40, p19, and p35
molecules, suggesting co-secretion of IL-12 and IL-23
[35–38]. A combination of nucleotide-binding oligodimer-
ization domain (NOD) ligands or b-glucan, together with
TLR2 agonists, preferentially induces IL-23 production by
DCs in vitro [35]. Similarly, TLR8 and NOD signaling
preferentially induce IL-1b and IL-23 secretion in DCs
[37]. Furthermore, CD40 signaling can only trigger IL-
23 secretion in colon-derived, but not the spleen-derived
myeloid cells [33]. Thus, the secretion of IL-12 and IL-23 in
an inflammatory environment may be also dictated by the
presence of pre-primed antigen-presenting cells (APCs) in
vivo. It was recently demonstrated that IFN-g negatively
regulated the secretion of IL-23 from lipopolysaccharide
(LPS)-induced bone-marrow-derived macrophages [39].
Conversely, in the same year, it was also shown that IL-
23 suppressed IL-12-dependent IFN-g secretion in T cells
[40]. Therefore, both IL-12 and IL-23 are also likely to
regulate reciprocally and temporospatially each other in
an inflammatory context.

IL-23 production in a tumor context
What about stimuli for IL-23 in a tumor context? Recently,
in an inflammation- and mutated Apc (adenomatous poly-
posis coli)-driven colorectal cancer model, it was found that
gut microbial products induced IL-23 secretion from a
population of CD11b+ myeloid cells, whereas IL-23 was
also secreted by a population of CD11b– immune cells in
the tumor microenvironment. Although the identity of
these IL-23-producing CD11b– immune cells has not been
fully defined, IL-23 signaling induced a protumor IL-17
response in the tumor microenvironment [41]. Thus, for a
tumor site that is in close contact with microbes, the
presence of microbial products might serve as an inducer
of IL-23 production. Conversely, in tumor sites with a
sterile inflammatory response, there may be some yet-to-
be-defined endogenous TLR agonists, danger signals, or
tumor-derived mediators in the tumor microenvironment
that drive IL-23 production in tumor-associated macro-
phages or DCs.

IL-23 is a STAT3-regulated gene, as well as a STAT3
activator. Of note, persistent activation of STAT3 in a
tumor cell can be transmitted to its surroundings, thus
initiating a protumor activity cascade [42]. Tumor-derived
549



Review Trends in Immunology November 2013, Vol. 34, No. 11
inflammatory mediators such as IL-6, ATP, prostaglandin
(PG)E2, and heat shock proteins (HSPs) are actively re-
leased into the tumor microenvironment in response to
cellular stress or cell death [42,43], and may prime DCs for
IL-23 production [36,44,45]. Interestingly, PGE2 has also
been shown to downregulate IL-12 production in LPS-
stimulated monocytes [46]. ATP activates P2X purinore-
ceptor 7 (P2RX7) receptor on DCs, leading to the activation
of NLRP3 (NLR family, pyrin domain-containing 3) inflam-
masome and the secretion of IL-1b [47]. It is thus likely
that IL-23, IL-6, together with the NLRP3-depndent IL-1b

secretion by DCs or macrophages may drive the formation
of Th17 cells, instead of an antitumor Th1 response. In this
light, an assessment of danger-signal-induced NLRP3 ac-
tivation and IL-23 in tumor immunity is worthy of further
investigation.

Tumor-initiating properties of IL-23
The role of IL-23 in promoting tumorigenesis (Table 1)
was first demonstrated in experiments using IL-23p19-
deficient mice that were found to be almost completely
resistant to 7,12-dimethylbenz(a)anthracene (DMBA)/12-
O-tetradecanoyl-phorbol acetate (TPA)-induced skin pap-
illomas [20]. This study reported a significant increase in
CD8+ T cells infiltrating the DMBA/TPA-treated skin of IL-
23p19-deficient mice compared to wild type control mice.
This was also accompanied by a reduction in IL-17, matrix
metallopeptidase (MMP)9, and CD31 expression, and a
decrease in granulocytes (Gr-1+) and macrophages
(CD11b+, F4/80+). Furthermore, tumor growth in mice
lacking IL-23 or IL-23R was also attenuated compared
to the wild type controls [20]. These data suggest that
IL-23 inhibits the immune surveillance activity mediated
by cytotoxic T cells by potentially preventing their ability
to infiltrate into the tumor. Subsequently, another study
also confirmed that IL-23p19-deficient mice were resistant
to DMBA/TPA-induced skin papillomas, and also to MCA-
induced fibrosarcomas [48]. Importantly, this study also
uncovered a role for IL-23 in suppressing the antitumor
and antimetastatic functions of NK cells [48]. Notably, a
number of experiments in this study illustrated no impact
of loss of host IL-17A, clearly distinguishing the protumor
Table 1. Endogenous IL-23 promotes tumor growth.

IL-23 in promoting tumor

Tumor model Stud

De novo DMBA/TPA-induced skin papillomas IL-23

De novo MCA-induced fibrosarcomas IL-23

De novo Min colon carcinoma Anti-

De novo CPC-APC colorectal cancer IL-23

PDV squamous cell carcinoma IL-23

B16F10 melanoma IL-23

B16 melanoma Anti-

LL/2 lung carcinoma IL-23

EP2 mammary carcinoma Anti-

EG7 lymphoma IL-23

EO771 mammary carcinoma Anti-

4T1.2 mammary carcinoma Anti-

H2N100 mammary carcinoma Anti-

3LL lung carcinoma IL-23

RM1 prostate carcinoma IL-23
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effect of IL-23 from IL-17A. This does not rule out the
potential role of Th17 cells in the protumor activity of IL-
23, given that in some models, blockade of IL-17A or IL-
23R produces a similar carcinogenesis phenotype [49].
Indeed, more recently the role of IL-23 in driving protumor
inflammation was confirmed in a mouse model of Apc-
driven colorectal cancer [41], in which a defective colonic
epithelial barrier, microbes, and/or microbial products
drove IL-23/IL-17-mediated protumorigenic inflammation.
Strikingly, elimination of commensal microbes by antibi-
otic treatment reduced the tumor load in wild type, but not
in the IL-23R-deficient colorectal cancer-prone mice. In
addition to its role in driving inflammation, one study also
reported that IL-23 signaling promoted the production of
the immunosuppressive cytokine, IL-10, from intratu-
moral Tregs [50]. Collectively, this suggests that IL-23
promotes tumorigenesis by driving protumor inflamma-
tion to suppress antitumor effector cells.

In addition to IL-17A, IL-23 has been reported to regu-
late other Th17 cytokines, including other IL-17 isoforms
and IL-22 [51,52]. Recently, IL-22 was reported to display
both protumor and antitumor functions in the dextran
sodium sulfate (DSS) colitis mouse colon cancer model
[53]. In the early phase of colitis, it was suggested that
IL-22 plays an antitumor role by aiding in colonic repair
and resolution of inflammation. By contrast, increased
levels of IL-22 during the recovery phase of colitis may
prolong epithelial proliferation, thereby promoting the
development of intestinal tumors. This observation that
IL-22 was tumor suppressing in certain contexts was
further supported in the APCmin model of spontaneous
tumorigenesis, where a genetic mutation and not inflam-
mation induces tumor development in the colon. In this
model, APCmin mice lacking IL-22 displayed significantly
reduced tumor numbers and size compared to wild type
mice [53]. By contrast, it was reported in a human study
that excessive IL-22 in the colon cancer and ulcerative
colitis microenvironment led to tumor growth, inhibition of
apoptosis, and promotion of metastasis, which was depen-
dent upon STAT3 activation [54]. Hence the role of IL-22 in
tumorigenesis is potentially complex and will require fur-
ther investigation.
y model

p19-deficient mice [20,48]

p19-deficient mice, anti-IL-23p19 mAb [48,57,95]

IL-23R mAb [49]

R-deficient mice [41]

R-deficient mice, anti-IL-23p19 mAb [20]

R-deficient mice, IL-23p19-deficient mice, anti-IL-23p19 mAb [20,48,95]

IL-23R mAb [50]

R-deficient mice [20]

IL-23p19 mAb [20]

p19-deficient mice, anti-IL-23p19 mAb [95]

IL-23p19 mAb [95]

IL-23p19 mAb [95]

IL-23p19 mAb [95]

p19-deficient mice [48]

p19-deficient mice [48]
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The cancer immune interaction (cancer immunoediting)
is also complex and involves three main phases [55]. The
second and longest of these phases involves T cell-mediat-
ed tumor dormancy (equilibrium phase) best characterized
in the MCA-induced fibrosarcoma model [56]. It was re-
cently shown that depletion of IL-23 in mice bearing
dormant tumors induced by MCA resulted in the elimina-
tion of the residual tumor cells, whereas neutralization of
IL-12p40 allowed their outgrowth [57]. Surprisingly, in
contrast to the aforementioned studies, chronically UVB-
exposed IL-23p19-deficient mice were more likely to devel-
op tumors, particularly nonepithelial sarcomas, compared
to the wild type controls [58]. These data are in agreement
with a previously demonstrated role for IL-23 in reducing
UV-induced DNA damage and inhibiting UV-induced
Tregs in an acute UV-induced immunosuppression model
[59]. More studies comparing IL-12p35, IL-23p19, and IL-
12p40 deficiency in cancer-prone mice are warranted to
distinguish their roles in tumorigenesis.

The role of IL-23 in established tumors might be com-
paratively modest compared to that in tumor initiation,
but nonetheless is relevant. In established lung metasta-
ses, the demonstration of enhanced IL-2 immunotherapy
in IL-23p19-deficient mice suggests the potential use of
anti-IL-23p19 mAb in combination with immunotherapies
that can activate NK cells [48]. Indeed, administration of
anti-IL-23p19 mAb in combination with NK cell-targeted
immunotherapies, such as IL-2, or anti-erbB2 mAb, shows
enhanced antitumor effects above either therapy alone
[48].

In agreement with the role of endogenous IL-23 in
promoting tumor growth gleaned from mouse models of
cancer, independent clinical studies have reported that
serum concentrations of IL-23 are increased in cancer
patients in comparison with healthy individuals [60–
63]. Notably, increased serum IL-23 is correlated with
the disease stages of pancreatic cancer [63], and high
serum IL-23 in breast cancer patients is associated with
a poorer survival outcome [61]. In addition, it has been
reported that patients with increased expression of IL-23
in their primary hepatocellular carcinoma (HCC) micro-
environment have a higher potential to develop metasta-
sis. IL-23 has been reported to enhance tumor cell motility
and upregulate tumor cell MMP9 levels by activating the
nuclear factor (NF)-kB/p65 pathway. Furthermore, the
expression of IL-23 positively correlates with the expres-
sion of MMP9 and IL-17A in primary HCC [60]. Similarly,
IL-23 promotes the proliferative capacity of IL-23R+
Table 2. Exogenous IL-23 suppresses tumor growth.

IL-23 in suppressing tumor

Tumor model Study model

Colon 26 colon carcinoma Engineered IL-23-expressing cancer c

MM45T.Li HCC Engineered IL-23-expressing cancer c

MA-891 mammary carcinoma Engineered IL-23 expressing cancer c

B16F10 melanoma Engineered IL-23 expressing cancer c

B16F1 melanoma Engineered IL-23 expressing cancer c

CT26 colon carcinoma Engineered IL-23 expressing cancer c

MCA205 fibrosarcoma Systemic administration of high dos

GL26 glioma Engineered IL-23-expressing DCs, en

[44,77]
primary human oral squamous cell carcinoma (SSC) cell
lines, by activating the NF-kB/p65 pathway. Of note,
tumor cell-derived IL-23 is secreted in an autocrine man-
ner [64,65]. The pro-proliferative property of IL-23 has
also recently been confirmed in human non-small cell lung
cancer (NSCLC) cell lines [66]. Using genome-wide asso-
ciation studies, two potentially functional common var-
iants of IL-23R, rs6682925 (T>C) located at 907 bp
upstream from the transcriptional start position, and
rs1884444 (T>G) located at codon 3 with amino acid His
substituted by Gln in exon 2, have been shown to be
associated with the risk of several solid cancers [67–69].
These same IL-23R polymorphisms have been found to
predispose individuals to an increased risk of acute mye-
loid leukemia (AML) [70].

Tumor-suppressing properties of IL-23
In contrast to the role of endogenous IL-23 in promoting
tumorigenesis, there have been some studies suggesting
that IL-23 can potentially promote an antitumor effect
(Table 2). For example, independent studies have demon-
strated that mouse tumor cell lines engineered to over-
express IL-23 have impaired tumor growth in vivo [71–73].
Others have reported that the administration of high-dose
IL-23, IL-23-expressing adenovirus, or IL-23-expressing
DCs or bone-marrow-derived neural-like stem cells exhibit
an antitumor effect on established tumors [74–77]. Collec-
tively, these findings underscore the potential of IL-23-
based therapy to inhibit tumor growth. By contrast, in
some studies the administration of IL-23 could only signif-
icantly enhance the antitumor response in combination
with peptide vaccination and/or adoptively transferred
antigen-specific T cells [78,79]. As all of the presented
studies did not assess the expression of IL-23R in the
tumor cells, the role of IL-23 in directly modulating tumor
biology remains unclear. Of note, in some of these studies,
the antitumor effect of IL-23 was only exerted in the
presence of host IL-12 and/or IFN-g [73–75], rather than
classical Th17 cytokines. It has been demonstrated that a
high dose of IL-23 suppresses proliferation and also
induces apoptosis in primary B-acute lymphoblastic leu-
kemia (B-ALL) cell lines, through the upregulation of
miR15a and the consequent downregulation of B cell lym-
phoma (Bcl)-2; an apoptosis regulator protein [80]. In
addition, the administration of IL-23 has been shown to
suppress the growth of xenotransplanted B cell lympho-
mas in vivo [80,81]. Thus far, only one study has reported
that a higher level of intratumoral IL-23p19 transcript is
ell line [71,96,97]

ell line [72]

ell line [98]

ell line [73]

ell line [99]

ell line [99]

e IL-23, administration of IL-23-expressing adenovirus [74,75]

gineered IL-23-expressing bone-marrow-derived neural stem-like cells
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associated with improved patient overall survival, in the
context of ovarian cancer [82].

At first glance, this evidence may seem contradictory to
the role of endogenous IL-23 in promoting tumorigenesis
(Tables 1 and 2) [83]. However, the caveat is that these
experiments utilized IL-23 in a nonphysiological manner
and thus do not necessarily reflect the natural role of
endogenous host IL-23 in modulating tumorigenesis. In
addition to the differences between tumor models being
tested, these contradictory findings may be partly
explained by a recent study using human IL-23R+ lung
cancer cell lines. This study reported that low doses of IL-
23 promoted proliferation, whereas higher doses induced
an antiproliferative effect [84]. In this regard, interpreta-
tion of studies that demonstrate that IL-23 inhibits tumor-
igenesis need to be carefully evaluated. Clearly, the
amount of IL-23 expressed by a tumor cell may determine
whether IL-23 has pro- or antitumor properties. A func-
tional IL-23 receptor is consisting of IL-12Rb1 and IL-23R.
Although the downstream signaling molecule of IL-23R is
STAT3, the downstream signaling molecule of IL-12Rb1 is
STAT4, a crucial transcription factor that drives Th1
response (Figure 1). In this light, ability of IL-12Rb1
and STAT4 to mediate the antitumor activity of high doses
of IL-23 (via engineered IL-23-expressing tumor cells,
injection of IL-23-expressing adenovirus, transplantation
of IL-23-expressing DCs, or systemic administration of IL-
23) is worthy of further investigation.

Clinical observations concerning IL-12 and IL-23
Clinical observations have established that IL-12/23p40 is
integral to the pathologies of psoriasis, psoriatic arthritis,
and Crohn’s disease (Figure 2). Ustekinumab (anti-IL-12/
IL-23) is the first market-approved member of a new
biological therapy family targeting IL-12 and IL-23 [85].
The molecular and cellular evaluations conducted for
Resolved/n

Inflamma�on

Deple�on of IL-12

Tumo

Tumo

Inflamma�on-
induced
transforming cells

Deple�on of IL-23

Co-deple�on of IL-12
and IL-23

Figure 2. Inflammation and tumor immunity. A co-depletion of interleukin (IL)-23 and IL

transformed cells. An absence of IL-12 compromises the antitumor T helper (Th)1 res

response in an IL-23-depleted host suppresses potential tumor formation.
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ustekinumab clinical programs provide insight into the
pathology of these disorders, illustrating how a novel
molecular entity can contribute to our understanding of
disease. The emerging safety profile of ustekinumab
remained favorable and did not suggest increased rates
of infection or malignancy after 5 years of follow-up in 753
patients [86,87]. By contrast, psoriasis patients that re-
ceived another anti-IL-12/IL-23 mAb, briakinumab, were
reported to have increased frequency of serious adverse
events such as serious infections, and cancer, although not
statistically significant due to patient numbers [88,89].
However, given the potential latency of cancer and the
importance of dosing, one cannot conclude yet about the
impact of anti-IL-12/23 mAbs on cancer development.
Notably, a recent study pooled the safety data of 2520
patients that received briakinumab from five phase II and
III clinical trials and an open label extension trial [90]. It
suggested an increased risk of any malignancies (2.6%),
particularly in non-melanoma skin cancer (NMSC) (1.7%).
Of significance was the observation that anti-IL-12/23
mAb therapy may increase risk of SCC. This difference
in safety profile observed between ustekinumab and bria-
kinumab may lie in its administered dose. Patients on
briakinumab were generally dosed at 200 mg, whereas
those on ustekinumab received 45–90 mg [87,90]. Fur-
thermore, the clinical development of briakinumab has
been discontinued [88,90–92]. Indeed, patients with pso-
riasis are recognized to carry a higher risk of cutaneous
malignancy than the general population. This is felt to be
largely secondary to the effects of immunosuppressive
therapy and phototherapy used in the control of the dis-
ease. Cyclosporin, a conventional systemic treatment for
psoriasis, has been shown to increase significantly the risk
of cutaneous and other malignancies [93]. In addition,
psoralen plus UV-A (PUVA) therapy has been clearly
associated with photodamage and a persistent increased
ormal

Resolved/normal

OR

r

r
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risk of cutaneous malignancy, particularly in patients
subsequently exposed to cyclosporin [93]. An increased
risk of NMSC also exists, at least theoretically, with
narrow-band UV-B therapy (NBUVB) [93]. Interestingly,
two patients who were previously treated with PUVA and
NBUVB were reported to develop eruptive cutaneous SCC
soon after commencement of ustekinumab [92]. In light of
these studies, it will be important to monitor patients that
receive anti-IL-12/23 mAb, for the development of malig-
nancies such as NMSC, particularly on long-term treat-
ment (Figure 2).

Concluding remarks
It should be appreciated that interpretation of mouse
studies are complicated by the potential differences be-
tween mouse and human IL-12 and IL-23 biology. For
example, pharmacological dosing of recombinant IL-12
has demonstrated efficacy in mouse tumor models, but
has not translated to safe or efficacious therapy in humans.
Also, recent findings suggest that Th cells are regulated
differently in mice than in humans [94]. Given the species
differences in IL-12 and IL-23 biology, it is difficult to
interpret the relevance of mouse studies to humans. In
addition, these models are not established as predictive for
assessing human malignancy or infection risk. As outlined
above, the mechanisms of IL-23 in modulating tumorigen-
esis and tumor immunity remain elusive, and the data
supporting it are still confusing. However, from a clinical
perspective, therapies targeting this inflammatory path-
way may be beneficial to the host, in provoking antitumor
immunity, and reducing autoimmunity. It is of great im-
portance for us to assess extensively the potential side
effects of such therapies.
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