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A combination of electron spin interactions in a magnetic field allows us to control the resonance
frequencies of a high-Q Whispering Gallery (WG) cavity mode doublet, resulting in precise mea-
surements of an avoided crossing between the two modes comprising the doublet. We show that the
resonant photons effectively behave as spin– 1

2
particles and that the physical origins of the doublet

phenomenon arise from an energy splitting between the states of photon spin angular momentum.
The exclusive role of the photon spin in splitting the mode frequency is emphasized, and we demon-
strate that the gyrotropic and anisotropic properties of the crystalline media supporting the WG
mode lead to strong coupling between the bosonic and spin degrees of freedom of cavity photons.
Despite the demonstrated similarities with Jaynes-Cummings type systems, the mode doublet sys-
tem exhibits a significant difference due to its linearity. Unlike traditional experiments dealing with
interactions between fields and matter, here the crystalline medium plays a role of macroscopic
symmetry breaking, assisting in the strong coupling between these photon degrees of freedom. Such
a regime is demonstrated experimentally with a method to effectively control the photon spin state.
Our experiments demonstrate for the first time, controllable time-reversal symmetry breaking in a
high-Q cavity.

I. TWO APPROACHES TO FIELD-MATTER
INTERACTION

The interaction between light and matter is one of the
most important topics in modern science and technol-
ogy, and particularly in the field of quantum mechanics.
The applications of such research are many and varied,
including spectroscopy, quantum information and com-
puting, ultra-stable clocks, lasers, and fundamental in-
vestigations of quantum phenomena. Light-matter in-
teractions are investigated at almost all frequencies of
the electromagnetic spectrum, spanning many orders of
magnitude from ultraviolet to radio frequencies. Gener-
ally speaking, in all of these experiments the bosonic de-
gree of freedom of photons is always coupled to quantum
states of matter in the form of atoms, ions, molecules or
plasmas. Photons are chosen due to well established ex-
perimental techniques and technologies that make exper-
imentation very easy, whilst the aforementioned states
of matter are chosen as they are known for exhibiting
quantum mechanical phenomena due to their proximity
to the Plank scale. This approach has been enormously
successful over the past few decades in demonstrating the
quantum mechanical properties of nature.

One of the most common types of experiment in-
volves coupling electromagnetic radiation to a spin− 1

2
particle such as an electron. Since the famous Stern-
Gerlach experiment of 1922, experimental setups involv-
ing spin− 1

2 particles have gained significant attention in
physics. In particular, systems well described by the
Jaynes-Cummings model1 representing the coupling be-
tween a two-level system (TLS) with a quantised mode
of an electromagnetic field, form the basis of a large area
of research known as Cavity or Circuit Quantum Elec-
trodynamics (QED)2. Quantum strong coupling regimes

in particular3,4 have attracted special interest, having
demonstrated entangled states necessary for different
types of quantum computing schemes. In the microwave
frequency range, strong coupling has been demonstrated
for a range of systems including ensembles of param-
agnetic impurity ions in dielectric crystals5, nitrogen-
vacancy (NV) centres in diamond6,7, cold polar molecules
coupled to superconducting cavities8, NV centres coupled
to qubits9, and ensembles of ultra-cold atoms on a chip10.
In all of these experiments, a special role is attributed to
matter which reveals its microscopic quantum properties,
particularly where spin systems play the role of two-level
states. The number of such spin systems suitable for
QED experiments in the microwave range is very lim-
ited, and thus the search for other potential systems for
QED purposes is important.

Another approach to field-matter interaction places
only secondary importance on the matter. Here, its role
is limited to macroscopic phenomena leading to the sym-
metry breaking. As a result of such an interaction with
matter, a cavity photon bosonic degree of freedom is cou-
pled to the spin angular momentum of the same photon.
Despite the fact that a photon is a spin-1 particle, the
photon spin degree of freedom is effectively seen as a
TLS due to the zero rest mass of a photon. In such a
way, the situation of a cavity mode coupling to a TLS
is achieved even though no atom-like structure of mat-
ter is needed. However, this system cannot be classified
as a Jaynes-Cummings interaction because it lacks any
nonlinear properties naturally exhibited by such systems.

In this work, we present the first experimental and the-
oretical demonstration of a field-matter interaction ex-
periment performed using the spin angular momentum
of a photon11,12. Both the bosonic degree of freedom
and the TLS originate in the nature of a cavity photon.
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The only role of matter in the experiment is to break
reflection symmetry in such a way that both of these de-
grees of freedom of a single particle are coupled. For this
purpose, a Whispering Gallery mode cavity (WGC) of
cylindrical geometry13,14 is used, rather than the more
conventional linear Fabry-Pérot cavity. We demonstrate
interaction in the strong coupling regime between a mi-
crowave photon spin (effectively acting as a TLS) and
bosonic degrees of freedom. Although the quantum po-
larization state of photons has been studied previously
in the optical domain12,15–17, no cavity experiment has
been conducted and analysed yet. Unlike other works on
WGC18–20, we emphasize importance of the polarization
states of the photons, with an efficient method to control
them.This gives an insight into the physical origins of the
effects observed in many similar systems due to the spin
degree of freedom of a photon.

II. EXPERIMENTALLY CONTROLLING A
PHOTON SPIN STATE

In order to observe the energy splitting due to pho-
ton spin angular momentum, a few conditions must be
satisfied. First, the cavity needs to be represented in
a circular geometry. This requirement is imposed be-
cause a conventional linear cavity has an explicitly broken
symmetry in reflection due to two boundary conditions.
To excite a circular cavity requires only one electrode,
and thus only one boundary condition is explicitly set.
This implies independence of the clockwise and counter-
clockwise propagating waves in an ideal cavity. Secondly,
the energy splitting must be greater than the resonance
linewidth. In the opposite case, the relations between
the mode doublets cannot be observed. Finally, an ef-
fective means is required to tune the cavity properties
in order to change the coupling between cavity photons
with different spin states. All these requirements can be
achieved in ultra-low loss dielectric cylindrical cavities
such as cryogenically cooled sapphire whispering gallery
mode resonators13. In such a system, the magnetic prop-
erties of the medium can be effectively manipulated by an
external DC magnetic field Bext through intrinsic crystal
impurity ions21. Indeed, impurity ions such as Fe3+ in
sapphire crystal at low temperatures22 change the per-
meability tensor µ̂(Bext) making it gyrotropic21,23. The
anisotropy of the permittivity tensor is due to the crystal
structure of the sapphire resonator, as well as the pres-
ence of back-scatterers in the lattice18,19,24.

To experimentally demonstrate coupling between the
spin and bosonic degrees of freedom of a photon, a sap-
phire WGC was cooled to approximately 110 mK. The
sapphire is a cylinder of 50 mm diameter × 30mm height,
characterised using a transmission method with two loop
antennae in a setup described in detail elsewhere21.
The probing signal is attenuated to reach the level of
−60 dBm power incident upon the crystal, and the cav-
ity output signal is amplified by a low noise cryogenic
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FIG. 1. (Color online) Density plot showing the depen-
dence of the WG mode doublet transmission coefficient on
the external applied magnetic field. The detuning frequency
is calculated from fc = 11.77355 GHz. The electron spin res-
onance transitions labelled on the plot are the Cr3+ dipole
transition (A), Fe3+ dipole transition (B), and Fe3+ quadru-
ple transition (C). The bottom section of the plot shows the
Q-factor of the WG mode for corresponding states of photon
spin angular momentum.

amplifier. The cavity and the amplifier are both isolated
at 110 mK. To modify the effective permeability sensor
due to intrinsic impurity ions included at a parts-per-
billion level within the crystal, an external DC magnetic
field is applied to the sapphire cavity along its cylindri-
cal z-axis. For the best magnetic field sensitivity µ̂(Bext),
the WG mode to be excited is chosen in the vicinity of
an Electron Spin Resonance (ESR) of the residual Fe3+

ions in the crystal (νESR = 12.04 GHz). Fig. 1 shows
the response of the cavity near the Fe3+ and Cr3+ spin
resonances, demonstrating the existence of two eigenso-
lutions. These eigensolutions correspond to the |R〉 and
|L〉 states of the photon spin angular momentum. The
boxed region is shown magnified in Fig. 2. This figure
demonstrates an avoided crossing between two states of
defined circular polarisation. The magnetic field effec-
tively “inverts” the medium, which manifests as a mir-
roring of these polarisations. The minimal splitting at
about −0.5 mT is attributed to the electrical properties
of the crystal, i.e. the permittivity tensor ε̂. This pa-
rameter is set by the crystalline medium and cannot be
varied, thus determining the minimal splitting.

Figure 3 demonstrates the mode splitting at
Bext = −0.5 mT. Both states exhibit equal losses,
demonstrating the strong coupling between the photon
and its spin angular momentum. This situation is simi-
lar to traditional cavity QED experiment where a photon
mode is strongly coupled to a specific atomic transition.
The strength of the coupling is 2g = 6.46 kHz, and the
line width is 2δ = 1206 Hz, with g/δ = 5.4. It should
be emphasized that ESR transitions of dilute impurities
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FIG. 2. (Color online) Density plot showing the dependence
of the WG mode transmission coefficient on the external ap-
plied magnetic field, and detuning from fc. The dashed lines
correspond to the eigen-energies of the bare states, and the
transmission extrema correspond to “dressed” states.
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FIG. 3. (Color online) Transmission through the WGC at
Bext = −0.5 mT as a function of detuning frequency from fc.
This demonstrates equal losses and the minimal splitting due
to the dielectric properties of the material, with 2g = 6.46 kHz
and g/δ = 5.4

of the crystal are not explicitly present in the region of
interest (shown in Fig. 3). Only the far outside ‘tail’ of
the characteristic Lorentzian lineshape of such an ESR is
utilized to manipulate the permeability tensor µ̂(Bext) of
the crystal . This is completely described by the macro-
scopic properties of the matter, and unlike in traditional
QED no microscopic properties of the matter are utilised
directly.

III. THEORETICAL DESCRIPTION

The WGC is represented by a uniform, homogeneous,
time-invariant, (gyro)-anisotropic medium. The action of
the electromagnetic field in such medium in the absence
of charges and currents is given by

S =
1

2

∫ ti

t0

∫ (
E†(r, t) · ε̂ ·E(r, t)−

H†(r, t) · µ̂ ·H(r, t)
)
d3r dt, (1)

where t and r represent time and the vector displacement
from the origin, E and H are the intensities of the elec-
tric and magnetic fields respectively, and ε̂ and µ̂ are the
permittivity and permeability tensors. The correspond-
ing Hamiltonian can be written:

H =
1

2

∫ (
E†(r, t) · ε̂ ·E(r, t)+

B†(r, t) · (µ̂−1)† ·B(r, t)
)
d3r, (2)

where B is the magnetic field, found using the relation-
ship µ̂−1µ̂ = Î (where Î is the identity tensor).

The cavity material properties are given by the two
tensors ε̂ and (µ̂−1)† in the cavity Hamiltonian (Eq. 2).
These tensors act on a photon spin to change its state,
demonstrating operator-like behaviour. The tensors can
be represented in the form:

ε̂ = ε
(
Î + η̂

)
, (3)

(µ̂−1)† = µ−1
(
Î + ν̂

)
, (4)

where ε and µ−1 are scalars representing the average di-
agonal value of the corresponding quantity. Since any
influence of the longitudinal direction is neglected, i.e.
no longitudinal component of the field exists, all matri-
ces in Eq. 3 can be represented as square. The last term
in both definitions is considered to be a small perturba-
tion of the isotropic components of the parameter due to
the anisotropy and gyrotropicity of the medium.

In a WGC, the electromagnetic wave propagates
around the inner surface of a cylindrical cavity. The res-
onance of such a cavity is set by the number of variations
of the field intensity about the azimuthal angle φ. WG
cavities exhibit two types of mode with well defined linear
polarisation: WGH modes, with dominant B field along
the cylindrical z-axis and E field in the radial direction,
and WGE modes with dominant E field oriented axi-
ally, and B field radially13. All modes are hybrid modes
to some extent, but the small longitudinal components
of the field are ignored here. This approximation is the
same as the case of an infinitely long cylindrical cavity, or
a mode with very large azimuthal wave number. The as-
sumption reduces the analysis of the system to two trans-
verse dimensions. The two types of waves correspond to
the two orthogonal directions of the wave-polarization in
the cylindrical geometry, stated further as α = x = r
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(the cavity radius) and α = y (the cylinder axis). Due
to the crystal anisotropy, these two polarizations are not
degenerate in frequency and thus the same wavenumber
k corresponds to two resonance frequencies ωWGH and
ωWGE with a particular linear wave-polarization. In this
study, we consider the case of a defined polarisation at a
single resonance frequency ωkα = ω0.

For the case of a WGC operating in a particular reso-
nant mode with wavenumber k along the azimuthal angle
φ, and a defined linear polarisation α, the field compo-
nents in Eq. 2 can be written as follows25:

E(r, t) ≈ Êα(φ, t)

= i

√
2π~
V ε

√
ωkα

[
σ̂αâe

ikφ − σ̂†αâ†e−ikφ
]
, (5)

B(r, t) ≈ B̂α(φ, t)

= ±i
√

2π~
V ε

k
√
ωkα

[
σ̂β âe

ikφ − σ̂†β â
†e−ikφ

]
(6)

where σ̂α and σ̂β are polarisation vector operators along
x or y, and a† & a are the creation and annihilation op-
erators for the cavity photon. Note that only one linearly
polarised wave exists at a given angular frequency.

Linearly polarised modes of the WGC can be described
using a basis vector of two helicities σ̂R and σ̂L, i.e. right
and left circular polarizations25:

σ̂x =
1√
2

(σ̂R + σ̂L) =
1√
2

(|R〉 〈L|+ |L〉 〈R|), or (7)

σ̂y =
1

i
√

2
(σ̂L − σ̂R) =

1

i
√

2
(|L〉 〈R| − |R〉 〈L|) (8)

These two circular polarizations represent the spin of a
photon. Using the language of spin- 12 particles, a photon
has spin 1 if it is in the |R〉 state (right-polarized) and -1 if
it is in the |L〉 state (left-polarized), which are the eigen-
states of the photon spin angular momentum. From this
definition, the operators σ̂R and σ̂L reverse the photon
helicity. This situation is similar to the σ̂+ = |e〉 〈g| and
σ̂− = |g〉 〈e| operators for a spin- 12 particle, where these
operators introduce or remove an excitation from the sys-
tem and change the atomic spin angular momentum by
±1. Other important properties of spin-12 particles, such

as the fact that σ̂α = (σ̂α)† and σ̂R = (σ̂L)† also hold
true in the case of photon spin. In the case of photon
spin, the spin operator acting in the z-direction can be
defined as σ̂z = |R〉 〈R| − |L〉 〈L|.

The action on the photon spin angular momentum of
the first terms of the sums in the material tensors (Eq.
3) is trivial, i.e. the associated identity matrices do not
change the spin state of the photon. The second terms
of the sums give a non-trivial change of the state that
can be represented generically in terms of the following
matrices:

η̂ =

(
〈R| η̂ |R〉 〈R| η̂ |L〉
〈L| η̂ |R〉 〈L| η̂ |L〉

)
(9)

ν̂ =

(
〈R| ν̂ |R〉 〈R| ν̂ |L〉
〈L| ν̂ |R〉 〈L| ν̂ |L〉

)
, (10)

where for a gyrotropic medium it is known that η̂ = η̂†

and ν̂ = ν̂†. In addition, η11 = −η22 and ν11 = −ν22
due to the choice of scalars ε and µ−1 as averages of the
corresponding properties between the two dimensions. If
the material is isotropic then the diagonal elements in
both matrices ν̂ and η̂ vanish. However, in the case of an
isotropic non-gyrotropic medium, both matrices become
zero. The matrix representations (Eq. 9 and 10) are
due to the law of spin angular momentum conservation
in a matter-field interaction where |R〉 and |L〉 are the
eigenstates of the field.

Such a representation of the medium, together with the
photon polarisation decomposition into a circular polar-
isation basis, (7) suggests the following:

Hα =
1

4
~ω0

[
σ̂ασ̂α + σ̂β σ̂β + σ̂αη̂σ̂α + σ̂β ν̂σ̂β

][
a†a+ aa†

]
= ~ω0

[
1 +

1

2
σ̂αη̂σ̂α +

1

2
σ̂β ν̂σ̂β

][
a†a+

1

2

]
(11)

where the σασ̂
†
α = 1 term is due to taking into ac-

count the isotropic component and dispersion relation-

ship ω2 = k2

µε . The Hamiltonian (Eq. 11) clearly shows

that the energy of a bosonic mode of a photon depends
on its spin state. Expanding the second term of the first
square bracket, the Hamiltonians of the WGE and WGH
cavity modes can be written as

Hx = ~ω0

(
1 +

1

2
σ̂xη̂σ̂x +

1

2
σ̂y ν̂σ̂y

)[
a†a+

1

2

]
= ~ω0

(
1 +

η22 + ν22
2

σ̂z + Im
η21 − ν21√

2
σ̂y

+ Re
η21 − ν21√

2
σ̂x

)[
a†a+

1

2

] (12)

and

Hy = ~ω0

(
1 +

1

2
σ̂y η̂σ̂y +

1

2
σ̂xν̂σ̂x

)[
a†a+

1

2

]
= ~ω0

(
1 +

η22 + ν22
2

σ̂z + Im
ν21 − η21√

2
σ̂y

+ Re
ν21 − η21√

2
σ̂x

)[
a†a+

1

2

]
.

(13)

For both the WGE and WGH polarizations of the
mode, the results (12) and (13) demonstrate a depen-
dence of the angular frequency of the bosonic mode
of the photon on its spin angular momentum state.
This dependence vanishes if the medium is isotropic
(η22+ν22 = 0) and not gyrotropic (Im{ν21−η21} = 0 and
Re{ν21−η21} = 0) leaving the usual form of a single har-
monic oscillator (HO). Otherwise, splitting of the mode
spectrum can be observed due to the states |R〉 and |L〉 of
the TLS emerging from the photon spin angular momen-
tum. So, strong coupling of the photon spin and bosonic
degrees of freedom is possible. Experimentally, this is
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observed as two realisations of the bosonic mode for two
states of the photon spin |R〉 or |L〉. Which photon spin
state is higher in energy (the exited state) is set by the
material parameters. Thus for an anisotropic, weakly
gyrotropic (| Im{ν21 − η21}| � |η22 + ν22|) medium, if
η22 + ν22 > 0 then the |R〉 state is the excited state, and
|L〉 is the ground state. This is the situation we assume
in the present work. The interesting feature of the inter-
action we suggest is that the ensemble of TLS cannot be
saturated unless the material parameters themselves are
non-linear, otherwise the number of TLS is always equal
to the number of bosons in the mode. This fact mani-
fests an important difference between the present system
and traditional cavity QED involving an ensemble of two
level systems. Whereas the latter usually exhibits nonlin-
ear effects when the ensemble is close to saturation, the
former is always linear and representable by a system of
two coupled HOs. However, the TLS ensemble case can
also be approximated by the set of HOs in the case of
weak excitation10.

CONCLUSION

In this work, we have demonstrated similarities be-
tween traditional QED26, which employs an interaction
between quantised electromagnetic modes with a two-
level state system (a spin- 12 particle), and the approach
we propose, which employs interaction between bosonic
behaviour of a photon in a cavity and the photon’s own
spin. Most of the similarities are due to the fact that,
although a photon is a spin-1 particle carrying spin ±1,
it has only two states of spin angular momentum because
of its zero rest mass. These two eigenstates imply that a
photon can, in principle, behave as a qubit like other
quantum TLSs based on eigenstates of a photon spin
angular momentum operator12,15: |Ψ〉 = α |R〉 + β |L〉,
where the complex coefficients are subject to α2+β2 = 1.
However, unlike typical Jaynes-Cummings systems, the

spin-phonon system analysed in this work is always lin-
ear and can thus always be described as a system of two
coupled HOs. This fact prevents its direct utilization as
a qubit without the introduction of an additional non-
linearity, for instance through the spins controlling the
interaction, a superconducting nonlinear junction, or a
nonlinear measurement scheme.

Nevertheless, the narrow linewidths of WG modes al-
low these cavities to achieve operation in the strong cou-
pling regime where a photon loses its identity in terms of
its own spin. In this case, unlike in other work20, mat-
ter is treated collectively by the tensor macroscopic de-
scription, which breaks the reflection symmetry leading
to energy splitting between photon spin states. This ap-
proach to matter-field interaction is significantly different
from the traditional one extensively implying microscopic
quantum phenomena in the material. It is also different
from the experiment utilising quantum regimes of cavity
photons27,28 since only bosonic degrees of freedom are
utilised in this approach. This work points out another
source of quantum states, one originating in the photon
spin degree of freedom. So, this work demonstrates pos-
sibility of achieving high Q-factor values in cavities with
broken symmetry, and finally, we demonstrate an effec-
tive method of controlling this phenomenon through nat-
ural dilute impurities with the application of an external
magnetic field.
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