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A B S T R A C T

Currently, design and optimisation of biotechnological bioprocesses is performed either through exhaustive ex-
perimentation and/or with the use of empirical, unstructured growth kinetics models. Whereas, elaborate sys-
tems biology approaches have been recently explored, mixed-substrate utilisation is predominantly ignored
despite its significance in enhancing bioprocess performance. Herein, bioprocess optimisation for an indus-
trially-relevant bioremediation process involving a mixture of highly toxic substrates, m-xylene and toluene,
was achieved through application of a novel experimental-modelling gene regulatory network – growth kinetic
(GRN-GK) hybrid framework. The GRN model described the TOL and ortho-cleavage pathways in Pseudomonas
putida mt-2 and captured the transcriptional kinetics expression patterns of the promoters. The GRN model in-
formed the formulation of the growth kinetics model replacing the empirical and unstructured Monod kinetics.
The GRN-GK framework's predictive capability and potential as a systematic optimal bioprocess design tool, was
demonstrated by effectively predicting bioprocess performance, which was in agreement with experimental val-
ues, when compared to four commonly used models that deviated significantly from the experimental values.
Significantly, a fed-batch biodegradation process was designed and optimised through the model-based control
of TOL Pr promoter expression resulting in 61% and 60% enhanced pollutant removal and biomass formation, re-
spectively, compared to the batch process. This provides strong evidence of model-based bioprocess optimisation
at the gene level, rendering the GRN-GK framework as a novel and applicable approach to optimal bioprocess de-
sign. Finally, model analysis using global sensitivity analysis (GSA) suggests an alternative, systematic approach
for model-driven strain modification for synthetic biology and metabolic engineering applications.

1. Introduction

Until recently control of gene expression would be considered an am-
bitious yet futile endeavour. Nowadays the machinery of DNA, RNA and
proteins are not only better understood, but also engineered to make
useful products. The ever increasing importance of biotechnological ap-
plications and bioprocesses ranging from bioremediation to high-added
value biologics production and cellular therapeutics bio-manufacturing
necessitates control and optimisation of the process of interest.

Pseudomonas putida is a metabolically versatile soil bacterium capa-
ble of thriving in diverse habitats that degrades a series of industrially
significant pollutants (Timmis, 2002). The mt-2 strain encodes the TOL

plasmid incorporating the molecular toolbox required for the degra-
dation of aromatic compounds that belong to the toxic BTEX (ben-
zene-toluene-ethylbenzene-xylene isomers) group of pollutants. Toluene
and m-xylene are considered as the most common effectors of the TOL
plasmid (pWW0) (Timmis, 2002), the degradation of which results in
essential for biomass growth Krebs cycle intermediates. The TOL regu-
latory network of P. putida mt-2 has been previously described in detail
(Ramos et al., 1997). In addition the TOL plasmid is considered a par-
adigm of global and targeted gene regulation due to the interplay be-
tween regulatory proteins, a group of sigma factors and DNA-bending
proteins that control transcription from the system's catabolic operons
constituting a complex regulatory gene network in its natural context
(Aranda-Olmedo et al., 2005).
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Bioprocess optimisation requires monitoring and prediction of
bio-performance, use of mixed-substrates (Klecka and Maier, 1988; Lee
and Huang, 2000), accounting for the dynamic nature of the biosys-
tem, tailoring the feeding strategy of fed-batch/continuous processes,
and scale-up through optimisation of bioreactor design. Traditionally,
bioprocess optimisation is accomplished through laborious experimen-
tation with the aid of mathematical expressions of microbial growth
(Monod, 1949) which have been mainly developed for single substrate
systems and employ unstructured Monod kinetics (Fig. 1). Monod-type
models (Yano and Koga, 1969) are empirical and assume existence of
a single metabolic reaction that follows Michaelis-Menten kinetics and
which is responsible for substrate uptake. Models developed based on
Monod expressions often lack fit and have narrow applicability, while
ignoring transcriptional regulation (Kovarova-Kovara and Egli, 1998).

More recently systems biology approaches integrate “omics”
methodologies and computational tools (Bartocci and Lió, 2016) to
reconstruct genome-scale metabolic networks and attempt to predict
growth kinetics (O’Brien et al., 2013), which in turn could potentially
lead to system parts, control, optimisation and development of cell en-
gineering and robustness strategies (Gerstl et al., 2016; Ranganathan
et al., 2010). Genome-scale reconstruction is a time-consuming, exper-
imentally-intensive, and mathematically challenging process that ulti-
mately lacks predictability. Successful activation of metabolic networks
relies on transcriptional regulation initiating the appropriate metabolic
cascades. Significant progress on global gene regulatory network mod-
elling has been achieved but these models are prohibitively complex,
and reliable application of the approach remains an underdetermined
computational problem (Banf and Rhee, 2017). Although genome-scale
metabolic models may integrate transcriptomics data (Akesson et al.,
2004), the data sets involved are insufficient and extracted using
high-throughput technologies, such as microarrays and RNA-sequenc-
ing, which are often noisy, high dimensional and sparse, dramatically
affecting quantitative analysis (Sławek and Arodz, 2013). Moreover, the
typical steady-state assumption entailed ignores dynamic reality, often
limiting the applicability of such models for optimal bioprocess design
(Fig. 1). Whereas, recently the importance of kinetic genome-scale mod-
els has been recognised as a research toolkit in biosciences (Almquist
et al., 2014; Chakrabarti et al., 2013; Jamshidi and Palsson,

2008), their applicability on scaling-up bioprocesses has not yet been
rendered feasible.

Herein, we present the dynamic modelling of the GRN of the main
metabolic pathway of P. putida mt-2 activated upon exposure to
mixed-substrates. The GRN model utilised consistent, systematic
time-series data of specific promoter(s) mRNA expression obtained
through qPCR (Fig. 1). Subsequently, we efficiently connected the GRN
model to growth kinetics (GK) resulting in prediction of mixed-sub-
strates and growth patterns. The GRN-GK framework was utilised to pre-
dict optimal bioprocess design. It is versatile and can be rendered applic-
able to other host biological systems, including industrial microorgan-
isms for which control and optimisation is essential to overcome various
technological barriers encountered in full-scale applications. Finally, ap-
plication of the framework on engineered GRNs may lead to predictable
and robust bioprocess operation serving as an advanced synthetic biol-
ogy tool with direct industrial applications in accelerating bio-manufac-
turing and bioprocess scaling-up.

2. Materials and methods

2.1. Microbial cultures

Subcultures of P. putida mt-2 were pre-grown for 23 h at 30 °C in
M9 minimal salts medium (Sambrook et al., 1989) supplemented with
10 mM of succinate. In each experiment, two independent cultures were
prepared by diluting the overnight culture in minimal medium to an ini-
tial optical density of 0.1 (0.4 L working volume) measured at 600 nm
(UV-2101PC, Shimadzu, UK) for every condition tested. The minimal
medium was supplemented with toluene and m-xylene at the concen-
tration level required in each experiment. Cultures were performed us-
ing conical Erlenmeyer flasks of 2.35 L total volume, which were con-
tinuously stirred at 1000 rpm via a Heidolph MR3001K (Heidolph, UK)
magnetic stirrer. The flasks were filled with medium to one-sixth of
their volume (0.4 L), to ensure that sufficient oxygen was available, and
closed gas-tight with Teflon coated lids to avoid losses of the volatile
organic compound. Temperature was maintained constant at 30 °C. All
chemicals used were obtained from Sigma-Aldrich Company Ltd and
were of ANALAR grade.

Fig. 1. (A) Bioprocess development from cellular to industrial-scale level driven by mathematical modelling employing: (B) Monod kinetics, (C) systems biology approaches, (D) the
GRN-GK framework; : to be accomplished.
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2.2. Substrate and biomass analyses

Gas Chromatograph (GC) analysis was employed for determination
of m-xylene and toluene concentration in the gaseous and aqueous sam-
ples using an Agilent 6850 Series II Gas Chromatograph with a FID de-
tector and a ‘J&W Scientific’ (Agilent Technologies UK Limited, UK) col-
umn with HP-1 stationary phase (30 m × 0.32 mm × 0.25 mm). Gaseous
samples of 25 μL were injected into the GC and the temperature pro-
gram run at 70 °C for 3 min and then increased to 80 °C at a rate of
5 °C min−1. m-xylene and toluene concentration of the culture was de-
termined experimentally as previously described (Koutinas et al., 2010).
Biomass concentration was determined by absorbance at 600 nm on
a UV-1800 scanning spectrophotometer (Shimadzu, UK) interpolating
from a previously established dry weight calibration curve. The coeffi-
cient of variation for 3 samples was 3.4% at a concentration level of
1233 mgbiomass L−1.

2.3. Preparation and Isolation of Total RNA, cDNA Synthesis and qPCR

Culture samples of 3–4.5 ml (depending on cell density) were placed
in cryogenic vials (Sigma-Aldrich Company Ltd, UK) and the cell pel-
let was harvested by centrifugation at 15000 rpm for 10 min at 4 °C.
The supernatant was discarded and the vials were immersed in liquid
nitrogen for 1 min and stored at − 80 °C until use. Real-Time Quanti-
tative Polymerase Chain Reaction (qPCR) was performed to determine
the expression of xylR (Pr promoter), xylS (Ps promoter), xylU (Pu pro-
moter), xylX (Pm promoter), benR (PbenR promoter), benA (PbenA pro-
moter) and rpoN (housekeeping) genes during the course of the exper-
iments. The method for isolation of total RNA and cDNA synthesis has
been previously described (Koutinas et al., 2010). The qPCR method as
well as the calculation of relative mRNA expression based on threshold
cycle values was conducted as previously (Koutinas et al., 2011, 2010).
The primer pairs of all genes used and the qPCR protocol for PbenR and
PbenA was presented previously (Tsipa et al., 2016). qPCR analysis of
promoters’ kinetics was conducted in triplicate measurements for each
time point.

2.4. Statistical analysis of experimental results

Two independent cultures were performed at each condition tested,
while promoters’ expression was measured in triplicates for each time
point. For each promoter, the average expression and standard deviation
was calculated. The error bars derived by dividing the standard devia-
tion with the square root of 6 because the promoter expression at each
time point was coming from two independent (biological) replicates and
three qPCR internal (technical) replicates measurements. Increasing the
number of independent replicates would increase the robustness of the
results.

One way ANOVA (SigmaStat version 3.5, Systat Software UK Ltd,
UK) was conducted to clarify significant differences in the mRNA ex-
pression profiles of all promoters. P-values were calculated through
comparison of the mean mRNA expression between two given time
points. The level of significance was accepted at P-values lower than
0.05.

2.5. Model analysis

Model simulation and parameter estimation were implemented in
the process modelling environment gPROMS® (Process Systems Enter-
prise, 2014) and were computed on an Intel Core i7–2600 PC with 8 GB
RAM running Windows 7.

2.5.1. Global sensitivity analysis
Global Sensitivity Analysis (GSA) identifies the most significant

model parameters and initialises parameter estimation. The outputs of
the model were: Pr, Ps, Pu, Pm, PbenR, PbenA, m-xylene, toluene and
biomass. It was examined how the model's outputs are affected by the
uncertainty forced through the parameter values and identified parame-
ters crucial to the model's output (Kiparissides et al., 2009). Nominal
values from the Koutinas et al. (2011) model initialised GSA. Sobol's
method (Sobol, 2001) was used for GSA, while the method was imple-
mented in Matlab and connected to gPROMS via goMATLAB. Parameter
significance was calculated using sensitivity indices (SI) ranging from
0 (low significance) to 1 (high significance). It was assumed that SIs
higher than 0.1 were significant (Sidoli et al., 2005). The sensitivity in-
dexes were calculated on GUI-HDMR (Ziehn and Tomlin, 2009) Mat-
lab package. The random samples used were 5000 and nominal values
ranged ± 10% due to the intrinsic complexity of the model resulting in
increased number of parameters. The time intervals examined were se-
lected either prior or after 120 min and 420 min of culture time respec-
tively, where the promoters’ expression demonstrated more dynamic
profiles. Specifically these time points were 70, 100, 130, 180, 350 and
430 min.

2.5.2. Parameter estimation in gPROMS
Parameter estimation in gPROMS is based on the Maximum Like-

lihood formulation, which provides simultaneous estimation of para-
meters in both the physical model of the process as well as the vari-
ance model of the measuring instruments. gPROMS determines values
for the uncertain physical and variance model parameters, θ, that max-
imise the probability that the mathematical model will predict the mea-
sured values obtained from the experiments. Assuming valid indepen-
dent, normally distributed measurement errors, eijk, with zero means
and standard deviations, σijk, this maximum likelihood goal can be cap-
tured through the following objective function:

where N stands for total number of measurements taken during all the
experiments, θ is the set of model parameters to be estimated, NE is the
number of experiments performed, NVi is the number of variables mea-
sured in the ith experiment and NMij is the number of measurements of
the jth variable in the ith experiment. The variance of the kth measure-
ment of variable j in experiment i is denoted as σijk

2, while zijk is the kth

measured value of variable j in experiment i and zijk is the kth (model-)
predicted value of variable j in experiment i. The above formulation can
be reduced to a recursive least squares parameter estimation if no vari-
ance model for the sensor is selected. Following GSA, the parameters
were estimated in gPROMS. The constant variance of experimental re-
sults at each time point was set to 0.1.

2.5.3. Statistical analysis between model(s) simulation and experimental
results

The R2 correlation of determination calculated the goodness of fit
for experimentally determined: promoter expression, toluene and m-xy-
lene utilisation, as well as biomass formation patterns. R2 represents
the percent of the predicted data approximated by the experimental re-
sults. In the GRN model, we evaluated R2 vector with respect to all six
promoters (Pr, Ps, Pu, Pm, PbenR and PbenA) at each time point be-
cause the promoters constitute inter-dependent elements of a complex
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transcriptional regulatory network. Furthermore, in the GRN-GK model,
R2 vector was evaluated with respect to mixed-substrates utilisation and
biomass formation patterns because the predicted performance of the
bioprocess was the main aim of microbial growth kinetics modelling.

2.6. Dynamic optimisation

The developed GRN-GK model was subject to model analysis em-
ploying GSA followed by parameter estimation at fed-batch mode
(supplementary material, Table 9, 10, 11). Consequently, the optimisa-
tion of the formulated problem (supplementary material, Table 12) was
performed providing the optimal substrate feeding strategy.

3. Results

3.1. Development of the dynamic hybrid GRN-growth kinetic model

A map of the paradigm targeted GRN depicting the transcriptional
regulation of aromatic pollutants in P. putida mt-2 is shown in Fig. 2.
The interacting molecular components of the GRN were implemented
as a scheme of logic gates, based on the principle of biochemical in-
verters (Weiss, 2001) representing a genetic circuit in direct analogy to
electronic systems. Specified combinations of the logic gates facilitate
simpler descriptions of inherent regulatory loops. Hill functions were
employed as input functions to the genes, enabling dynamic character-
isation of bioprocess components (Alon, 2006). Despite the very com-
plex structure of the specific genetic circuit, from a mere engineering
point of view, dynamic modelling was possible facilitating in depth un-
derstanding of the network's logic (Koutinas et al., 2010). Induction of
the P. putida mt-2 with toluene activates the TOL and chromosomal or-
tho-cleavage regulatory networks resulting in a cross-talk between the
two pathways (Cowles et al., 2000). To capture dual substrate utilisa-
tion, we extended and upgraded previous work on m-xylene and the
TOL genetic circuit (Koutinas et al., 2011) to incorporate qualitative in

formation of the chromosomal pathway (supplementary material, Table
1).

An independent experiment was performed to assess the GRN mod-
el's structure. P. putida mt-2 cells were exposed to 0.7 mM of m-xylene
and 0.7 mM of toluene. Biomass, m-xylene and toluene concentrations
were measured until both substrates were depleted (Fig. 3A, B). The
results revealed sequential substrate utilisation whereby m-xylene was
catabolised first followed by simultaneous biodegradation of both sub-
strates, which occurred when m-xylene concentration dropped below
0.2 mM (Fig. 3B). Similar utilisation of the toluene/m-xylene mixture
has been observed (Duetz et al., 1998), although the threshold for simul-
taneous degradation was found to be 0.5 mM of m-xylene. The transcrip-
tional kinetics of the promoters expressed was systematically evaluated
through time course qPCR analysis. Specifically, the kinetic profiles of
Pr (Fig. 3C), Ps (Fig. 3D), Pu (Fig. 3E) and Pm (Fig. 3F) promoters of
TOL as well as the key promoters PbenR (Fig. 3G) and PbenA (Fig. 3H)
of the ortho-cleavage regulatory network were assessed. Expression of Pr
confirmed a down-regulatory response upon exposure to the aromatic
compounds (Marques et al., 1998), while decrease in toluene concentra-
tion below a threshold level of 0.3 mM resulted in increased expression
of Pr (Fig. 3C) (Tsipa et al., 2016).

A switch point in the response of the promoters was identified,
which occurred at the 0.2 mM m-xylene threshold concentration that
caused the onset of toluene degradation indicating the direct relation-
ship between substrate concentration and the GRN responsible for sub-
strate degradation. The GRN model structure was corrected to capture
the observed switches and provide flexibility (supplementary material,
Table 2). Ps, Pu and Pm (Fig. 3D-F) promoters displayed bi-modal ex-
pression due to the presence of the double substrate (Tsipa et al., 2017).
During the activation/deactivation phase, expression of the promoters
increased to a maximum level followed by gradual decrease (P < 0.05).
This is potentially due to variation in the relevant expression level of
the master regulator, XylR, activating directly Pu and Ps, which en-
code for XylS triggering expression from Pm. The up-regulatory re-
sponse of these promoters was similar to previous studies (Marques
et al., 1994; Tsipa et al., 2016) proposing a general up-regulatory re-
sponse of TOL in the presence of aromatics as single- or mixed-sub-
strates, potentially due to activation of a relevant transcription factor

Fig. 2. The main gene regulatory network responsible for m-xylene and toluene transformation to tricarboxylic acid (TCA) cycle intermediates which are necessary for biomass growth.
Upon induction with substrate(s) the inactive form of XylR (XylRi) oligomerises forming the active molecule XylRa which activates Pu and Ps promoters. Both XylR forms down-regulate
their own promoter, Pr. Upon Pu activation the upper–operon, encoding for the enzymes that catalyse m-xylene and toluene catabolism into the intermediates m-methyl-benzoate and
benzoate respectively, is triggered. Ps activation and the presence of these two intermediates lead to overexpression of the xylS gene dimerising the inactive XylS protein to its active
protein form. XylS dimerisation results in Pm activation that controls the meta-operon encoding for the enzymes further catalysing the conversion of m-methyl-benzoate and benzoate to
TCA cycle metabolites. Benzoate is the environmental signal activating the ortho-cleavage regulatory network. PbenR controls transcription from the benR gene, which encodes for the
BenR protein. Benzoate activates BenR which up-regulates expression from Pm in TOL and PbenA in the ortho-cleavage network. PbenA controls the ben-operon, which encodes for the
enzymes responsible for further benzoate transformation into TCA cycle intermediates. Consequently, (A) the enzymes encoded in the upper-operon transform m-xylene and/or toluene into
m-methyl-benzoate and benzoate, respectively. m-methyl-benzoate and benzoate are converted into TCA cycle metabolites through meta- and ortho- enzymes activity. The gene regulatory
network with the overimposed regulation is represented as a (B) genetic circuit. : input; : output; : AND; : OR; : NOT; → : potential up-regulatory mechanism.
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Fig. 3. Prediction of the GRN-GK model regarding biomass formulation, substrates utilisation and transcriptional kinetics of the promoters. Shown are the model simulations of parameter
estimation ( ) and experimental points for A) biomass ( ), B) m-xylene ( ) and toluene ( ), C) Pr ( ), D) Ps ( ), E) Pu ( ), F) Pm ( ), G) PbenR ( ), H) PbenA ( ) in
induction with 0.7 mM of m-xylene and 0.7 mM of toluene. The results for transcriptional kinetics are obtained as an average from six individual measurements at each point and the error
bars are calculated for standard error. The results for substrates degradation and biomass formation are obtained as an average from two individual measurements at each point and the
error bars are calculated for standard deviation.

and subsequent de-activation. PbenR (Fig. 3G) and PbenA (Fig. 3H)
were not expressed prior to the switch point (0.2 mM m-xylene). Pu
controls transcription from the upper-operon leading to m-methyl-ben-
zoate formation during m-xylene consumption, which does not consti-
tute a stimulus for the ortho-cleavage pathway (Perez-Pantoja et al.,
2015). However, below the threshold point, toluene catabolism was
enabled resulting in benzoate formation through the catalytic activ-
ity of upper-operon enzymes. Since benzoate is known to trigger the
ortho-cleavage regulatory network (Perez-Pantoja et al., 2015) and to
strongly activate PbenR (Tsipa et al., 2016), an up-regulatory response
of PbenR was expected. Nonetheless, PbenR was not expressed, pos-
sibly due to the presence of the multiple carbon sources (m-xylene
and toluene) activating carbon catabolite repression (CCR) mechanisms
(Tsipa et al., 2017). BenR protein serves as the transcription factor for
PbenA and it has been suggested to be responsible for up-regulation of
PbenR expression (Tsipa et al., 2016, 2017). Thus, the lack of PbenR

and PbenA expression in the presence of m-xylene and toluene may be
relevant to BenR repression, which is common in P. putida strains upon
activation of CCR mechanisms (Moreno and Rojo, 2008). Following de-
pletion of the preferred substrate, the CCR mechanisms are switched off
and the cells catabolise the remaining compounds (Moreno and Rojo,
2008). The expression pattern of PbenA (Fig. 3H), following the switch
point, was similar to those of Ps (Fig. 3D), Pu (Fig. 3E) and Pm (Fig.
3F) in the TOL indicating co-stimulation of the specific promoter by the
XylS transcription factor of TOL (Tsipa et al., 2016).

Microbial growth kinetics was linked to GRN by focusing on the
enzymatic steps of the GRN model that catalyse substrate(s) degrada-
tion and biomass growth. Upon exposure to the substrate(s), although
all catabolic enzymes were produced, three enzymes were considered
as rate-limiting controlling the cascades responsible for initialisation of
substrate transformation (XylU) and Krebs cycle intermediates forma-
tion, resulting in biomass growth (XylM, BenB). Production of the rate-
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limiting enzymes was modelled based on the GRN's genetic circuit
(supplementary material, Table 1), while the microbial growth kinetics
equations were constructed based on the concentration of the rate-limit-
ing enzymes of the GRN studied. Instigated by the threshold of 0.2 mM
of m-xylene, mathematical representation of m-xylene and toluene
biodegradation was reformulated (supplementary material, Table 3).
The parameters and variables of the hybrid GRN-GK model are pre-
sented as supplementary material (supplementary material, Tables 4, 5).

3.2. Model analysis

Model uncertainty due to parameters was allocated by model analy-
sis employing GSA which contributes to decrease output uncertainty by
accurate parameter estimation (Kiparissides et al., 2011). The results
of the GSA demonstrated that 22 out of 41 parameters were important
(supplementary material, Fig. 1), which incorprate biological relevance.
Promoter expression is determined by the translation rate and degra-
dation parameters of the relevant regulatory transcription factors. The
significant parameter for m-xylene and toluene outputs is the associ-
ated maximum pollutant metabolic quotient based on XylU, which is
the rate-limiting enzyme responsible for initialisation of substrate trans-
formation controlled by Pu, confirming the link between substrate ef-
fectors and expression of promoters. The significant parameters for bio-
mass output were the maximal expression of PbenR, PbenA as well as
the translation rate and degradation of the rate-limiting enzyme (BenB),
which is responsible for biomass formation. This GSA result under-
lines the necessity of extending the previous TOL genetic circuit model
(Koutinas et al., 2011) to incorporate the key chromosomal ortho-cleav-
age pathway to accurately capture growth kinetics during the biodegra-
dation of aromatics by P. putida mt-2. Parameter estimation was per-
formed using the independent experiment of induction with 0.7 mM of
m-xylene and 0.7 mM of toluene to obtain accurate values for the sig-
nificant parameters (supplementary material, Tables 4, 5). As a result,
the model accurately predicted biomass, toluene and m-xylene concen-
tration profiles (Fig. 3A, B) as well as promoter expression profiles for
Pr (Fig. 3C), Ps (Fig. 3D), Pu (Fig. 3E), Pm (Fig. 3F), PbenR (Fig. 3G) and
PbenA (Fig. 3H).

3.3. Prediction of mixed-substrates growth kinetics

The accuracy of the validated GRN-GK model was assessed. The
function and dynamics of promoters expression (Fig. 3C-H) were suffi-
ciently described (average R2 vector = 0.71; supplementary material,
Table 6); the discrepancy can be explained due to the intrinsic complex-
ity of gene regulation as well as certain model limitations. In particu-
lar, regulation of PbenR by BenR has been incorporated into the model
based on limited experimental observations, which have not been fully
validated yet (Tsipa et al., 2016). Furthermore, although the model ac-
counted for PbenA expression based on BenR synthesis, it did not con-
sider co-regulation by the TOL-encoded active form of XylS (Tsipa et al.,
2016). Despite model limitations at gene regulation level, bioprocess ki-
netics (Fig. 3A, B) were captured more accurately (R2 m-xylene = 0.96,
R2 toluene = 0.97 and R2 biomass = 0.98; supplementary material,
Table 7).

The GRN-GK model's performance was compared with common
models of mixed-substrate microbial growth kinetics: (1) competitive
enzyme interactions, (2) double Monod, (3) Mankad and Bungay model,
and (4) the SKIP model (Yoon et al., 1977) (supplementary material,
Table 8). The GRN-GK model displayed notable accuracy in predicting
bioprocess performance (Fig. 4A-C; R2 vector = 0.97) when compared
to the empirical models used (R2 vector of the competitive enzyme in-
teractions model = 0.9, R2 vector of the double Monod model = 0.76,
R2 vector of the Mankad and Bungay model = 0.69, and R2 vector of
the SKIP model = 0.76), as shown in Fig. 4D. Furthermore, whereas the
traditional models failed to capture the biomass yield (Table 1), a cru-
cial factor for bioprocesses design, the GRN-GK model prediction (2.4 g/
g) was extremely close to the experimentally observed yield (2.3 g/g).

Mathematical models are limited by their narrow applicability. The
performance of the GRN-GK model under a wide range of bioprocess
conditions was evaluated: A) low pollutant concentration (0.4 mM of
m-xylene and 0.4 mM of toluene), which may not be able to support
biomass growth (Fig. 4E-G). The GRN-GK model's fidelity outperformed
(R2 vector = 0.91, Fig. 4H) the other four models (R2 vector ranged

Fig. 4. Mixed-substrate and biomass growth experimental patterns ( ) predicted by: 1) the GRN-GK framework ( ), 2) double Monod ( ), 3) Mankad and Bungay
( ), 4) competitive enzyme interactions ( ) and 5) SKIP model ( ). Shown are: biodegradation of (A) 0.7 mM of m-xylene, (B) 0.7 mM of toluene, (C)
relevant biomass growth, (D) R2 vector representing bioprocess performance; biodegradation of (E) 0.4 mM of m-xylene, (F) 0.4 mM of toluene, (G) relevant biomass growth, (H) R2 vector
representing bioprocess performance; biodegradation of (I) 0.6 mM of m-xylene, (G) 0.4 mM of toluene, (K) relevant biomass growth, (L) R2 vector representing bioprocess performance.
The results for substrates degradation and biomass formation are obtained as an average from two individual measurements at each point and the error bars are calculated for standard
deviation.
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Table 1
Comparison of biomass yields obtained in experimental and simulated trials using differ-
ent models at the initial conditions tested. Biomass yields (g of biomass per g of pollutant
mixture) obtained at: A) 0.4 mM m-xylene-0.4 mM toluene, B) 0.6 mM m-xylene-0.4 mM
toluene, and C) 0.7 mM m-xylene-0.7 mM toluene.

A B C

g biomass / g pollutant mixture

experimental 2.5 2.5 2.3
GRN-GK 2.8 2.8 2.4
double Monod 0.3 0.5 0.5
Mankad & Bungay 0.6 0.7 0.7
competitive interactions 1.6 1.7 1.7
SKIP 1.2 1.2 1.2

from 0.71 to 0.88; Fig. 4H), including biomass yield prediction (Table
1). B) Induction of the P. putida mt-2 with different concentrations for
the substrates (0.6 mM of m-xylene and 0.4 mM of toluene) to explore
model behaviour under simulated practical conditions of varying sub-
strate concentrations (Fig. 4I-K). The fidelity of the four models was
lower (R2 vector ranged from 0.76 to 0.89; Fig. 4L) compared to the
GRN-GK model (R2 vector = 0.96, Fig. 4L), including biomass yield
(Table 1).

3.4. Model-based gene control

The GRN-GK model was employed to design a fed-batch feeding
strategy and was based on the single-substrate (toluene) model of TOL
and ortho-cleavage promoters in P. putida mt-2 (Tsipa et al., 2016)
(supplementary material, Table 9, 10, 11). In the presence of aromatic
effectors, the constitutively expressed Pr is the first promoter expressed
in the TOL metabolic pathway triggering subsequent metabolic activ-
ities that render its function the core element in the TOL as well as
in every interlinked metabolic pathway relevant to the biodegradation
of pollutants. P. putida mt-2 induction with a TOL effector results in
down-regulatory response of Pr which is also involved in a negative
feedback loop leading to optimised function of the TOL plasmid provid-
ing inbuilt stability (Becskei and Serrano, 2000). An optimal fed-batch
feeding strategy profile was designed in silico (Fig. 5A) at an initial
toluene concentration of 0.4 mM formulating a dynamic optimisation
problem of controlling Pr expression to be maintained at a level close
to 0.5 (Fig. 5B). Close to this level, Pr is down-regulated participating
in the negative feedback loop, whereas above this level Pr expression
increases (Tsipa et al., 2016). As previously observed, this increase oc-
curs below 0.3 mM toluene concentration (Tsipa et al., 2016). There-
fore, when Pr level exceeds 0.5, toluene concentration is below 0.3 mM.
Consequently, re-activation of the Pr down-regulatory response is re-
quired by additional toluene that maximises toluene biodegradation rate
leading to Pr expression decrease close to 0.5 (supplementary material,
Table 12). The model-based gene control enabled prediction of substrate
consumption, the transcriptional kinetics of promoters in the TOL and
ortho-cleavage pathway as well as biomass growth at fed-batch mode.
The TOL and ortho-cleavage promoter expression were adequately mod-
elled (TOL-Pr R2 = 0.82, ortho-cleavage-PbenA R2 = 0.77; Fig. 5C,
D) considering the intrinsic GRN complexity and certain model limita-
tions, as explained above. Furthermore, accurate prediction of toluene
biodegradation (R2 =0.82) and biomass formation (R2 =0.93) kinetic
patterns (Fig. 5E, F), was observed. Accordingly, the gene-based feeding
strategy of the pollutant in the fed-batch experiment resulted in signifi-
cant increase in toluene biodegradation (23%; Fig. 5G) and biomass for-
mation (58%; Fig. 5H), as compared to the batch culture conducted at
the same initial toluene concentration.

4. Discussion

Herein, a novel hybrid framework has been developed that connects
targeted GRN modelling to growth kinetics for bioprocess design and
optimisation. The framework: (a) demonstrated quantitative control of
a targeted complex regulatory network, (b) achieved systematic rep-
resentation of substrate(s) metabolism, (c) enabled accurate prediction
of bioprocess performance and biomass yield, (d) efficiently predicted
mixed-substrate growth kinetics under several conditions, and (e) was
compared against other commonly applied models demonstrating supe-
rior performance. The model-based control achieved at the gene level
serves as a proof-of-concept to evaluate the application of engineer-
ing approaches for direct re-programming of cellular activity that either
avoids strain manipulation or used for enhancing robustness on syn-
thetic genetic circuit design (Nielsen et al., 2016) similarly to control
engineering strategies (He et al., 2016).

Bioprocess optimisation requires accurate monitoring and estimation
of critical bioprocess parameters, such as specific growth rate, substrate
utilisation, and biomass and/or product formation rates. Currently, the
70-year old Monod (and Monod-type) kinetic models are being univer-
sally used in biotechnology and systems biology despite being empirical
and treat the bioprocess as a ‘black box’ while omitting gene regula-
tory mechanisms. Consequently, they lack of predictability over a broad
range of conditions. Furthermore, mixed substrate model development
has stagnated; Monod-type models assume competition or parallel sub-
strate utilisation (Yoon et al., 1977) based on unspecified substrate in-
hibition while ignoring that specific gene regulatory networks control
substrate transformation and biomass/product formation. Over the last
25 years, modelling approaches such as cybernetic (Ramakrishna et al.,
1997) and structured models (Nikolajsen et al., 1991), which are mainly
based on enzyme level control and built under steady state assumptions,
have not yielded significant progress. In contrast, the GRN-GK frame-
work demonstrated that double-substrate degradation proceeds through
the same metabolic pathway/gene regulatory network whereby the pre-
ferred substrate (m-xylene), which is more methylated, induced the first
regulatory response of the TOL and ortho-cleavage promoters followed
by the second regulatory response due to the other non-preferred sub-
strate (toluene), which is less methylated. This bi-modal promoter be-
haviour specified the threshold switch point of substrate utilisation. As
a result, the platform accurately predicted mixed-substrate bioprocess
performance and biomass yield under a wide range of operating condi-
tions. Consequently, the GRN-GK framework can be applied to elucidate
fundamental problems associated with the prediction of real process
phenomena such as substrate(s) availability and fluctuating pollutant
loads (Koutinas et al., 2007a, b) enhancing bioremediation or produc-
tion of bio-based commodities.

Feeding strategy optimisation of fed-batch bioprocesses is essential
in bioremediation and industrial-scale life sciences and biotechnology
applications. Fed-batch feeding strategy scheduling is currently opti-
mised either experimentally or through model-based optimisation; the
latter conducted by performing stochastic or deterministic dynamic op-
timisation (Banga et al., 2005) on empirical growth kinetics models
through maximisation of a performance index, commonly being biomass
productivity (De la Hoz Siegler et al., 2012; Kiparissides et al., 2015;
Mozumdera et al., 2014) or an economic index based on the opera-
tion profile and final concentrations (Banga et al., 2005). The GRN-GK
framework proposes an exciting new approach to the feeding strat-
egy optimisation of fed-batch systems by performing deterministic dy-
namic optimisation through control of the performance of a key pro-
moter, which regulates substrate degradation and biomass formation.
Consequently, optimal feeding strategy was achieved by maintaining
constant gene activity avoiding unnecessary substrate depletion in con
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Fig. 5. Model-based gene control of the fed-batch toluene biodegradation process resulted in: (A) The optimum feeding schedule, and (B) the expression profile of Pr; followed by the
model simulations ( ) and experimental points ( ) for: (C) Pr expression, (D) PbenA expression, (E) toluene biodegradation, (F) biomass growth at initial toluene concentration
of 0.4 mM. Comparison of fed-batch and batch process at initial toluene concentration of 0.4 mM resulted in increase in the amount of (G) biodegraded toluene, (H) biomass produced
upon fed-batch operation; : initial, : toluene degraded following the model-based feeding strategy, : biomass produced. The results for transcriptional kinetics are obtained
as an average from three individual measurements at each point and the error bars are calculated for standard deviation.

trast to the traditional fed-batch optimisation strategies that feed sub-
strate just prior to the substrate being depleted.

The interconnected fields of systems and synthetic biology have pro-
vided new avenues in biotechnology and biomedicine (Campbell et
al., 2017; Ellis et al., 2009) and aim to become applicable in biotech-
nology and industrial bioprocessing (Campbell et al., 2017); however,
their applicability in industrial bioprocesses is currently limited. Sys-
tems biology approaches generate large information datasets regarding
the phenotypic and physiological characteristics of the microorganisms.
However, global modelling of gene regulatory networks is challenging
due to: (1) the excessive detail of genome annotation, which is con-
stantly updated and refined to incorporate new genome-based knowl-
edge (Campbell et al., 2017); (2) the large number of possible solutions
explaining equally the problem of which only one can be biologically

relevant (De Smet and Marchal, 2010); (3) incorrect prediction of reg-
ulatory interactions between a transcription factor(s) and target genes
(Marbach et al., 2012); (4) simplifying model assumptions profoundly
affecting accuracy (Marbach et al., 2010); and assuming steady-state
conditions (Park et al., 2011). In contrast, the GRN-GK framework fol-
lows a targeted approach to capturing biological behaviour of complex
gene regulatory networks (Koutinas et al., 2010) by focusing on the
main metabolic pathway of P. putida mt-2 activated upon exposure to
mixed-substrates. By utilising consistent, systematic time-series data of
specific promoter(s) mRNA expression and subsequently efficiently con-
necting it to growth kinetics, an accurate, dynamic, experimentally-val-
idated, computationally tractable, and predictive model was developed
capable of capturing mixed-substrates and growth patterns of indus-
trially-relevant bioprocesses. Whereas genome-scale models are un

8



UN
CO

RR
EC

TE
D

PR
OO

F

A. Tsipa et al. Metabolic Engineering xxx (2018) xxx-xxx

able to represent time-scale changes, such as promoter activation that
occurs within minutes, and environmental changes, such as substrates
fluctuation, the GRN-GK framework is capable of identifying thresh-
old switch point(s) of mixed-substrate utilisation thus representing a
systematic optimal bioprocess design tool in industrial bioprocessing.
Therefore, this framework may constitute a practical complementary
approach to systems and synthetic biology.

GSA of the GRN-GK model revealed significant parameters associ-
ated with promoter expression, substrate utilisation (confirming the link
between substrate effectors and expression of promoters), and biomass
formation. The importance of this mathematical analysis is that the
identified significant parameters incorprate biological relevance. Specif-
ically, based on GSA results if the binding site of XylRa on Pu or that
of BenRa on Pm was modified the biodegradation of aromatics would
be significantly affected. Therefore, GSA analysis could prove to be a
valuable tool for model-driven strain modifications apart from systems
genetic or metabolic engineering model-based approaches employed for
strain optimisation (Lee and Kim, 2015; Ranganathan et al., 2010).
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