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Evaluation of Oat Kernel Size Uniformity

Douglas C. Doehlert,* Michael S. McMullen, Jean-Luc Jannink, Surangan Panigrahi,
Huanzhong Gu, and Neil R. Riveland

ABSTRACT The outermost of these, called the primary kernel, is
the largest, and mass decreases with higher orders ofOat (Avena sativa L.) kernel size uniformity is important to the oat
kernels. The study of Doehlert et al. (2002) indicatedmilling industry because oat-processing mills separate oats according
that primary kernels of triple kernel spikelets were theto size to optimize dehulling efficiency. In this study, we compared

two different approaches for analyzing oat kernel size uniformity, largest and were significantly larger than primary ker-
namely the sequential sieving of oat samples with a gradient of slotted nels of double kernel spikelets. Secondary kernels from
sieve sizes and digital image analysis. Image analysis of size fractions triple kernel spikelets were not significantly different in
provided evidence that sieving separated oat kernels according to size from primary kernels of single kernel spikelets, and
their depth, whereas, digital image analysis measured kernel length these were larger than secondary kernels from double
and width, and derived a measure of the area of the oat kernel image. kernel spikelets. Tertiary kernels were the smallest ker-
Samples identified by sieving with superior uniformity were those

nel type studied. However the double kernel spikelet iswith greater proportions of large kernels. Histograms of oat kernel
by far the most abundant spikelet type in most oatsizes derived from digital image analysis suggested oat kernel sizes
genotypes (Takeda and Frey, 1980; Doehlert et al., 2002).were (within a genotype and location) composed of bimodal popula-

Early studies evaluating oat size uniformity empha-tions. A new statistical analysis allowed for the derivation of means
sized size differences between primary and secondaryand variances of each of these subpopulations, the numerical balance

between the two subpopulations, and the extent of bimodality. Oat kernels (Zade, 1915; Mader, 1927; Milatz, 1933). Later
samples with lower levels of bimodality tended to be of higher test studies evaluated mass distributions of oat fractions sep-
weight and groat percentage and thus, of better milling quality. Both arated by sequential sieving with slotted sieves (Sword,
methods appear satisfactory for evaluating oat kernel size uniformity, 1949; Hubner, 1951; Bruckner et al., 1956; Ganssmann,
although the sequential sieving method is likely to be more useful to 1964; Doehlert et al., 2002). More recently, digital image
breeding programs because of its relative technical ease and simplicity. analysis has been applied to size analysis of oat kernels

(Symons and Fulcher, 1988; Pietrzak and Fulcher, 1995;
Doehlert et al., 1999).

Oat kernel size uniformity is important to the oat It is important to define dimensions of oat kernel size
milling industry because the processing of oats for here because many different characteristics have been

human food generally involves size separation of kernels used to express size. The nomenclature used here is
into different streams before dehulling (Hachmann, 1947; consistent with that introduced by de Villers (1935). He
Peek and Poehlman, 1949; Deane and Commers, 1986; suggested kernel length to be the distance from the base
Salisbury and Wichser, 1971). This is because smaller to the tip of the lemma, the width being perpendicular
oat kernels require faster impact dehuller rotor speeds to the crease and lemma venation when the kernel is
to obtain the same dehulling efficiency as larger kernels lying with its crease down. The depth of the oat kernel
(Bruckner, 1953; Ganssmann and Vorwerck, 1995). De- was defined as being the distance from the dorsal to the
hulling oats with excessive mechanical stress results in ventral side of the oat kernel, taking the palea as the
excessive groat breakage, whereas insufficient mechani- dorsal and the lemma as the ventral side. Different types
cal stress results in lower dehulling efficiency (Doehlert of analyses measure different combinations of these di-
et al., 1999; Doehlert and McMullen, 2001). Thus, sizing mensions. Kernel mass may be the best evaluation of
oats allows for fine-adjustment of the optimal rotor kernel size, which is essentially a three-dimensional
speed for each size fraction to maximize dehulling effi- measurement (multiplied by kernel density). Digital im-
ciency and milling yield. age analysis, at best, measures only two dimensions.

Oat kernel size is, however, inherently nonuniform These are typically length and width, although kernel
because of the multifloret habit of the oat spikelet. Oat image area can also be derived from those data. Al-
spikelets may contain one, two, three, or more kernels. though it has not been characterized experimentally, it

seems reasonable to presume that sequential sieving
would separate kernels by their smallest dimension, be-D.C. Doehlert, USDA-ARS Wheat Quality Laboratory, Harris Hall,
ing their depth. Thousand-kernel weight is a measureM.S. McMullen, Department of Plant Sciences, S. Panigrahi and H.
of the mean kernel mass of an oat sample, but distribu-Gu, Department of Agricultural Engineering, North Dakota State

University, Fargo ND 58105; J.L Jannink, Agronomy Department, tions of individual kernel masses have not been mea-
Iowa State University, Ames IA 50011-1010; N.R. Riveland, Williston sured in oats to the knowledge of the authors. Such
Research Extension Center, 14120 Highway 2, Williston, ND 58801. measurements can be made in wheat with an automatedThe mention of firm names or trade products does not imply that they

single kernel analyzer (Martin et al., 1993). Such anare endorsed or recommended by the U.S. Department of Agriculture
over other firms or similar products not mentioned. Received 15 May instrument has been used to evaluate groat mass distri-
2003. *Corresponding author (douglas.doehlert@ndsu.nodak.edu). butions (Doehlert, unpublished data), but oat hulls and

trichomes tend to interfere with the pneumatic systemsPublished in Crop Sci. 44:1178–1186 (2004).
of this type of instrument, making the application im- Crop Science Society of America

677 S. Segoe Rd., Madison, WI 53711 USA practical.
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DOEHLERT ET AL.: OAT KERNEL SIZE UNIFORMITY 1179

through the 1.98-mm sieve were labeled as undersized. SieveIn this study we attempted to evaluate oat kernel size
sizes used for separations were designed to mimic commercialuniformity by both sequential sieving and digital image
systems as described by Deane and Commers (1986). Theanalysis, and to relate these with mean kernel mass when-
uniformity product (Doehlert et al., 2002) was calculated asever possible. Our objectives were to determine geno-
the product of the percent large kernels, the percent mediumtypic and environmental effects on oat kernel size distri-
kernels, and the percent small kernels.butions as measured by these two methods and to relate

Digital image analysis was used to measure the length,these characteristics with other quality characteristics width, and image area of individual oat kernels in samples.
in oat grain. Ten-gram samples of oat kernels were placed on a backlit glass

platform within a predefined field of view. A scale (in mm)
was also attached to the platform. An analog camera (usingMATERIALS AND METHODS
photographic film) was mounted at a fixed height of one meter

Plant Material from the platform. Oat kernels were manually positioned on
the platform ensuring seeds were not touching each other andTen oat cultivars (AC Assiniboia, Belle, CDC Boyer, Derby,
a photograph taken. The developed 10.2- by 15.2-cm photo-Hytest, Jerry, AC Medallion, Otana, Triple Crown, and Youngs)

were grown at five locations (Carrington, Edgeley, Fargo, graphic prints were digitized as 8-bit gray images with a resolu-
Minot, and Williston) in North Dakota in, 1999, 2000, and tion of 236 pixels per cm with scanner and were saved in a
2001. A seeding rate of 2.47 � 106 kernels ha�1 was used tiff format.
for all experiments. Herbicide treatments consisted of pre- A separate image processing program was developed to
emergence application of 3.93 kg ha�1 propchlor (2-chloro- determine the required measurements (lengths and widths)
N-isopropylacetanilide) and post-emergence application at the of each seed automatically from an image. The program was
3-leaf stage with a tank mix of 0.14 kg ha�1 thifensulfuron developed in macro environment of a commercial image pro-
{methyl 3 [[[[(4-methoxy-6-methyl-1,3,5-triazin-2yl)amino]car- cessing software Aphelion (Amerinex Applied Imaging, Am-
bonyl]amino]sulfonyl]-2-thiophenecarboxylate}, 0.07 kg ha�1

herst, MA). The image was initially processed with a 3x3
tribenuron {methyl 2-[[[[N-(methoxy-6-methyl-1,3,5-triazin-2yl) low pass filter to reduce the noise. A separate program (not
methylamino] carbonyl] amino] sulfonyl] benzoate}, and 0.14 available in the Aphelion software) was incorporated within
kg ha�1 clopyralid (3,6-dichloro-2-pyridinecarboxylic acid, mono- the Aphelion environment. This program is a histogram-based
ethanolamine salt). Experimental units consisted of four rows automatic background segmentation algorithm (Otsu, 1979).
spaced 0.3 m apart and 2.4 m long. The two center rows were Using this program, a threshold is automatically selected to
harvested with a two-row binder and threshed with a plot remove the background of this image. Thus, the segmented
thresher. The harvested grain was cleaned using a Clipper image only contained the objects (oat kernels). Subsequent
(Bluffton, IN) Model 400 Office Tester and Cleaner fitted image analysis programs–functions were used to extract eachwith a 4.75�, 19-mm oblong hole sieve and with aspiration kernel as a region and determine its major and minor axes.adjusted so that kernels containing a groat were not removed.

The determined major axis represented the length and theThe sieve allowed all grain to pass through.
minor axis represented the width of each kernel. It is to be
noted that the determined parameters were in pixels. Thus,

Analyses the program had the capability to obtain the scale conversion
factor (from pixel to cm or mm). Extensive validation experi-Grain yield was determined from the mass of grain har-
ments were performed to assure that analyses generated accu-vested from the center two rows of the test plots, after cleaning.

Test weight was determined by weighing a fixed volume of rate measurements of oat kernel length, width, and image
grain from a test weight filling hopper (Seedburo Equipment area. Manual measurements of metal rectangles, pieces of
Company, Chicago, IL). Volumes of grain from size fraction- toothpicks, and oat kernels made with slide calipers and with
ation were not sufficient to fill the filling hopper required for manual operation of the imaging software were compared
test weight measurements, so bulk densities were determined the automated analysis from images. The average difference
on size fractions by dividing mass of a grain sample by its between the manual and the automated measurements was
volume, as measured in a graduated cylinder. Crown rust 1.6 and 7.6% of the manual measurement for length and width,
(causal agent Puccinia coronata Cda. f. sp. avenae Eriks.) respectively. Considering a scale conversion factor of 1 pixel �
infection score was determined in the field at close to the 0.12 mm, the average difference (between manual and auto-
peak infection time. Plots were scored from 0 to 5, where 0 mated measurements) for length and width measurements
indicated a plot free of crown rust and 5 indicated the heaviest were 0.14 and 0.17 mm, respectively. Means and variances
possible infection. Groat percentage on field plot samples were calculated from collected individual data for each sample.
were determined with a compressed air dehuller (Codema, Typically samples contained 250 to 400 kernels. Images alsoEden Prairie, MN) correcting for hulled grain remaining after were collected of size fractions derived from the sequentialdehulling described as the final groat percentage in Doehlert

sieving procedure, and analyzed as above.and McMullen (2001). Groat percentages of size fractions were
Histograms showing size distributions of combined sizedetermined by hand dehulling, as described in Doehlert et al.

fractions required a normalization of frequencies according(1999). Mean kernel mass was determined by counting the
to their occurrence in original samples. Proportions of sizenumber of kernels in a 10-g sample. Kernels were counted with
fraction, collected as mass proportions, were converted toan automated seed counter (Seedburo Equipment Company,
proportion according to kernel number on the basis of meanChicago, IL).
kernel masses of the size fractions. Frequencies of kernel sizesGrain was fractionated into size fractions with slotted sieves
in sequential sieving fractions, expressed as percentages ofand a sizer-shaker (Seedburo Company, Chicago, IL). Grain
mass, were multiplied by the kernel number proportion ofsamples of 150 g were sieved sequentially on slotted 3.18-,
each fraction. The summation of these fraction proportions2.58-, 2.38-, and 1.98-mm sieves. All slots were, 19.05 mm long.
matched well with frequencies of sizes in the original sampleGrains held back by these sieves were labeled as oversized,

large, medium, and small, respectively. Kernels that passed (data not shown).
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estimates are obtained. In practice, we iterated until Lb changedTest for Bimodality
by less than 10�8 between iterations. A likelihood ratio can

Histograms of oat kernel size observations suggested that be calculated from Lu and Lb as follows:
these data were not normally distributed, and we sought a
statistical test for bimodality. The following test was per-

T � 2 ln �Lb

Lu
� [7]formed on all original unfractionated samples and compares

the likelihood that the data fit a single normal distribution
The distribution of (T) in (7) when observations are inwith the likelihood that every data point belongs to either of

fact normally distributed is currently the object of debatetwo normally distributed subpopulations, each with its own
(McLachlan and Peel, 2000). For the specific problem at hand,mean and variance. The single normal distribution model
we obtained the null distribution of T by repeatedly simulating(Model u) assumes the data have mean � and variance �2:
normally distributed data sets and applying the test to them.Y � N(�, �2). The likelihood function for this model is
Five thousand simulations were performed, producing a distri-
bution of T that in its tail resembled a �2 with four degreesLu � �

n

i�1

1

√2��2
exp�� (yi � �)2

2�2 � [1] of freedom, with a threshold for Type I error rate � � 0.05
of 9.0.

where the data set contains n observations yi (i � 1…n). Note that, strictly speaking, the test outlined above is not
Obtaining estimates of � and � 2 that maximize Lu amounts a test for bimodality per se but of the presence of a mixture
to calculating the usual �̂ �

1
n �yi and �̂ 2 �

1

n�1 � (yi � �̂)2. of normal distributions. In the present context in which there
The mixture of two normal distributions model (Model b) are biological mechanisms causing kernel measures to be bi-
assumes that each data point belongs to one of two subpopula- modal, de facto the test assesses bimodality. That said, support

for Model b entails the following interpretation. The oattions P1 � N(�1, � 2
1) or P2 � N(�2, � 2

2) with probabilities of
kernels harvested represent a mixture of two types, small andbelonging to P1 and P2 of p and 1 – p, respectively. The
large. Each type has its own mean size and variance aboutlikelihood for this model is
that mean as given by the parameters �̂1, �̂2

1, �̂2, and �̂2
2. Among

all kernels, p̂ represents the fraction that belongs to the smallLb � �
n

i�1
�p 1

√2��2
1

exp �� (yi � �1)2

2�2
1

� 	
type. Thus, the biological mechanism that leads to the genesis
of small type kernels may be considered more active in geno-
types with high p̂. The T statistic provides a measure of the(1 � p)

1

√2��2
2

exp �� (yi � �2)2

2�2
2

�� �
extent to which small and large types are clearly differentiated
in a given data set or genotype. Genotypes where �̂1 is close
to �̂2 (as scaled by the overall standard deviation in kernel�

n

i�1

[pf (yi�P1) 	 (1 � p)f(yi�P2)] [2]
size) will have a low T and, conversely, when �̂1 and �̂2, are
strongly divergent, a high T will arise. In what follows, wewhere f(yi|Pj) is the normal density function conditional on
refer to p̂ as “Prob1.” and to T as the bimodality coefficient.yi belonging to population j. An expectation-maximization

procedure was used to obtain estimates of p̂, �̂1, �̂2
1, �̂2, and

Experimental Design and Statistical Analyses�̂2
2 that maximize Lb, as follows. Initial values are chosen for

p̂, �̂1, �̂2
1, �̂2, and �̂2

2. In practice, we took p̂ � 0.5, �̂1 � �̂ � Field plots were arranged in a random complete block de-
�̂, �̂2

1 � �̂2, �̂1 � �̂ 	 �̂, and �̂2
2 � �̂2, though we verified that sign with three replicates. Analysis of variance was applied to

different initial values did not affect the final estimates ob- data where genotypes were considered fixed and environ-
tained. The procedure then alternates the following two steps. ments were considered random. Analyses of variance were
In step one, the probability pi that each observation i belongs calculated with the Statistix computer package (Analytical
to P1 is calculated as Software, Tallahassee, FL), where the environment � repli-

cate mean square was used as an error term to test the environ-
mental effect. The genotype � environment interaction meanpi �

p̂f(yi�P1)
f(yi)

[3]
square was used to test the genotypic effect, and the geno-
type � environment interaction was tested with the residualwhere f(yi) � pf(yi�P1) 	 (1 � p)f(yi�P2). In step two, the
mean square. Mean separation was evaluated by the leastestimates for p̂, �̂1, �̂2

1, �̂2, and �̂2
2 are updated as follows:

significant difference, which was also calculated by the Statistix
software program using the previously described error terms.

p̂ �
1
n �

n

i�1

pi [4] For correlations across genotypes, correlations were first cal-
culated for characteristics within each environment. A Chi
square test was performed to verify that correlation coefficients

�̂1 �
1

np̂ �
n

i�1

piyi [5] were not significantly heterogeneous across environments
(Steel et al., 1997). When heterogeneity was not observed,
correlation coefficients were pooled over environments ac-�̂ 2

1 �
1

np̂ � 1 �
n

i�1

pi (yi � �̂1)2 [6]
cording to Steel et al. (1997). For correlations across environ-
ments, correlations were first calculated individually for each

Updating �̂2, and �̂2
2 is done as for �̂1 and �̂2

1, except that p̂ genotype, the pooled over genotypes by the procedure just de-
and pi are replaced by 1 � p̂ and 1 � pi in Eq. [5] and [6]. scribed.
Note that, to be maximum likelihood estimators in the strict
sense, Equation [6] should not have –1 in its denominator, RESULTSand likewise for the variance estimator in Model u above.
The –1 factor corrects for the well-known downward bias in General Characteristics of Genotypes
maximum likelihood estimators and otherwise has no impact and Environments
on the validity of the test. To retain biological relevance, we

Before analyzing kernel size uniformity, general agro-constrained updates in step two such that 0.1 
 p̂ 
 0.9 and
min(�̂2

1, �̂2
2)/�̂2 � 0.02. These steps were iterated until stable nomic and grain quality characteristics were analyzed
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Table 2. Environmental means of grain yield and quality from 10Table 1. Genotypic means of grain yield and quality characteris-
tics from 10 oat cultivars grown in 15 environments (five loca- oat cultivars grown in 15 environments (five locations, 3 yr) in

North Dakota.tions, 3 yr) in North Dakota.

Test Crown Groat Kernel Test Crown Groat Kernel
Environment Yield weight rust percentage massGenotype Yield weight rust percentage mass

Mg ha�1 kg m�3 Score % mg Mg ha�1 kg m�3 Score % mg
AC Assiniboia 4.59 481 0.0 72.8 34.8 Carrington ’99 5.05 470 1.6 69.4 31.9

Carrington ’00 3.37 454 2.0 64.2 30.3Belle 4.01 479 0.5 71.5 28.8
CDC Boyer 3.79 456 1.8 70.2 33.5 Carrington ’01 4.62 434 3.2 64.7 28.2

Edgeley ’99 2.30 417 1.9 65.7 27.1Derby 3.41 432 2.6 62.7 28.7
Hytest 3.08 517 2.6 72.6 31.1 Edgeley ’00 3.84 434 2.1 68.1 29.4

Edgeley ’01 4.98 471 2.7 70.1 31.6Jerry 3.73 494 2.5 69.8 29.1
AC Medallion 4.09 471 0.1 69.1 31.4 Fargo ’99 3.26 458 1.9 61.5 28.1

Fargo ’00 3.91 436 3.0 69.8 26.9Otana 3.12 418 3.4 59.5 24.7
Triple Crown 4.19 461 0.7 68.4 31.6 Fargo ’01 3.76 449 0.7 62.3 27.1

Minot ’99 1.82 489 1.5 66.0 30.6Youngs 4.16 457 1.5 67.4 34.0
LSD (0.05) 0.04 21 0.6 3.0 1.4 Minot ’00 4.62 512 1.2 68.9 34.5

Minot ’01 5.59 468 1.7 72.8 31.6
Williston ’99 3.33 489 0.0 72.5 33.1to evaluate how kernel size uniformity relates to these Williston ’00 3.80 468 0.0 72.6 36.8

more general characteristics. Genotypic means of grain Williston ’01 4.23 507 0.0 77.5 34.3
LSD (0.05) 0.32 22 0.3 3.2 1.2yield (Table 1) and correlation analysis (not shown)

indicated that grain yields were negatively correlated
size frequencies (Table 3). All genotypes exhibited fre-with crown rust infection (r � �0.630, P � 0.01). In
quencies of oversized kernels of less than 1%, whichcontrast, test weight was only weakly correlated with
is consistent with the elite nature of these cultivars.crown rust infection (r � �0.222, P � 0.05). Although
Considerable variation was observed in proportions ofthe lowest test weight values were obtained from culti-

vars relatively susceptible to crown rust (Derby and large kernels among genotypes (Table 3). Correlation
Otana), the highest test weights were also obtained from analysis indicated that mean kernel weight was posi-
cultivars relatively susceptible to crown rust (Hytest and tively correlated with the percentage of large kernels
Jerry). Cultivars with superior crown rust resistance (r � 0.524, P � 0.01) and with percentage of medium
(AC Assiniboia, Belle, AC Medallion) also exhibited kernels (r � 0.687, P � 0.01). Similarly, proportions of
consistently high test weights (Table 1). Across geno- small and undersized kernels were negatively correlated
types, groat percentage correlated well with test weight with mean kernel weight (r � �0.621 and –0.858, respec-
(r � 0.723, P � 0.01). Different cultivars exhibited very tively, P � 0.01), where cultivars with small mean kernel
specific trends in kernel mass, where AC Assiniboia, mass (Belle and Otana) also had the largest proportion
CDC Boyer, and Youngs had the largest kernels of undersized kernels.
whereas Derby and Otana had the smallest kernels. The uniformity index was designed to evaluate for
Genotype � environment interactions were significant the equal distribution of grain among the three size
for all these characteristics, and were largely attributed fractions that would be used for oat milling. More equal
to differing crown rust resistance among cultivars and distributions among these fractions would allow for
differing crown rust infection pressure in the different more efficient milling from three streams, since all streams
environments. The magnitude of the interactions (not would be of about the same mass. The highest unifor-
shown) was less than 5% of the total variation and mity indexes were associated with genotypes that have
was not considered to affect conclusions concerning the larger proportions of large kernels (r � 0.898, P � 0.01),
main effects. whereas uniformity indexes were negatively associated

Environmental means of yield indicated significant with proportions of small kernels (r � �0.941, P � 0.01)
variation (Table 2), attributed largely to weather condi- and undersized kernels (r � �0.831, P � 0.01).
tions and incidence of crown rust, which is also heavily
influenced by weather conditions. The low yield from Table 3. Genotypic means of mass proportions of oat grain sam-

ples in different size fractions as generated by sequential sievingMinot 1999 was attributed to hail damage. The highest
with slotted sieves. Oversized kernels were held back by atest weights were obtained from the Minot and Williston
3.18-mm slotted sieve, large kernels by a 2.58-mm slot, mediumlocations, which had significantly lower incidences of kernels by a 2.38-mm slot, small kernels by a 1.98-mm slot.

crown rust. As observed with genotypic means, across Undersized kernels passed through the 1.98-mm slot. All slots
environments groat percentages significantly correlated were 19.05 mm in length.
with test weight (r � 0.439, P � 0.01). Mean kernel Over Under Uniformity
masses were generally larger at Minot and Williston, Genotype sized Large Medium Small sized product
which had lower incidences of crown rust. Across envi-

AC Assiniboia 0.2 33.9 31.1 31.0 4.5 26 711
ronments mean kernel mass was significantly correlated Belle 0.0 4.4 19.7 61.3 14.6 4 741

CDC Boyer 0.3 35.2 26.4 33.0 5.1 25 941negatively with crown rust infection (r � �0.523, P �
Derby 0.3 12.3 27.6 49.5 10.6 14 9070.01) and positively correlated with test weight (r �
Hytest 0.2 11.5 32.2 48.5 7.7 16 079

0.693, P � 0.01). Jerry 0.3 6.7 24.8 59.4 8.9 9 480
AC Medallion 0.2 26.5 25.8 40.1 8.5 24 319
Otana 0.2 9.7 15.6 58.6 16.2 8 056Size Analysis
Triple Crown 0.8 12.9 30.7 49.4 6.8 18 299
Youngs 0.6 15.6 33.9 43.1 6.5 20 150Results of sequential sieving indicated that this proce-

LSD (0.05) 0.2 5.7 5.5 6.6 2.2 4 419dure could be used to generate crude distributions of
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1182 CROP SCIENCE, VOL. 44, JULY–AUGUST 2004

Table 4. Environmental means of mass proportion distributions Histograms of length, width, and area distributions
of oat kernels after size fractionation by sequential sieving with of size fractions presented as stacked bar graphs provideslotted sieves. Oversized kernels were held back by a 3.18-mm

much more information as to kernel size uniformity andslotted sieve, large kernels by a 2.58-mm slot, medium kernels
the relation of digital image analysis data to sequentialby a 2.38-mm slot, small kernels by a 1.98-mm slot. Undersized

kernels passed through the 1.98-mm slot. All slots were 19.05 sieving (Fig. 1 and 2). The summation of these fractions,
mm long. evident from the height of each bar, appears indicative

Over Under Uniformity of bimodal populations at least with respect to area and
Environment sized Large Medium Small sized product length, as if oat size distributions were composed of
Carrington ’99 0.4 26.7 33.3 34.2 4.8 20 427 two subpopulations. Distributions of width were less
Carrington ’00 0.6 20.1 28.7 43.0 7.3 19 575 distinctively bimodal. Size fractions derived from sievingCarrington ’01 0.4 22.6 23.9 43.8 9.1 18 514
Edgeley ’99 0.4 13.2 23.3 50.4 11.7 14 932 were not restricted to single subpopulations. Even under-
Edgeley ’00 0.4 12.9 25.6 50.5 10.4 15 472 sized kernels were found in distributions associated with
Edgeley ’01 0.3 18.6 30.6 43.6 6.9 20 306

both subpopulations. This is consistent with the observa-Fargo ’99 0.1 6.2 16.4 62.7 15.3 6 993
Fargo ’00 0.2 9.1 19.7 56.9 14.6 10 716 tion that the standard deviation of image area within a
Fargo ’01 0.2 13.5 16.9 60.8 14.7 13 598 size fraction was only slightly smaller than the standardMinot ’99 0.3 18.3 27.5 45.3 8.3 17 593
Minot ’00 0.4 16.8 30.1 45.5 7.1 17 831 deviation for the original sample (Table 5). Ranges for
Minot ’01 0.2 20.9 33.2 40.2 5.5 17 486 the different size fractions span a large proportion of
Williston ’99 0.3 14.2 29.7 48.6 7.1 17 473

the range of the original sample (Fig. 1 and 2). ManyWilliston ’00 0.1 16.0 27.8 49.3 6.7 20 010
Williston ’01 0.3 23.9 35.0 35.9 4.9 22 100 size fractions also had bimodal appearances, especially

LSD (0.05) 0.2 3.5 2.6 4.2 1.3 2 121 with respect to area measurements. The distributions
of widths among the different size fractions indicate that

Much less variation was found in environmental means most kernels in those size fractions were larger than the
of size distributions (Table 4). Most differences in the slots that they had passed through to become in that
uniformity product could be attributed to higher under- size fraction. Thus, it appeared unlikely that sieving can
sized proportions, and less variation was observed in separate by width, but by a smaller dimension, namely
the large size proportions. depth. Therefore, these histograms provide a three-

Genotypic and environmental means of kernel length, dimensional picture of size distributions, where length
width, and area derived from digital image analysis (data and width are measured by the digital image analysis
not shown) were largely consistent with the mean kernel information and sieving provides an estimation of ker-
mass data (Tables 1 and 2), where genotypes with more nel depth.
massive kernels had kernels with larger lengths, widths The hypothesis that oat kernel image area size distri-and areas. Mean length, width, and areas were also butions are composed of bimodal populations was testedcalculated for all size fractions generated from sequen-

with a statistical analysis that fitted image area distribu-tial sieving. These are of relatively low interest, in that
tions as mixtures of two populations with distinctivethey show only the obvious size differences that would
means and variances. The results of this analysis forbe expected between different size fractions and are
area distributions (Table 6) are largely consistent withshown only as grand means of all genotypes from all
this hypothesis. Bimodality coefficients (Table 6) werelocations (Table 5). One important observation to be
consistently highly significant, suggesting that the oatdrawn from the width data is that the mean kernel width
size populations were composed of (at least) two distinctwas larger than the sieve that they passed through. That
subpopulations. Values of Prob1 indicate the probabilityis to say that the mean width of medium kernels is
that a particular kernel would be in the first or smaller3.08 mm (Table 5), yet these kernels have already passed
subpopulation. Most genotypes had Prob1 values closethrough a slot of 2.58 mm. This would suggest that
to 0.5. However, two genotypes had mean Prob1 valuessieving did not separate kernels according to their width,
less than 0.4 (Otana and Derby). These genotypes withbut by their depth, which was smaller than the width.
smaller Prob1 values were also more distinctly bimodal,Similarly, it would appear that small kernels, with a
as determined by the magnitude of the bimodality coef-width of 2.85 mm, could not have passed through a
ficients. Those genotypes with lower bimodality coeffi-2.38-mm sieve unless their depth was less than 2.38 mm.
cients, and had size distributions of less distinctive bi-Analysis of bulk densities and groat percentages of the
modal appearance, were cultivars that either had largerdifferent size fractions indicate that both increased with

decreasing kernel size fraction (Table 5). kernels (AC Assiniboia and Youngs) or had higher fre-

Table 5. Grand means of physical characteristics of original oat samples and their size fractions. Large kernels were held back by
2.58-mm slots, medium by 2.38-mm slots and small kernels were held back by 1.98-mm slots. All slots were 19.05 mm long.

Mass Kernel Kernel Kernel Kernel Kernel Bulk Groat
distribution mass length width area area SD density percentage

% mg kernel�1 mm mm2 g L�1

Original – 30.7 10.3 2.90 22.4 5.4 526 73.8
Large 16.9 39.3 11.4 3.17 26.8 4.3 486 70.4
Medium 26.8 36.3 10.8 3.08 24.9 4.1 532 74.0
Small 47.4 28.7 9.9 2.85 21.1 4.6 551 76.1

LSD (0.05) 1.1 0.3 0.1 0.01 0.2 0.04 8 0.8
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quencies of triple kernel spikelets (Belle) as determined sured. It allowed for the measurement of many individ-
ual kernels, which can be used in rigorous statisticalin Doehlert et al. (2002).
analyses. It has the disadvantages of requiring costly equip-
ment and/or significant technical expertise. Whereas,DISCUSSION sequential sieving requires relatively inexpensive equip-

Both sequential sieving and digital image analysis pro- ment, its resolution limited by the sizes of sieves avail-
vided useful evaluations of oat kernel size uniformity. able. There are only two or three more commercially
It appeared that they measured quite different dimen- available sieves not used in this study, which would be
sions of oat size, with sieving separating according to within the size range of oat kernels. Sieving is also less
kernel depth, and digital image measuring by width and technically challenging and less time consuming than
length. Digital image analysis had the advantage of su- digital image analysis, so that operations limited by time

and/or funds might find it a more practical procedure forperior resolution, in that individual kernels are mea-

Fig. 1. Histograms showing distributions of oat kernel length, width and image areas from sample of Jerry oat grown at Fargo, Carrington, and
Williston, ND, in the year 2000. Also shown within each bar is the frequency of each size fraction (large, medium, small and undersized) as
separated by sequential sieving.
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Fig. 2. Histograms showing distributions of oat kernel length, width and image areas from sample of AC Assiniboia oat grown at Fargo,
Carrington, and Williston, ND, in the year 2000. Also shown within each bar is the frequency of each size fraction (large, medium, small and
undersized) as separated by sequential sieving.

evaluating grain size uniformity. Many grain analysis ysis and sequential sieving analyze different dimensions
of the oat kernel is the differences in the shape of thelabs possess sieve sizers already, whereas digital image

analysis systems are less frequently found, and can be distributions derived from these methods. Digital image
analysis for area and length frequently appeared to bevery costly to establish.

Samples with higher uniformity indexes may be more bimodal or multimodal (Fig. 1 and 2). Distributions from
sequential sieving appeared to be unimodal (Tables 3easily processed because those samples had kernels

more evenly distributed across a range of expected ker- and 4). Although the resolution presented in this study
allows for only five size classes, we have separated sam-nel sizes. These samples also had higher variances of

size parameters as determined by image analysis. The ples into as many eight fractions, and these have always
appeared unimodal in shape (data not shown). Kernelcultivars with higher uniformity products were also the

ones with more large kernels (Table 3). Milling of culti- width, as analyzed by digital image analysis, usually were
unimodal in shape (Fig. 1 and 2), in spite of a highvars with higher frequencies of smaller kernels could

overwhelm the small or stub milling stream, leading to level of resolution allowed by digital image analysis.
Distributions of oat kernel depth may be similar to widthpoorer operational efficiency.

Consistent with the hypothesis that digital image anal- in this respect.
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Table 6. Genotypic means of the parameters from the test for bimodality on oat kernels image area (square mm) data. The analysis
tests data sets derived from digital image analysis to determine whether a model consisting of two distinct subpopulations described
the sample better than a normal distribution. The analysis estimated means and variances for each subpopulation (group 1 and group 2)
and a probability that a kernel was in group 1 (Prob1). Higher bimodality coefficients indicated a greater degree of bimodality. The
empirically determined threshold value (P � 0.05) for the bimodality coefficient was 9.0.

Area Area Mean Variance Mean Variance Bimodality
Genotype mean variance Group 1 Group 1 Group 2 Group 2 Prob 1 coefficient

AC Assiniboia 24.1 37.1 19.5 14.2 29.6 8.3 0.536 49
Belle 20.9 21.6 17.2 9.8 24.6 6.4 0.515 38
CDC Boyer 23.2 32.8 17.6 6.7 27.7 9.8 0.443 76
Derby 23.0 30.9 16.7 5.1 26.8 9.7 0.380 104
Hytest 21.1 24.0 16.8 7.0 25.3 5.9 0.488 64
Jerry 20.5 23.6 15.7 5.1 24.2 7.0 0.439 92
AC Medallion 22.3 31.7 17.0 6.9 26.8 8.7 0.453 78
Otana 22.9 28.0 17.5 6.0 26.7 8.7 0.411 72
Triple Crown 21.3 24.0 15.7 4.8 24.3 8.8 0.356 90
Youngs 24.8 40.0 19.5 15.6 29.8 10.8 0.500 45

LSD(0.05) 0.4 2.0 0.5 2.4 0.3 1.3 0.042 15

We presume the basis of the bimodal populations problems associated with extreme bimodality are allevi-
ated, the highly bimodal distribution would act as adepicted by the digital image analyses to lie with the size

differences among the different order of kernels within signal of poorer quality grain. Although samples of the
best milling quality observed in this study with higherthe individual oat spikelet. Because most oat spikelets

contain two kernels, the larger mode in the bimodal test weights and groat percentages had higher Prob1
values and lower bimodality coefficients, it is not knownpopulation may represent primary kernels from these

double kernel spikelets, whereas the second mode may if those distributions offer any milling advantage directly
associated with the distribution pattern.represent secondary kernels from these spikelets. Such

distributions would be expected to be complicated by It is difficult at this stage of study to conclude what
size distributions are best for milling, primarily becausethe presence of single and triple kernel spikelets that

could add additional modes and increase ranges of sizes. no study of oat kernel size distributions in relation to
milling yield has appeared in the literature. Also, opti-An earlier study from this laboratory (Doehlert et al.,

2002) analyzed spikelets from many of the same plots mal distribution for one mill might be quite different
than that for another facility, because different opera-used in this study from the year 2000. This study indi-

cated a high frequency of double kernel spikelets at the tions will size fractionate into different numbers of
streams. It is likely that most oat mills have the abilityFargo location, and a higher frequency of triple kernel

spikelets at the Williston location. Figures 1 and 2 in this to efficiently mill almost any distribution pattern that
is delivered to them, but as with any large scale industrialstudy show that samples taken from Williston showed a

greater range (and standard deviation) than the samples process, small increases in efficiency can result in large
increases in profitability. Thus, a better understandinganalyzed from the Fargo location, but there is no evi-

dence for additional modes in the Williston samples. of oat kernel size distributions has significant potential
return in processing efficiency.Introduction of bimodal analysis has facilitated the

interpretation of data from digital image analysis. Be-
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fit normal distributions, traditional statistical analyses Bruckner, G. 1953. Der Einfluss der Korneigenschaften auf die Scha-
have failed to provide meaningful descriptions of the lung des Hafers. Die Muhle und Mischfuttertechnik 90:434–436.

Bruckner, G., C. Nernst, M. Rohrlich, and E. Timm. 1956. Technolog-data. The bimodal analysis (Table 6) provides statistics
ische und chemische Eigenschaften von Hafersorten. Jahrb. Ver-that give an estimation of the extent of bimodality (bi-
such. Getreid. Berlin, 1954–1956:19–38.modality coefficient) and gives an estimation of the bal-

Deane, D., and E. Commers. 1986. Oat cleaning and processing. p.
ance in the numerical size of the two subpopulations 371–412. In F.H. Webster (ed.) Oats: Chemistry and technology.
(Prob1). The mean sizes of each of the two subpopula- American Association of Cereal Chemists, St. Paul, MN.

de Villers, P.J.R.J. 1935. A genetic study of the inheritance of varioustions (Mean Group1, Mean Group2) could be used to
characters in certain Avena hybirds. Dep. Agric. Stellenbosch S.evaluate differences in sizes between primary and sec-
Afr. Sci. Bull. 140:90.ondary kernels, as proposed by Milatz (1933). Doehlert, D.C., M.S. McMullen, and N.R. Riveland. 2002. Sources

Although we have had no direct test to indicate what of variation in kernel size in oats. Cereal Chem. 79:528–534.
Doehlert, D.C., and M.S. McMullen. 2001. Optimizing conditions forsize distributions are better for milling, we would specu-

experimental oat dehulling. Cereal Chem. 78:675–679.late that higher Prob1 values would be desirable because
Doehlert, D.C., M.S. McMullen, and R.R. Baumann. 1999. Factorsthat would indicate a more even distribution of kernel

affecting groat percentage in oat. Crop Sci. 39:1858–1865.
sizes. High values of the bimodality coefficient would Ganssmann, W. 1964. Vergleichende Untersuchungen der Qualitat
indicate a highly bimodal population, which could sepa- von Industriehafer. Die Muhle und Mischfuttertechnik 101:776–

779.rate easily and consistently into two subpopulations.
Ganssmann, W., and K. Vorwerck. 1995. Oat milling, processing andHowever, correlation analysis indicated that in this

storage. p. 369–408. In R.W. Welch (ed.) The oat crop: Productionstudy the bimodality coefficient was negatively corre- and utilization. Chapman & Hall, London.
lated with test weight (r � �0.45, P � 0.01) and groat Hachmann, W. 1947. Hafermullerei: Grossensortierung vor dem Scha-

len. Getreide Mehl Brot 1:7–9.percentage (r � �0.48, P � 0.01). Thus, unless quality



R
ep

ro
du

ce
d 

fr
om

 C
ro

p 
S

ci
en

ce
. P

ub
lis

he
d 

by
 C

ro
p 

S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

1186 CROP SCIENCE, VOL. 44, JULY–AUGUST 2004

Hubner, R. 1951. Vierjahrige Untersuchungen uber Kornqualitat und Peek, J.M., and L.M. Poehlman. 1949. Grain size and hull percentage
as factors in the milling quality of oats. Agron. J. 41:462–466.Leistungeschaften des Hafers. I. Morphologisch-physikalische Un-

Salisbury, D.K., and W.R. Wichser. 1971. Oat milling-Systems andtersuchngen. Z. Acker Pflanzenbau 93:44–78.
products. Bull. Assoc. Oper. Mill. 1971:3242–3247.Mader, W. 1927. Zur Frage der Bestimmung des 1000-Korngewichtes

Steel, R.G.D., J.H. Torrie, and D.A. Dickey. 1997. Principles andzur sortencharakteristik bei Hafer. Fortschr. Landw. 2:550–552.
procedures of statistics: A biometrical approach. 3rd ed. McGraw-Martin, C.R., R. Rousser, and D.L. Brabec. 1993. Development of a
Hill, Boston.single kernel wheat characterization system. Trans. ASAE 36:1399–

Sword, J. 1949. Milling values of oat varieties I. 1946 results. Scot.1404. Agric. 28:137–148.
McLachlan, G., and D. Peel. 2000. Finite mixture models. John Wi- Symons, S.J., and R.G. Fulcher. 1988. Determination of variation in

ley & Sons, New York oat kernel morphology by digital image analysis. J. Cereal Sci. 7:
Milatz, R. 1933. Neue Hafersortenmerkmale. Angew. Bot. 15:481–518. 219–228.
Otsu, N. 1979. A threshold selection method for gray level histogram. Takeda, K., and K.J. Frey. 1980. Tertiary seed set in oat cultivars.

IEEE Trans. Syst. Man Cybern. SMC-9:62–66 IEEE, New York. Crop Sci. 20:771–774.
Pietrzak, L.N., and R.G. Fulcher. 1995. Polymorphism of oat shape Zade, A. 1915. Methoden zur Bestimmung des Spelzenanteils beim

Hafer. Fuhlings Landw. Z. 64:295–311.in several Canadian oat cultivars. Can. J. Plant Sci. 75:105–109.


