
Profiling Attacker Behavior Following SSH Compromises

Daniel Ramsbrock Robin Berthier, Michel Cukier
Department of Computer Science Center for Risk and Reliability

University of Maryland, College Park Department of Mechanical Engineering
dramsbro@umd.edu University of Maryland, College Park

robinb@umd.edu, mcukier@umd.edu

Abstract

This practical experience report presents the
results of an experiment aimed at building a profile of
attacker behavior following a remote compromise.
For this experiment, we utilized four Linux honeypot
computers running SSH with easily guessable
passwords. During the course of our research, we also
determined the most commonly attempted usernames
and passwords, the average number of attempted
logins per day, and the ratio of failed to successful
attempts. To build a profile of attacker behavior, we
looked for specific actions taken by the attacker and
the order in which they occurred. These actions were:
checking the configuration, changing the password,
downloading a file, installing/running rogue code,
and changing the system configuration.

1. Introduction

Most security analysis experiments focus on
methods for keeping attackers out of target systems but
do little to address their behavior after a remote
compromise. In this experiment, we focused almost
exclusively on post-compromise attacker behavior.
Our goal was to build a profile of short-term attacker
behavior, capturing the actions in the minutes and
hours after the initial compromise.

To achieve this goal, we utilized a set of honeypot
computers running SSH on Linux. Attackers routinely
scan for this service and use it for gaining both
privileged and non-privileged remote access. The very
nature of the experiment required us to observe a large
number of successful compromises in order to draw
conclusions about typical post-compromise attacker
behavior. To ensure a large number of compromises,
we used commonly tried passwords to attract attackers
with a low level of sophistication (the so-called “script
kiddies” who rely heavily on automated hacking tools
and dictionary attacks).

Section 2 below describes the experimental setup,
including the software configuration and usernames/

passwords found on the honeypots, the data collection
methods, and the typical lifecycle of a honeypot in this
experiment. Section 3 presents the basic statistics we
gathered as part of this experiment, focusing on the
most commonly attempted usernames and passwords.
Section 4 presents our findings, including the post-
compromise attacker profile in the form of a state
machine. Section 5 reviews related work in the area of
honeypots and attacker behavior research, and Section
6 presents our conclusions.

2. Experimental setup

To collect attacker data, we used a set of four high-
interaction Linux honeypot computers as part of the
existing testbed architecture at the University of
Maryland. The honeypots are on a separate network
that limits outgoing connections to minimize damage
but allows all incoming connections. For details
regarding the testbed architecture, please refer to [1].

2.1. Software configuration

The four honeypots all ran on an identical Linux
disk image: a slimmed-down install of Fedora Core 3,
updated with the latest patches as of October 10, 2006.
Since the primary interaction with the systems was via
SSH, the install only included a text-mode environ-
ment (the X Window system and associated graphical
programs were not installed).

To monitor attacker activity, we used the following
tools: a modified OpenSSH sever to collect attempted
passwords, syslog-ng to remotely log important system
events, including logins and password changes, strace
to record all system calls made by incoming SSH
connections, and the Honeynet Project's Sebek tool [2]
to secretly collect all keystrokes on incoming SSH
connections.

The only modification to the OpenSSH source tree
was the addition of a single line of code that uses
syslog to record all passwords being tried.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

2.2. User accounts and passwords

Each honeypot had one privileged root account plus
five non-privileged user accounts. To get an idea about
commonly tried usernames, we ran some initial
experiments. Based on these results, we decided to use
the following usernames: admin, mysql, oracle, sarah,
and louise. These experiments also revealed that the
most commonly tried passwords were '(username)',
'(username)123', 'password', and '123456', where
(username) represents the username being tried. We
rotated among these four passwords for each username
as follows: after a compromise, we re-deployed the
honeypot and moved on to the next password in the
list (see Section 2.4 for details regarding the re-
deployment policy).

In order to encourage attackers to enter the non-
privileged user accounts instead of the root account,
two of the honeypots were set up with strong root
passwords. The other two honeypots had root accounts
which rotated among the four passwords 'root',
'root123', 'password', and '123456'.

2.3. Data collection

Two servers were responsible for collecting data:
one was dedicated to syslog data and the other one
collected Sebek data, strace data, and hourly snapshots
of the .bash_history and wtmp files.

Sebek and syslog-ng were configured to send data
to the servers continuously. To transfer the large
amounts of strace data, we set up an automated,
compressed hourly transfer. This was done via SCP
using public keys and a hidden system account called
'sysadm'.

2.4. Honeypot lifecycle

To ensure quick turnaround after a compromise, we
used a pre-built disk image and automated scripts to
manage the deployment of the honeypots. We
monitored the syslog messages coming from each
honeypot at least every 24 hours to check for logins
and password changes. In this context, we defined a
compromise as an unauthorized login followed by a
password change, rather than using the traditional
definition of an unauthorized login only. Password
changes typically happened every day, with the
observed average time from honeypot deployment
until the first password change being 11:25 hours.

Re-deploying immediately after an unauthorized
login would have limited our results: due to the
automated nature of the dictionary attacks, many
attackers successfully gained access but did not
perform any actions once they had a shell. On the
other hand, keeping the honeypot running for more
than a few hours after a password change is not

productive for observing short-term attacker behavior:
once the password has been changed for an account,
all other attackers are locked out of it.

Following a password change, we waited at least
one hour before we copied the disk image back onto
the honeypot, re-ran the deployment script, and
continued monitoring the live syslog data.

3. Attacker statistics

During the 24-day period from November 14 to
December 8, 2006, attackers from 229 unique IP
addresses attempted to log in a total of 269,262 times
(an average of 2,805 attempts per computer per day).
Out of these, 824 logged in successfully, and 157
changed an account password. The detailed figures for
each honeypot are listed in Table 1.

Table 1. Login attempts per honeypot

Honeypot Attempted Successful Password
HP1 66,087 267 49
HP2 69,044 228 43
HP3 72,953 159 31
HP4 61,178 170 34
Total 269,262 824 157

Despite the fact that we used commonly attempted
usernames and passwords, we were surprised to find
that only 0.31 percent of attempted attacks were
successful. Even more surprisingly, only 22.09 percent
of the time (in 182 out of 824 cases) did the attacker
run any commands. In 25 cases, the attacker did not
change the password despite running other com-
mands. Overall, this resulted in only a 19.05 percent
rate of password change among successful logins. This
trend can possibly be explained by the automated
nature of the attacks: if a low-skill attacker is using
scripts to attack dozens of systems at once, he may not
have time to take advantage of all compromised hosts.

Table 2. Top attempted usernames

Rank Username Attempts Percent
1. root 33,238 12.34%
2. admin 4,392 1.63%
3. test 3,012 1.12%
4. guest 2,274 0.84%
5. info 1,825 0.68%
6. adm 1,563 0.58%
7. mysql 1,379 0.51%
8. user 1,317 0.49%
9. administrator 1,205 0.45%
10. oracle 1,169 0.43%

As described in Section 2, we logged all attempted

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

usernames and passwords. Among the most commonly
tried usernames, the privileged root account was by far
the most popular choice (see Table 2). Even though
attackers attempted a total of 12,225 different
usernames, the top 1,000 accounted for 72.45 percent
of all attempts. System administrators should avoid
these accounts when possible, or otherwise ensure that
they have strong passwords. The root account is
required, but SSH access to it should be disabled.

Table 3. Top attempted passwords

Rank Password Attempts Percent
1. (username) 115,877 43.04%
2. (username)123 23,362 8.68%
3. 123456 19,177 7.12%
4. password 5,742 2.13%
5. 1234 3,981 1.48%
6. 12345 3,890 1.44%
7. passwd 3,793 1.41%
8. 123 3,682 1.37%
9. test 3,564 1.32%
10. 1 2,925 1.09%

While compiling data on the most commonly used
passwords (see Table 3), we noticed that attackers
were trying variations on the username as the
password. In many cases the attempted password was
the username itself or the username followed by '123'.
As a result, we specifically looked for patterns where
the password contained the username, and it turned
out that by far the most common password was the
username itself. This combination accounted for
almost half of all attempts, and the username followed
by '123' was the second most popular choice. We also
saw a third pattern of this type: the username followed
by '321'. However, it did not occur frequently enough
to appear in the top 10 list (2552 times, equaling 0.95
percent). Our pattern-based analysis of the attempted
passwords provides a clearer picture of the underlying
trends than do traditional methods, such as exact
string matching. This result again emphasizes the
point that a password should never be identical or
even related to its associated username.

In a similar study by Alata and colleagues [3], the
authors had the same results for the accounts being
tried (Table 2 above). Not only were the top three
accounts the same, but the percentages each was
attempted were nearly identical.

4. Results

While basic statistics about attackers can provide some
insight, the main purpose of this experiment was to
build a profile of post-compromise attacker behavior.
To do this, we developed a list of seven states that

represent the typical observed actions (such as 'change
password' and 'download file'). We then built a state
machine showing the number of times attackers
changed from one state to another. A state transition is
an indication of sequence: an edge from state X to
state Y indicates that the attacker engages in activity
X first, then in activity Y (without engaging in any
other activity Z in between).

4.1. State definitions

To build the state machine of attacker behavior, we
defined seven states as follows.

1. CheckSW – 'Check software configuration.' This
refers to actions that allow the attacker to gain
more information about the system's software or
its users. The specific Linux commands included
in this state are: w, id, whoami, last, ps, cat
/etc/*, history, cat .bash_history, php -v.

2. Install – 'Install a program.' This refers to new
software being installed by an attacker. In most
cases, this takes the form of untarring or
unzipping a downloaded file, followed by other
filesystem operations such as copying, moving,
and deleting files, creating directories, and
changing file permissions. The specific
commands included in this state are: tar, unzip,
mv, rm, cp, chmod, mkdir.

3. Download – 'Download a file.' This refers to
remote file downloads by the attacker. Typically,
attackers download TAR/ZIP files containing
hacking tools such as SSH scanners, IRC bots,
and password crackers. The specific commands
included in this state are: wget, ftp, curl,
lwp-download.

4. Run – 'Run a rogue program.' This refers to the
attacker running a program that was not
originally part of the system. To detect these
programs, we looked for the ./ notation which
usually precedes commands run from locations
outside the system's binary path. However, some
attackers modified the PATH environment variable
so they could run their rogue program without the
./ notation. We were able to detect most of these
cases because attackers repeatedly used the same
kits, resulting in three commonly observed binary
names: cround, [kjournald], httpd. Finally,
some attackers used Perl scripts, so we also
included perl and *.pl in this state.

5. Password – 'Change the account password.' This
refers to changing the password of the
compromised account. The only command
included in this state is passwd.

6. CheckHW – 'Check the hardware configuration.'
This refers to actions that allow the attacker to
gain more information about the system's

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

hardware (uptime, network, CPU speed/type). The
specific commands included in this state are:
uptime, ifconfig, uname, cat /proc/cpuinfo.

7. ChangeConf – 'Change the system configuration.'
This refers to attacker activity that permanently
changes the state of the system. Typical examples
of this were: setting environment variables,
killing running programs, editing files, adding/
removing users, and running a modified SSH
server (the one rogue program not considered part
of the Run state because of its long-term effects on
the system and its users). The commands included
in this state are: export, PATH=, kill,^nano,
pico, vi, vim, sshd, useradd, userdel.

Table 4 provides a summary of how many
commands matched each state. There are certain
commands we did not include in any state because
they are routine and have no significant effect on the
system: cd, ls, bash, exit, logout, cat. These
commands made up a large portion of the observed
command set (34.08 percent) and are listed as (no-op)
in Table 4. Including no-op commands, our state
machine provided nearly full coverage of the observed
command set (98.07 percent). It is interesting to note
that a fairly narrow definition of states results in a
high rate of coverage. The most likely explanation is
that only a few different scripts accounted for most of
the attacks.

Table 4. State machine coverage

State Commands Coverage
CheckSW 386 14.90%
Install 377 14.55%
Download 225 8.68%
Run 208 8.03%
Password 203 7.83%
CheckHW 157 6.06%
ChangeConf 102 3.94%
(unmatched) 50 1.93%
(no-op) 883 34.08%
Total 2591 100.00%

By inspection, we discovered that over half of the
50 unmatched commands were due to typographical
errors by the attackers (they were close matches for
valid commands). This shows us that while the
attackers were most likely following predetermined
command sequences, at least several of the attacks
were being carried out manually.

4.2. Attacker profile

From the state definitions above, we constructed a
profile to illustrate the typical sequence of actions

following a compromise. We initially separated
attacks on user and root accounts, hoping to see a
clear difference between the two. However, we found
no significant difference and decided to focus only on
the combined dataset in order to make the trends
clearer.

Figure 1 contains the state machine representing
the typical post-compromise behavior of attackers. The
number labeling each edge indicates how many times
that state transition occurred, with the five most
common shown in bold. The font size of each state
indicates how many total command lines fit the state
definition, with a larger font indicating a state with
more attacker activity.

To make the diagram clearer and more concise,
only the top 25 edges are shown, representing a total
of 1,138 state transitions (84.11 percent of the total).
The remaining 31 edges, representing 215 transitions
(15.89 percent), are hidden. As a result, the in-degree
and out-degree of each node will not be equal in most
cases (though this is true for the full state machine).

The most popular course of action was to check the
software configuration, change the password, check
the hardware and/or software configuration (again),
download a file, install the downloaded program, and
then run it. The 'change configuration' action was less
popular, though it occurred fairly equally at three
different stages: 1) before and after checking the
software configuration, 2) before running a rogue
program, and 3) after installing software. Overall, the
two most popular attacker activities were checking the
software configuration and installing rogue software.

Due to our easy passwords and the fairly small set
of commands the attackers ran, we can assume that
most of them have a low skill level. Spitzner [4] also
supports this contention: “Linux systems tend to be the
focus of [attackers] ... who use commonly known
vulnerabilities and automated attack tools.” Under this
assumption, the observed behavior makes sense. The
attackers are operating on memorized or automated
sequences of commands, trying to build back doors
into as many computers as possible. A possible
explanation for this behavior is their intent to create
botnets, which they can sell for profit. Given this
motive, their main objectives are: 1) to check the
machine's configuration to see if it is suitable for their
purposes and 2) to install their rogue software, giving
them full back door control of the machine or allowing
them to identify other vulnerable hosts, for example.
Most attackers appeared to be particularly concerned
about detection while installing their software,
repeatedly using the w command during their shell
sessions. This command alone accounts for 8.11
percent of all commands issued, with only the no-op
commands cd and ls having larger percentages.

The Alata study mentioned previously [3] also
performed an analysis of post-compromise attacker

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

behavior, and its findings are again very similar to
ours. They also observed password change as the most
common first step and reported that most attackers
went on to download files (i.e. malicious programs)
and then tried to install and run executables.

Another study similar to our experiment is [5].
Here, the authors performed an in-depth forensic
analysis of post-compromise attacker behavior. They
developed some general categories of attacker
behavior: discovery, installation, and usage. However,
these categories were much broader than ours and not
precisely defined. The main difference between their
project and our experiment is that we focused on a
larger set of less sophisticated attacks. We gathered
aggregate statistics about these attacks rather than
investigating individual incidents in detail.

5. Related work

There have been many honeypot-related projects
and papers in recent years, often appearing in the
Honeynet Project's [6] “Know Your Enemy” series of
papers [7].

The study that is most similar to our experiment is
[3], where the authors collected both attempted login

data and post-compromise attacker behavior. Their
results closely match ours, although their study was
based on a longer time period (131 days) and also
included data from geographically distributed low-
interaction honeypots. This suggests that even though
our results are based on a smaller sample and shorter
time period, they seem representative of overall trends.

Seifert [8] conducted a smaller-scale experiment
collecting attempted usernames and passwords, with
results roughly equal to ours. He recorded one
successful login, providing some information about
post-compromise attacker behavior.

Another study closely related to our experiment is
[5], as mentioned in Section 4.2. The authors
performed a detailed analysis of post-compromise
attacker behavior, focusing on the individual actions
of more sophisticated attackers rather than gathering
summary data for a larger number of attackers.

Dacier and colleagues [9] conducted an extensive
statistical analysis on malicious traffic using
honeypots. Over a four-month period, they studied
attacks from 6,285 IP addresses, averaging over two
new sources of attack per hour. In another study, they
observed 28,722 new attack sources over sixteen
months [10]. In a third study, they analyzed data

Figure 1: State diagram of post-compromise attacker behavior

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

collected over one year and conservatively estimated
that 753 tools are available to launch attacks [11].
Finally, they found 924 attack sources per day in
Germany during a multi-country study [12].

In 2003, Levine and colleagues [13] showed that a
honeynet could be implemented on large-scale
enterprise networks in order to identify malicious
activity and pinpoint compromised machines.

6. Conclusions

In the course of our experiment, we built a profile
of typical attacker behavior following a remote
compromise and collected valuable data on commonly
attempted usernames and passwords. Our findings are
useful to the security community in two main ways.

First, these findings allow security and system
administrators to adjust their password policies to
ensure that no user accounts are open to trivial brute-
force dictionary attacks. At minimum, all of the
usernames and passwords presented in Section 3
should be avoided. Direct remote root logins should be
disabled, only allowing select users to 'su' into the root
account once logged on.

Second, these results can assist system adminis-
trators in choosing security tools to combat the most
common attacker actions. Our results show that
downloading/installing/running rogue software and
checking the software configuration are the most
common actions. Therefore, security tools and policies
should focus on those areas. One possibility would be
to restrict execution privileges only to registered
programs, though this would require significant
modification at the operating system level.

Most of our results will not come as a surprise to
security professionals, but they are useful because they
represent solid statistical evidence to support widely
held beliefs about post-compromise attacker behavior.
As expected, downloading/installing/running rogue
software, checking the configuration, and changing
the password were the most common actions following
a successful attack. The two main unexpected results
were 1) the very low percentage of successful attacks
even with purposely weak passwords (0.31 percent)
and 2) the low percentage of successful attacks which
resulted in commands being run (22.09 percent). A
possibility for future work in this area is to focus on
finding explanations for these trends.

Acknowledgments
This research was inspired by a semester project

conducted by Pierre-Yves Dion.
We thank the Institute for Systems Research and

the Office for Information Technology for their
support in implementing a testbed for collecting attack
data at the University of Maryland. In particular, we

thank Jeff McKinney, Carlos Luceno and Peggy Jayant
for supporting us in this project with help, material,
and space. We thank Gerry Sneeringer and his team
for permitting the deployment of the testbed. We also
thank Melvin Fields and Dylan Hazelwood for
providing some of the computers used in the testbed.

We thank Rachel Bernstein for extensive help with
editing, leading to significant improvements in clarity.

This research has been supported in part by NSF
CAREER Award 0237493.

References
[1] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, “An
Experimental Evaluation to Determine if Port Scans are
Precursors to an Attack”, in Proc. International Conference
on Dependable Systems and Networks (DSN05),
Yokohama, Japan, June 28-July 1, 2005, pp. 602-611.

[2] http://www.honeynet.org/tools/sebek/

[3] E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, and
M. Herrb, “Lessons learned from the deployment of a high-
interaction honeypot”, in Proc. European Dependable
Computing Conference (EDCC06), Coimbra, Portugal,
October 18-20, 2006, pp. 39-44.

[4] L. Spitzner, “The honeynet project: Trapping the
hackers”, IEEE Security and Privacy, 1(2), 2003, pp. 15-23.

[5] F. Raynal, Y. Berthier, P. Biondi, and D. Kaminsky,
“Honeypot forensics”, in Proc. IEEE Information Assurance
Workshop, United States Military Academy, West Point,
NY, June 10-11, 2004, pp. 22-29.

[6] http://www.honeynet.org/

[7] http://www.honeynet.org/papers/kye.html

[8] C. Seifert, “Malicious SSH Login Attempts”, August
2006, http://www.securityfocus.com/infocus/1876.

[9] M. Dacier, F. Pouget, and H. Debar, “Honeypots:
Practical Means to Validate Malicious Fault Assumptions,”
in Proc. 10th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC04), Papeete, Tahiti, French
Polynesia, March 3-5, 2004, pp. 383-388.

[10] F. Pouget, M. Dacier, and V. H. Pham, “Understanding
Threats: A Prerequisite to Enhance Survivability of
Computing Systems,” in Proc. International Infrastructure
Survivability Workshop 2004 (IISW04), Lisbon, Portugal,
December 5-8, 2004.

[11] F. Pouget and M. Dacier, “Honeypot-based Forensics,”
in Proc. AusCERT Information Technology Security Conf.
2004 (AusCERT04), Ashmore, Australia, May 23-27, 2004.

[12] F. Pouget, M. Dacier, and V. H. Pham, “Leurre.com:
On the Advantages of Deploying a Large Scale Distributed
Honeypot Platform,” in Proc. E-Crime and Computer
Conference 2005 (ECCE05), Monaco, March 29-30, 2005.

[13] J. Levine, R. LaBella, H. Owen, D. Contis, and B.
Culver, “The Use of Honeynets to Detect Exploited Systems
Across Large Enterprise Networks,” in Proc. IEEE
Workshop on Information Assurance, United States Military
Academy, West Point, NY, June 18-20, 2003.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

