
Michela Mapelli- PhD in Astrophysics
- Professor (Full) at Heidelberg University
Michela Mapelli
- PhD in Astrophysics
- Professor (Full) at Heidelberg University
About
515
Publications
98,712
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
42,077
Citations
Introduction
Current institution
Additional affiliations
November 2018 - present
August 2017 - September 2018
August 2011 - October 2018
INAF - Osservatorio Astronomico di Padova
Position
- Permanent Research Staff
Publications
Publications (515)
In binary star systems, mass transfer can spin up the accretor, possibly leading to efficient chemical mixing and chemically quasi-homogeneous evolution (CHE). Here, we explore the effects of accretion-induced CHE on both stellar populations and their compact binary remnants with the state-of-the-art population synthesis code sevn . We find that CH...
Observations by the LIGO, Virgo, and KAGRA (LVK) detectors have provided new insights into the demographics of stellar-origin black hole binaries (sBHBs). A few years before gravitational-wave signals from sBHB mergers are recorded in the LVK detectors, their early coalescence will leave a unique signature in the ESA/NASA mission Laser Interferomet...
Binaries with a Wolf-Rayet star and a compact object (WR--COs), either a black hole (BH) or a neutron star (NS), have been proposed as possible progenitors for the binary compact object mergers (BCOs) observed with gravitational wave (GW) detectors. In this work, we use the open source population synthesis code to investigate the role of WR--COs as...
We investigated various emission properties of extremely low metallicity stellar populations in the Epoch of Reionization (EoR), using the new GALSEVN model, which has shown promising agreement between spectral predictions and observations at lower redshifts and higher metallicities. We find that emission-line diagnostics previously proposed to dis...
We investigated various emission properties of extremely low metallicity stellar populations in the Epoch of Reionization (EoR), using the new model, which has shown promising agreement between spectral predictions and observations at lower redshifts and higher metallicities. We find that emission-line diagnostics previously proposed to discriminat...
In binary star systems, mass transfer can spin up the accretor, possibly leading to efficient chemical mixing and chemically quasi-homogeneous evolution (CHE). Here, we explore the effects of accretion-induced CHE on both stellar populations and their compact binary remnants with the state-of-the-art population synthesis code SEVN. We find that CHE...
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted...
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations’ O3 observ...
Next-generation gravitational wave (GW) observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, will observe binary neutron star (BNS) mergers across cosmic history, providing precise parameter estimates for the closest ones. Innovative wide-field observatories, like the Vera Rubin Observatory, will quickly cover large portions of t...
As the number of gravitational-wave detections grows, the merger rate of binary black holes (BBHs) can help us to constrain their formation, the properties of their progenitors, and their birth environment. Here, we aim to address the impact of the metal-dependent star formation rate (SFR) on the BBH merger rate. To this end, we have developed a fu...
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal ma...
Context. Computational astronomy has reached the stage where running a gravitational N -body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor that remains is the ability to set up physically realistic initial conditions.
Aims. We aim to obtain realistic initial conditions for...
Binaries with a Wolf-Rayet star and a compact object (WR-COs), either a black hole (BH) or a neutron star (NS), have been proposed as possible progenitors for the binary compact object mergers (BCOs) observed with the gravitational wave (GW) detectors. In this work, we use the open-source population synthesis code SEVN to investigate the role of WR...
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coinci...
Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availab...
Context. Computational astronomy has reached the stage where running a gravitational N-body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor that remains is the ability to set up physically realistic initial conditions. Aims. We aim to obtain realistic initial conditions for...
Third-generation (3G) gravitational-wave detectors such as the Einstein Telescope (ET) will observe binary black hole (BBH) mergers at redshifts up to $z 100$. However, an unequivocal determination of the origin of high-redshift sources will remain uncertain because of the low signal-to-noise ratio (S/N) and poor estimate of their luminosity distan...
In this work, we study in detail the collision formation scenario of black holes (BHs) which lie in the pair-instability (PI) mass gap. We study the collision scenario of two massive stars by means of a smoothed-particle hydrodynamics (SPH) simulation and the post-collision evolution with detailed stellar evolutionary codes. We find that the stella...
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the leng...
Gaia BH3 is the first observed dormant BH with a mass of $ $ M$_ and it represents the first confirmation that such massive BH s are associated with metal-poor stars. Here, we explore the isolated binary formation channel for Gaia BH3, focusing on the old and metal-poor stellar population of the Milky Way halo. We used the mist stellar models and o...
Binary black holes (BBHs) that are born from the evolution of Population III (Pop. III) stars are one of the main high-redshift targets for next-generation ground-based gravitational-wave (GW) detectors. Their predicted initial mass function and lack of metals make them the ideal progenitors of black holes above the upper edge of the pair-instabili...
Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observin...
Observations by the LIGO, Virgo and KAGRA (LVK) detectors have provided new insights in the demographics of stellar-origin black hole binaries (sBHB). A few years before gravitational-wave signals from sBHB mergers are recorded in the LVK detectors, their early coalescence will leave a unique signature in the ESA/NASA mission Laser Interferometer S...
We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The pri...
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and...
Hierarchical black hole (BH) mergers are one of the most straightforward mechanisms producing BHs inside and above the pair-instability mass gap. We investigated the impact of globular cluster (GC) evolution on hierarchical mergers, accounting for the uncertainties related to BH mass pairing functions on the predicted primary BH mass, mass ratio, a...
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, a...
Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is expected to be a black box due to complexity; sec...
Gravitational waves (GWs) from compact binary coalescences can constrain the cosmic expansion of the Universe. In the absence of an associated electromagnetic counterpart, the spectral siren method exploits the relation between the detector frame and the source frame masses to jointly infer the parameters of the mass distribution of black holes (BH...
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) ca...
Aims. We investigate the observed distribution of the joint primary mass, mass ratio, and redshift of astrophysical black holes using the gravitational wave events detected by the LIGO-Virgo-KAGRA collaboration and included in the third gravitational wave transient catalogue.
Methods. We reconstructed this distribution using Bayesian non-parametric...
Hierarchical black hole (BH) mergers in active galactic nuclei (AGNs) are unique among formation channels of binary black holes (BBHs) because they are likely associated with electromagnetic counterparts and can efficiently lead to the mass growth of BHs. Here, we explore the impact of gas accretion and migration traps on the evolution of BBHs in A...
Eccentric mergers are a signature of the dynamical formation channel of binary black holes (BBHs) in dense stellar environments and hierarchical triple systems. Here, we investigate the formation of eccentric mergers via binary-single interactions by means of $2.5 $ direct N -body simulations. Our simulations include post-Newtonian terms up to the...
We present the first results of the Dragon-II simulations, a suite of 19 N-body simulations of star clusters with up to 106 stars, with up to 33% of them initially paired in binaries. In this work, we describe the main evolution of the clusters and their compact objects (COs). All Dragon-II clusters form in their centre a black hole (BH) subsystem...
Context . With a mass exceeding several 10 ⁴ M ⊙ and a rich and dense population of massive stars, supermassive young star clusters represent the most massive star-forming environment that is dominated by the feedback from massive stars and gravitational interactions among stars.
Aims . In this paper we present the Extended Westerlund 1 and 2 Open...
We investigate the nebular emission produced by young stellar populations using the new GALSEVN model based on the combination of the SEVN population-synthesis code including binary-star processes and the GALAXEV code for the spectral evolution of stellar populations. Photoionization calculations performed with the CLOUDY code confirm that accounti...
The origin of the spins of stellar-mass black holes is still controversial, and angular momentum transport inside massive stars is one of the main sources of uncertainty. Here, we apply hierarchical Bayesian inference to derive constraints on spin models from the 59 most confident binary black hole merger events in the third gravitational-wave tran...
We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed...
Galactic binary neutron stars (BNSs) are a unique laboratory to probe the evolution of BNSs and their progenitors. Here, we use a new version of the population synthesis code sevn to evolve the population of Galactic BNSs, by modelling the spin up and down of pulsars self-consistently. We analyse the merger rate $\mathcal {R}_{\rm MW}$, orbital per...
Gaia BH1, the first quiescent black hole (BH) detected from Gaia data, poses a challenge to most binary evolution models: its current mass ratio is ≈0.1, and its orbital period seems to be too long for a post-common envelope system and too short for a non-interacting binary system. Here, we explore the hypothesis that Gaia BH1 formed through dynami...
The current generation of very-high-energy gamma-ray (VHE; E > 30 GeV) detectors (MAGIC and H.E.S.S.) have recently demonstrated the ability to detect the afterglow emission of gamma-ray bursts (GRBs). However, the GRB prompt emission, typically observed in the 10 keV–10 MeV band, is still undetected at higher energies. Here, we investigate the per...
Gravitational-wave observations have revealed sources whose unusual properties challenge our understanding of compact-binary formation. Inferring the formation processes that are best able to reproduce such events may therefore yield key astrophysical insights. A common approach is to count the fraction of synthetic events from a simulated populati...
Gravitational-wave black-hole spectroscopy provides a unique opportunity to test the strong-field regime of gravity and the nature of the final object formed in the aftermath of a merger. Here we investigate the prospects for black-hole spectroscopy with third-generation gravitational-wave detectors, in particular the Einstein Telescope in differen...
Population III stars, born from the primordial gas in the Universe, lose a negligible fraction of their mass via stellar winds and possibly follow a top-heavy mass function. Hence, they have often been regarded as the ideal progenitors of massive black holes (BHs), even above the pair instability mass gap. Here, we evolve a large set of Population...
Detector characterization and data quality studies—collectively referred to as DetChar activities in this article—are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the instruments...
The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected GW signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the fu...
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availabil...
The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned...
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent...
We present the first results of the \textsc{Dragon-II} simulations, a suite of 19 $N$-body simulations of star clusters with up to $10^6$ stars, with up to $33\%$ of them initially paired in binaries. In this work, we describe the main evolution of the clusters and their compact objects (COs). All \textsc{Dragon-II} clusters form in their centre a...
Gaia$ BH1, the first quiescent black hole (BH) detected from $Gaia$ data, poses a challenge to most binary evolution models: its current mass ratio is $\approx{0.1}$, and its orbital period seems to be too long for a post-common envelope system and too short for a non-interacting binary system. Here, we explore the hypothesis that $Gaia$ BH1 formed...
Population III (Pop. III) binary stars likely produced the first stellar-born binary black hole (BBH) mergers in the Universe. Here, we quantify the main sources of uncertainty for the merger rate density evolution and mass spectrum of Pop. III BBHs by considering four different formation histories and 11 models of the initial orbital properties of...
Population-synthesis codes are an unique tool to explore the parameter space of massive binary star evolution and binary compact object (BCO) formation. Most population-synthesis codes are based on the same stellar evolution model, limiting our ability to explore the main uncertainties. Here, we present the new version of the code sevn, which overc...
Gravitational-wave observations have revealed sources whose unusual properties challenge our understanding of compact-binary formation. Inferring the formation processes that are best able to reproduce such events may therefore yield key astrophysical insights. A common approach is to simulate a population of mergers and count the fraction of these...
Galactic binary neutron stars (BNSs) are a unique laboratory to probe the evolution of BNSs and their progenitors. Here, we use a new version of the population synthesis code SEVN to evolve the population of Galactic BNSs, by modeling the spin up and down of pulsars self-consistently. We analyze the merger rate $\mathcal{R}_{\rm MW}$, orbital perio...
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run...
Gravitational-wave black-hole spectroscopy provides a unique opportunity to test the strong-field regime of gravity and the nature of the final object formed in the aftermath of a merger. Here we investigate the prospects for black-hole spectroscopy with third-generation gravitational-wave detectors, in particular the Einstein Telescope in differen...
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron st...
The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where in each arm there is a `xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tu...
Population III (Pop. III) binary stars likely produced the first stellar-born binary black hole (BBH) mergers in the Universe. Here, we quantify the main sources of uncertainty for the merger rate density evolution and mass spectrum of Pop. III BBHs by considering four different formation histories of Pop. III stars and 11 models of the initial orb...
Population III stars, born from the primordial gas in the Universe, lose a negligible fraction of their mass via stellar winds and possibly follow a top-heavy mass function. Hence, they have often been regarded as the ideal progenitors of massive black holes (BHs), even above the pair instability mass gap. Here, we evolve a large set of Population...
The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenge...
Eccentric mergers are a signature of the dynamical formation channel of binary black holes (BBHs) in dense stellar environments and hierarchical triple systems. Here, we investigate the production of eccentric mergers via binary-single interactions, by means of $2.5\times10^{5}$ direct $\textit{N}$-body simulations. Our simulations include post-New...
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five mo...
The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4).
The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitiv...
With the release of the third Gravitational-Wave Transient Catalogue (GWTC-3), 90 observations of compact-binary mergers by Virgo and LIGO detectors are confirmed. Some of these mergers are suspected to have occurred in star clusters. The density of black holes at the cores of these clusters is so high that mergers can occur through a few generatio...
The current interpretation of LIGO–Virgo–KAGRA data suggests that the primary mass function of merging binary black holes (BBHs) at redshift z ≲ 1 contains multiple structures, while spins are relatively low. Theoretical models of BBH formation in different environments can provide a key to interpreting the population of observed mergers, but they...
The origin of the spins of stellar-mass black holes is still controversial, and angular momentum transport inside massive stars is one of the main sources of uncertainty. Here, we apply hierarchical Bayesian inference to derive constraints on spin models from the 59 most confident binary black hole merger events in the third gravitational-wave tran...
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply usi...
The current generation of very-high-energy $gamma-$ray (VHE; E above 30 GeV) detectors (MAGIC and H.E.S.S.) have recently demonstrated the ability to detect the afterglow emission of GRBs. However, the GRB prompt emission, typically observed in the 10 keV-10 MeV band, has so far remained undetected at higher energies. Here, we investigate the persp...
The detection of the binary black hole merger GW190521, with primary black hole mass $85^{+21}_{-14}$ M⊙, proved the existence of black holes in the theoretically predicted pair-instability gap (∼60 − 120 M⊙) of their mass spectrum. Some recent studies suggest that such massive black holes could be produced by the collision of an evolved star with...
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coh...
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false a...
Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collecte...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
Population-synthesis codes are an unique tool to explore the parameter space of massive binary star evolution and binary compact object (BCO) formation. Most population-synthesis codes are based on the same stellar evolution model, limiting our ability to explore the main uncertainties. Our code SEVN overcomes this issue by interpolating the main s...
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Vi...
Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia -ESO Public Spectroscopic Survey, the only one performed on a 8m...
The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave (GW) signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), a...
Detector characterization and data quality studies -- collectively referred to as {\em DetChar} activities in this article -- are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the...
Dynamical interactions in dense star clusters are considered one of the most effective formation channels of binary black holes (BBHs). Here, we present direct N −body simulations of two different star cluster families: low-mass (∼500–800 M⊙) and relatively high-mass star clusters (≥5000 M⊙). We show that the formation channels of BBHs in low- and...
Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data by including the orbital period in the search t...
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a speci...
The merger rate density evolution of binary compact objects and the properties of their host galaxies carry crucial information to understand the sources of gravitational waves. Here, we present galaxy$\mathcal {R}$ate, a new code that estimates the merger rate density of binary compact objects and the properties of their host galaxies, based on ob...
The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100,000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs....
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
The detection of GW190521 by the LIGO–Virgo collaboration has revealed the existence of black holes (BHs) in the pair-instability (PI) mass gap. Here, we investigate the formation of BHs in the PI mass gap via star – star collisions in young stellar clusters. To avoid PI, the stellar-collision product must have a relatively small core and a massive...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_{⊙} and 1.0 M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more u...
The Einstein Telescope (ET) is going to bring a revolution for the future of multimessenger astrophysics. In order to detect the counterparts of binary neutron star (BNS) mergers at high redshift, the high-energy observations will play a crucial role. Here, we explore the perspectives of ET, as a single observatory and in a network of gravitational...
With the release of the third Gravitational-Wave Transient Catalogue (GWTC-3), 90 observations of compact-binary mergers by Virgo and LIGO detectors are confirmed. Some of these mergers are suspected to have occurred in star clusters. The density of black holes at the cores of these clusters is so high that mergers can occur through a few generatio...
In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey (GES), the only one performed on a 8m cla...
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...