Michele Giugliano

Michele Giugliano
Scuola Internazionale Superiore di Studi Avanzati di Trieste | SISSA · Neurobiology Group

PhD in Bioengineering

About

101
Publications
18,658
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,615
Citations
Introduction
Michele Giugliano currently works at the International School of Advanced Studies of Trieste (SISSA), combining experimental and computational approaches. Please visit https://www.giugliano.info
Additional affiliations
January 2011 - December 2015
University of Antwerp
Position
  • Laboratory Head, Associate Professor

Publications

Publications (101)
Article
Full-text available
FOXG1 is an ancient transcription factor gene mastering telencephalic development. A number of distinct structural FOXG1 mutations lead to the “FOXG1 syndrome”, a complex and heterogeneous neuropathological entity, for which no cure is presently available. Reconstruction of primary neurodevelopmental/physiological anomalies evoked by these mutation...
Article
Full-text available
Neuronal progenitor cells (NPC) play an essential role in homeostasis of the central nervous system (CNS). Considering their ability to differentiate into specific lineages, their manipulation and control could have a major therapeutic impact for those CNS injuries or degenerative diseases characterized by neuronal cell loss. In this work, we estab...
Article
Full-text available
Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in el...
Article
Full-text available
The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not...
Article
Full-text available
The cortical layer 1 (L1) contains a population of GABAergic interneurons, considered a key component of information integration, processing, and relaying in neocortical networks. In fact, L1 interneurons combine top–down information with feed-forward sensory inputs in layer 2/3 and 5 pyramidal cells (PCs), while filtering their incoming signals. D...
Article
Full-text available
The technology for producing microelectrode arrays (MEAs) has been developing since the 1970s and extracellular electrophysiological recordings have become well established in neuroscience, drug screening and cardiology. MEAs allow monitoring of long-term spiking activity of large ensembles of excitable cells noninvasively with high temporal resolu...
Article
Full-text available
In the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer (L) 2/3 pyramidal neurons (PNs) elicits strong feedforward inhibition (FFI) o...
Article
The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GAB...
Preprint
Full-text available
Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyr...
Article
Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyr...
Article
Full-text available
Neurons are embedded in an extracellular matrix (ECM), which functions both as a scaffold and as a regulator of neuronal function. The ECM is in turn dynamically altered through the action of serine proteases, which break down its constituents. This pathway has been implicated in the regulation of synaptic plasticity and of neuronal intrinsic excit...
Preprint
Full-text available
In the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory-evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer 2/3 PNs elicited strong feed-forward perisomatic inhibition (FFI) onto layer...
Article
Full-text available
During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioe...
Article
Full-text available
It is generally assumed that human intelligence relies on efficient processing by neurons in our brain. Although grey matter thickness and activity of temporal and frontal cortical areas correlate with IQ scores, no direct evidence exists that links structural and physiological properties of neurons to human intelligence. Here, we find that high IQ...
Article
Full-text available
The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-ele...
Article
Full-text available
The use of graphene-based materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that s...
Preprint
Full-text available
The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of co-morbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GA...
Article
Full-text available
The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells...
Preprint
Neuronal networks are surrounded by the extracellular matrix (ECM), which functions both as a scaffold and as a regulator of neuronal function. The ECM is in turn dynamically altered through the action of serine proteases, which break down its constituents. This pathway has been implicated in the regulation of synaptic plasticity and of intrinsic e...
Article
Full-text available
Ensembles of cortical neurons can track fast-varying inputs and relay them in their spike trains, far beyond the cutoff imposed by membrane passive electrical properties and mean firing rates. Initially explored in silico and later demonstrated experimentally, investigating how neurons respond to sinusoidally-modulated stimuli provides a deeper ins...
Article
Full-text available
A novel microfabrication technique for microelectrode arrays (MEAs) with a full diamond-cell interface is demonstrated. Boron-doped nano-crystalline diamond (BNCD) is used as a conductive electrode material on metal tracks insulated by intrinsic NCD. MEAs successfully recorded spontaneous electrical activity in rat primary cortical neuronal culture...
Chapter
Full-text available
While the design of closed-loop experimental protocols in cellular electrophysiology dates back more than 60 years, recent developments promise to significantly advance the field. We review a selection of recent applications of closed-loop methods in neurobiology, focussing on the intracellular and extracellular access to cellular excitability, emp...
Chapter
Full-text available
In the last three decades, nanotechnologies have so deeply integrated themselves with medicine, that a new term, “nanomedicine,” was specifically coined (Freitas in Nanomedicine, volume I: basic capabilities. Landes Bioscience, Georgetown, 1999, [110]) to indicate “the process of diagnosing, treating, and preventing disease and traumatic injury, re...
Article
Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static...
Article
Diamond-based microelectrode arrays were fabricated by using nanocrystalline diamond as an insulating layer and conductive boron-doped in order to used them for analysis of brain cortical slices. MEA surface is solely composed of diamond, exposed to the cells. The impedance measurements showed negligible cross-talk between neighbouring diamond micr...
Article
Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2⁺ neurons in cortical layers II–IV. The resulting neurons are electrical...
Article
Full-text available
Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream...
Article
Full-text available
Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spi...
Conference Paper
Full-text available
Technological advances of Multielectrode Arrays (MEAs) used for multi- site, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in...
Article
Full-text available
Neuronal nanoscale interfacing aims at identifying or designing nanostructured smart materials and validating their applications as novel biocompatible scaffolds with active properties for neuronal networks formation, nerve regeneration, and bidirectional biosignal coupling. Among several carbon-based nanomaterials, Graphene recently attracted grea...
Article
Experimental neuroscience is witnessing an increased interest in the development and application of novel and often complex, closed-loop protocols, where the stimulus applied depends in real-time on the response of the system. Recent applications range from the implementation of virtual reality systems for studying motor responses both in mice and...
Article
Full-text available
Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to...
Article
Full-text available
Misfolded protein aggregates represent a continuum with overlapping features in neurodegenerative diseases, but differences in protein components and affected brain regions. The molecular hallmark of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are megadalton α-synuclein-rich deposits suggesti...
Conference Paper
Multi-electrode arrays (MEAs) are widely used for the investigation of neuronal networks properties and drug screening. The main advantage of this method is a simultaneous registration of electrical activity from a large number of neurons during long periods (days or weeks). However, a major disadvantage of MEA recordings relates to the low signal...
Article
Full-text available
Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell, showing several high frequency spikelet components (±600 Hz). Since its early observations, the CS is known to vary in shape. In this study we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta) perform...
Article
Full-text available
Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell, showing several high frequency spikelet components (±600 Hz). Since its early observations, the CS is known to vary in shape. In this study we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta) perform...
Article
Full-text available
Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective pro...
Article
Full-text available
The search for advanced biomimetic materials that are capable of offering a scaffold for biological tissues during regeneration or of electrically connecting artificial devices with cellular structures to restore damaged brain functions is at the forefront of interdisciplinary research in materials science. Bioactive nanoparticles for drug delivery...
Article
Full-text available
The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expres...
Article
Full-text available
The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expres...
Article
Full-text available
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in trans