Michail-Antisthenis TsompanasUniversity of the West of England, Bristol | UWE Bristol · Department of Computer Science and Creative Technologies
Michail-Antisthenis Tsompanas
B.Sc., M.Sc., PhD
About
108
Publications
15,887
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
807
Citations
Introduction
Additional affiliations
November 2021 - present
April 2016 - January 2019
January 2019 - October 2021
Publications
Publications (108)
An accurate modelling of bio-electrochemical processes that govern Microbial Fuel Cells (MFCs) and mapping their behaviour according to several parameters will enhance the development of MFC technology and enable their successful implementation in well defined applications. The geometry of the electrodes is among key parameters determining efficien...
Fluidic devices use fluid as a medium for information transfer and computation. Boolean values are represented by the presence of fluid jets in the input and output channels. Velocity of a fluid is one of the parameters determining Reynolds number of the flow. Reynolds number is a parameter that characterizes the behaviour of the flow: laminar, tra...
We show how to control the movement of a wheeled robot using on-board liquid marbles made of Belousov-Zhabotinsky solution droplets coated with polyethylene powder. Two stainless steel, iridium coated electrodes were inserted in a marble and the electrical potential recorded was used to control the robot's motor. We stimulated the marble with a las...
Microbial fuel cells (MFCs) are gaining interest due to higher power production achieved by deep analysis of their characteristics and their effect on the overall efficiency. To date, investigations on MFC efficiency, can only be based on laboratory experiments or mathematical modelling. However, there is only a handful of rule-based mathematical m...
Conventional optimization methodologies may be hindered when the automated search is stuck into local optima because of a deceptive objective function landscape. Consequently, open ended search methodologies, such as novelty search, have been proposed to tackle this issue. Overlooking the objective, while putting pressure into discovering novel sol...
In medical-related tasks, soft robots can perform better than conventional robots because of their compliant building materials and the movements they are able perform. However, designing soft robot controllers is not an easy task, due to the non-linear properties of their materials. Since human expertise to design such controllers is yet not suffi...
This paper introduces a novel approach to enhance the performance of software fuzzing mutator tools, by leveraging cryptographic structures known as substitution-permutation networks and Feistel networks. By integrating these structures into the existing HonggFuzz fuzzing library, we propose HonggFuzz+ and demonstrate its effectiveness over other l...
The colloid cellular automata do not imitate the physical structure of colloids but are governed by logical functions derived from them. We analyze the space-time complexity of Boolean circuits derived from the electrical responses of colloids-specifically ZnO (zinc oxide, an inorganic compound also known as calamine or zinc white, which naturally...
Soft robots can exhibit better performance in specific tasks compared to conventional robots, particularly in healthcare-related tasks. However, the field of soft robotics is still young, and designing them often involves mimicking natural organisms or relying heavily on human experts' creativity. A formal automated design process is required. We p...
Soft robots diverge from traditional rigid robotics, offering unique advantages in adaptability, safety, and human-robot interaction. In some cases, soft robots can be powered by biohybrid actuators and the design process of these systems is far from straightforward. We analyse here two algorithms that may assist the design of these systems, namely...
The colloid cellular automata do not imitate the physical structure of colloids but are governed by logical functions derived from the colloids. We analyse the space-time complexity of Boolean circuits derived from the electrical responses of colloids: ZnO (zinc oxide, an inorganic compound also known as calamine or zinc white, which naturally occu...
Colloid-based computing devices offer remarkable fault tolerance and adaptability to varying environmental conditions due to their amorphous structure. An intriguing observation is that a colloidal suspension of ZnO nanoparticles in dimethylsulfoxide (DMSO) exhibits reconfiguration when exposed to electrical stimulation and produces spikes of elect...
Modern software and networks underpin our digital society, yet the rapid growth of vulnerabilities that are uncovered within these threaten our cyber security posture. Addressing these issues at scale requires automated proactive approaches that can identify and mitigate these vulnerabilities in a suitable time frame. Fuzzing techniques have emerge...
Biohybrid machines (BHMs) are an amalgam of actuators composed of living cells with synthetic materials. They are engineered in order to improve autonomy, adaptability and energy efficiency beyond what conventional robots can offer. However, designing these machines is no trivial task for humans, provided the field’s short history and, thus, the li...
One of the training methods of Artificial Neural Networks is Neuroevolution (NE) or the application of Evolutionary Optimization on the architecture and weights of networks to fit the target behaviour. In order to provide competitive results, three key concepts of the NE methods require more attention, i.e., the crossover operator, the niching capa...
We study a cellular automaton (CA) model of information dynamics on a single hypha of a fungal mycelium. Such a filament is divided in compartments (here also called cells) by septa. These septa are invaginations of the cell wall and their pores allow for flow of cytoplasm between compartments and hyphae. The septal pores of the fungal phylum of th...
Mycelium bound composites are promising materials for a diverse range of applications including wearables and building elements. Their functionality surpasses some of the capabilities of traditionally passive materials, such as synthetic fibres, reconstituted cellulose fibres and natural fibres. Thereby, creating novel propositions including augmen...
Mycelium networks are promising substrates for designing unconventional computing devices providing rich topologies and geometries where signals propagate and interact. Fulfilling our long-term objectives of prototyping electrical analog computers from living mycelium networks, including networks hybridised with nanoparticles, we explore the possib...
Colloid-based computing devices offer remarkable fault tolerance and adaptability to varying environmental conditions due to their amorphous structure. An intriguing observation is that a colloidal suspension of ZnO nanoparticles in DMSO exhibits reconfiguration when exposed to electrical stimulation and produces spikes of electrical potential in r...
Mycelium bound composites are promising materials for a diverse range of applications including wearables and building elements. Their functionality surpasses some of the capabilities of traditionally passive materials, such as synthetic fibres, reconstituted cellulose fibres and natural fibres. Thereby, creating novel propositions including augmen...
Hyphae within the mycelia of the ascomycetous fungi are compartmentalised by septa. Each septum has a pore that allows for inter-compartmental and inter-hyphal streaming of cytosol and even organelles. The compartments, however, have special organelles, Woronin bodies, that can plug the pores. When the pores are blocked, no flow of cytoplasm takes...
Memristors close the loop for I-V characteristics of the traditional, passive, semi-conductor devices. A memristor is a physical realisation of the material implication and thus is a universal logical element. Memristors are getting particular interest in the field of bioelectronics. Electrical properties of living substrates are not binary and the...
The rapidly developing research field of organic analogue sensors aims to replace traditional semiconductors with naturally occurring materials. Photosensors, or photodetectors, change their electrical properties in response to the light levels they are exposed to. Organic photosensors can be functionalised to respond to specific wavelengths, from...
Mycelium bound composites are promising materials for a diverse range of applications including wearables and building elements. Their functionality surpasses some of the capabilities of traditionally passive materials, such as synthetic fibres, reconstituted cellulose fibres and natural fibres. Thereby, creating novel propositions including augmen...
Synchronization transition in neuromorphic networks has attracted much attention recently as a fundamental property of biological neural networks, which relies on network connectivity along with different synaptic features. In this work, an area-optimized FPGA implementation of an Asynchronous Cellular Automata Neuron model that exhibits discrete-s...
Cellular Automata (CAs) have been proved to be a robust tool for mimicking a plethora of biological, physical and chemical systems. CAs can be used as an alternative to partial differential equations, in order to illustrate the evolution in time of the aforementioned systems. However, CAs are preferred due to their formulation simplicity and their...
This paper uses a recent explanation for the fundamental haploid-diploid lifecycle of eukaryotic organisms to present a new evolutionary algorithm that differs from all previous known work using diploid representations. A form of the Baldwin effect has been identified as inherent to the evolutionary mechanisms of eukaryotes and a simplified version...
Nowadays, the huge power consumption and the inability of the conventional circuits to deal with real-time classification tasks have necessitated the devising of new electronic devices with inherent neuromorphic functionalities. Resistive switching memories arise as an ideal candidate due to their low footprint and small leakage current dissipation...
Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of these systems and...
Fungi are iniquitous creatures capable for adaptation in hush environments. Recently there is a growing that intelligence of the fungi comparable with that of slime mould and plans and that fungi sense and process information in a highly efficient way. As a first ever attempt to formalise informaiton processing in fungi we developed two cellular au...
Self-selective memory devices are considered promising candidates for suppressing the undesired sneak path currents that appear within crossbar memory structures and compromise their performance during the write and read operations. Along these lines, in this work we present forming free SiO
$_{\mathbf{2}}$
-based resistive devices with inherent s...
The living mycelium networks are capable of efficient sensorial fusion over very large areas and distributed decision making. The information processing in the mycelium networks is implemented via propagation of electrical and chemical signals en pair with morphological changes in the mycelium structure. These information processing mechanisms are...
Fungal electronics is a family of living electronic devices made of mycelium bound composites or pure mycelium. Fungal electronic devices are capable of changing their impedance and generating spikes of electrical potential in response to external control parameters. Fungal electronics can be embedded into fungal materials and wearables or used as...
Fungal electronics is a family of living electronic devices made of mycelium bound composites or pure mycelium. Fungal electronic devices are capable of changing their impedance and generating spikes of electrical potential in response to external control parameters. Fungal electronics can be embedded into fungal materials and wearables or used as...
There is a rich history of evolutionary algorithms tackling optimization problems where the most appropriate size of solutions, namely the genome length, is unclear
a priori
. Here, we investigated the applicability of this methodology on the problem of designing a nanoparticle (NP) based drug delivery system targeting cancer tumors. Utilizing a...
Memristors close the loop for I-V characteristics of the traditional, passive, semi-conductor devices. A memristor is a physical realisation of the material implication and thus is a universal logical element. Memristors are getting particular interest in the field of bioelectronics. Electrical properties of living substrates are not binary and the...
We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simulate nanoparticle transport through these scenarios in order...
Mycelium networks are promising substrates for designing unconventional computing devices providing rich topologies and geometries where signals propagate and interact. Fulfilling our long-term objectives of prototyping electrical analog computers from living mycelium networks, including networks hybridised with nanoparticles, we explore the possib...
Mycelium networks are promising substrates for designing unconventional computing devices providing rich topologies and geometries where signals propagate and interact. Fulfilling our long-term objectives of prototyping electrical analog computers from living mycelium networks, including networks hybridised with nanoparticles, we explore the possib...
Working towards the development of an evolvable cancer treatment simulator, the investigation of including evolutionary optimization methods was considered. Namely, Differential Evolution (DE) is studied here, motivated by the high efficiency of variations of this technique in real-valued problems. A basic DE algorithm, namely “DE/rand/1” was used...
Cellular automata (CA) have been used to simulate a variety of different chemical, biological and physical phenomena. Their ability to emulate complex dynamics, emerging from simple local interactions of their elementary cells, made them a strong candidate for mimicking these phenomena, especially when accelerated computation through parallelizatio...
Computational functionality has been implemented successfully on chemical reactions in living systems. In the case of Belousov–Zhabotinsky (BZ) reaction, this was achieved by using collision-based techniques and by exploiting the light sensitivity of BZ. In order to unveil the computational capacity of the light sensitive BZ medium and the possibil...
Memristors have been utilized as an unconventional computational substrate and gained interest as a medium to implement neuromorphic computations. A mathematical model that also proved its potential is Learning Cellular Automata, that is an amalgam of Cellular Automata and Learning Automata. The realization of the common characteristics of memristi...
The development of biodegradable soft robotics requires an appropriate eco-friendly source of energy. The use of Microbial Fuel Cells (MFCs) is suggested as they can be designed completely from soft materials with little or no negative effects to the environment. Nonetheless, their responsiveness and functionality is not strictly defined as in othe...
In silico evolutionary optimization of cancer treatment based on multiple nano-particle (NP) assisted drug delivery systems was investigated in this study. The use of multiple types of NPs is expected to increase the robustness of the treatment, due to imposing higher complexity on the solution tackling a problem of high complexity, namely the phys...
We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. EVONANO includes a simulator to grow tumours, extract representative scenarios, and then simulate nanoparticle transport through these scenarios to predict nanoparticle distribution. The nanoparticle designs are optimised using machine lea...
We study a cellular automaton (CA) model of information dynamics on a single hypha of a fungal mycelium. Such a filament is divided in compartments (here also called cells) by septa. These septa are invaginations of the cell wall and their pores allow for the flow of cytoplasm between compartments and hyphae. The septal pores of the fungal phylum o...
Background and objective:
Cancer tumors constitute a complicated environment for conventional anti-cancer treatments to confront, so solutions with higher complexity and, thus, robustness to diverse conditions are required. Alternations in the tumor composition have been documented, as a result of a conventional treatment, making an ensemble of ce...
Evolutionary algorithms have long been used for optimization problems where the appropriate size of solutions is unclear a priori. The applicability of this methodology is here investigated on the problem of designing a nano-particle (NP) based drug delivery system targeting cancer tumours. Utilizing a treatment comprising of multiple types of NPs...
Nanoparticles have the potential to modulate both the pharmacokinetic and pharmacodynamic profiles of drugs, thereby enhancing their therapeutic effect. The versatility of nanoparticles allows for a wide range of customization possibilities. However, it also leads to a rich design space which is difficult to investigate and optimize. An additional...
Hyphae within the mycelia of the ascomycetous fungi are compartmentalised by septa. Each septum has a pore that allows for inter-compartmental and inter-hyphal streaming of cytosol and even organelles. The compartments, however, have special organelles, Woronin bodies, that can plug the pores. When the pores are blocked, no flow of cytoplasm takes...
Conventional optimization methodologies may be hindered when the automated search is stuck into local optima because of a deceptive objective function landscape. Consequently, open ended search methodologies, such as novelty search, have been proposed to tackle this issue. Overlooking the objective, while putting pressure into discovering novel sol...
Working towards the development of an evolvable cancer treatment simulator, the investigation of Differential Evolution was considered, motivated by the high efficiency of variations of this technique in real-valued problems. A basic DE algorithm, namely "DE/rand/1" was used to optimize the simulated design of a targeted drug delivery system for tu...
Hyphae within the mycelia of the ascomycetous fungi are compartmentalised by septa. Each septum has a pore that allows for inter-compartmental and inter-hyphal streaming of cytosol and even organelles. The compartments, however, have special organelles, Woronin bodies, that can plug the pores. When the pores are blocked, no flow of cytoplasm takes...
We study a cellular automaton (CA) model of information dynamics on a single hypha of a fungal mycelium. Such a filament is divided in compartments (here also called cells) by septa. These septa are invaginations of the cell wall and their pores allow for flow of cytoplasm between compartments and hyphae. The septal pores of the fungal phylum of th...
During the last years, a well studied biological substrate, namely Physarum polycephalum, has been proven efficient on finding appropriate and efficient solutions in hard to solve complex mathematical problems. The plasmodium of P. polycephalum is a single-cell that serves as a prosperous bio-computational example. Consequently, it has been success...
A liquid marble is a liquid droplet coated by a hydrophobic powder. The liquid marble does not wet adjacent surfaces and therefore can be manipulated as a dry soft body. A Belousov‐Zhabotinsky (BZ) reaction is an oscillatory chemical reaction exhibiting waves of oxidation. We demonstrate how to make a photo‐sensor from BZ medium liquid marbles. We...
This paper uses a recent explanation for the fundamental haploid-diploid lifecycle of eukaryotic organisms to present a new memetic algorithm that differs from all previous known work using diploid representations. A form of the Baldwin effect has been identified as inherent to the evolutionary mechanisms of eukaryotes and a simplified version is p...
A liquid marble is a liquid droplet coated by a hydrophobic power. The liquid marble does not wet adjacent surfaces and therefore can be manipulated as a dry soft body. A Belousov-Zhabotinsky (BZ) reaction is an oscillatory chemical reaction exhibiting waves of oxidation. We demonstrate how to make a photo-sensor from BZ medium liquid marbles. We i...
An innovative design of microbial fuel cell (MFC) system was developed to be integrated into selectively programmable bioreactor wall, which aims at transforming our habitats from inert spaces into programmable sites. The MFC bioreactor consists of a single anode chamber, two neighboring algal cathode chambers on both sides and an additional chambe...
We show how to control the movement of a wheeled robot using on-board liquid marbles made of Belousov-Zhabotinsky solution droplets coated with polyethylene powder. Two stainless steel, iridium coated electrodes were inserted in a marble and the electrical potential recorded was used to control the robot's motor. We stimulated the marble with a las...