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Airborne hydrogen cyanide measurements using a chemical
ionisation mass spectrometer for the plume identification of biomass
burning forest fires

M. Le Breton1, A. Bacak1, J. B. A. Muller 1, S. J. O’Shea1, P. Xiao2, M. N. R. Ashfold2, M. C. Cooke2, R. Batt2,
D. E. Shallcross2, D. E. Oram3, G. Forster4, S. J.-B. Bauguitte5, and C. J. Percival1

1The Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences,
University of Manchester, Simon Building, Brunswick Street, Manchester, M13 9PL, UK
2School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
3National Centre for Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich,
NR4 7TJ, UK
4School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
5Facility for Airborne Atmospheric Measurements (FAAM), Building 125, Cranfield University, Cranfield, Bedford,
MK43 0AL, UK

Correspondence to:C. J. Percival (carl.percival@manchester.ac.uk)

Received: 31 January 2013 – Published in Atmos. Chem. Phys. Discuss.: 27 February 2013
Revised: 18 July 2013 – Accepted: 19 July 2013 – Published: 16 September 2013

Abstract. A chemical ionisation mass spectrometer (CIMS)
was developed for measuring hydrogen cyanide (HCN) from
biomass burning events in Canada using I− reagent ions
on board the FAAM BAe-146 research aircraft during the
BORTAS campaign in 2011. The ionisation scheme enabled
highly sensitive measurements at 1 Hz frequency through
biomass burning plumes in the troposphere.

A strong correlation between the HCN, carbon monox-
ide (CO) and acetonitrile (CH3CN) was observed, indi-
cating the potential of HCN as a biomass burning (BB)
marker. A plume was defined as being 6 standard devia-
tions above background for the flights. This method was
compared with a number of alternative plume-defining tech-
niques employing CO and CH3CN measurements. The 6-
sigma technique produced the highestR2 values for corre-
lations with CO. A normalised excess mixing ratio (NEMR)
of 3.68± 0.149 pptv ppbv−1 was calculated, which is within
the range quoted in previous research (Hornbrook et al.,
2011). The global tropospheric model STOCHEM-CRI in-
corporated both the observed ratio and extreme ratios derived
from other studies to generate global emission totals of HCN
via biomass burning. Using the ratio derived from this work,
the emission total for HCN from BB was 0.92 Tg (N) yr−1.

1 Introduction

Biomass burning (BB) is considered to be a major source of
trace gases in the atmosphere (Li et al., 2000, 2003, 2009;
Shim et al., 2007) and at levels significant enough to per-
turb regional and global atmospheric chemistry and compo-
sition (Levine, 2000). For example, large boreal forest fires
in Russia from 2002 to 2003 were responsible for global
growth rates of many trace gases including carbon dioxide
and methane (Kasischke et al., 2005; Yurganov et al., 2005;
Simpson et al., 2006). Fires in boreal regions are estimated
to account for 9 % of global fire carbon emissions (Van der
Werf et al., 2010), and their occurrences are predicted to in-
crease by 30 % by 2030, with a 74–118 % increase in area
burned by 2100 (Flannigan et al., 2005). The area burned in
Canada has increased since 1970 as a result of rising surface
temperatures (Gillett et al., 2004; Kasischke and Turtesky,
2006) resulting in an expected doubling of CO2 equivalent
greenhouse gas emissions from Canadian fires (Amiro et al.,
2009). Long-range transport of the emissions is enabled in
the troposphere and lower stratosphere via convection and
pyroconvection (Fromm et al., 2000; Jost et al., 2004; Val
Martin et al., 2010). This enables fires not only to impact lo-
cal and regional air quality (Colarco et al., 2004; Morris et
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al., 2006), but also to contribute to climate change (Damoah
et al., 2004; Vivchar et al., 2010; Tilmes et al., 2011).

BB is considered to be the major source of HCN in the
atmosphere (Li et al., 2000, 2003, 2009; Liang et al., 2007;
Shim et al., 2007) via the pyrolysis of N-containing species
within the fuel (Johnson and Kang, 1971; Glarborg et al.,
2003). Cooking fire emissions of HCN have also been ob-
served in Mexico and Africa (Christian et al., 2010), although
concentrations fell below Fourier transform IR (FTIR) de-
tection limits. Singh et al. (2003) observed enhancements
of HCN in China which correlated with CH3Cl indicating
a source from hard coal burning for cooking. It must also
be noted that biofuel is widely used in China (Streets et al.,
2003) although data from Africa suggest emissions of nitriles
are negligible (Bertschi et al., 2003; Yokelson et al., 2003).
HCN is also known to be emitted from motor exhausts, but
is thought to be at negligible levels (Li et al., 2003; Lobert et
al., 1991).

HCN has previously been observed from field biomass
fires (Hurst et al., 1994a, b; Goode et al., 2000a; Yokel-
son et al., 2007b; Crounse et al., 2009) and using laboratory
biomass combustion systems (Lobert et al., 1991; Holzinger
et al., 1999; Christian et al., 2004; Becidan et al., 2007). Col-
umn measurements of HCN were measured from the Inter-
national Scientific Station of Jungfraujoch (ISSJ) by solar in-
frared (IR) spectroscopy in 1998 during an intense period of
biomass burning in the tropics (Rinsland et al., 2000). Ak-
agi et al. (2011, 2013) note the HCN emission ratios be-
tween similar fires can vary up to 60 % (Yokelson et al.,
2009), from undetectable in wood burning to 3 % in peat
fires. Singh et al. (2003) observed a HCN contribution from
automobiles and from aircraft over the United States, al-
though sources from automobile exhaust and industrial pro-
cesses are thought to be negligible in comparison with BB
(Lobert et al., 1991; Bange and Williams, 2000; Holzinger
et al., 2001). A field experiment also indicated no detectable
emissions of HCN from domestic biofuels (Bertschi et al.,
2003). Thermodynamic calculations carried out by Boldi
(1993) predict that an air parcel associated with lightning
strikes could have a chemical composition such that the
HCN / CO ratio would be around 10−4. Stribling and Miller
(1987) showed that simulated lightning in a laboratory could
produce HCN on planets such as Jupiter, strengthening the
case that lightning-produced HCN has been observed on this
planet (e.g. Podolak and Barnum, 1988). There have been ex-
amples where HCN has been observed in lightning perturbed
air in the Earth’s troposphere (Singh et al., 2007; Liang et
al., 2007), making lightning a possible additional source of
HCN, although how much is still to be determined.

HCN is lost in the troposphere via the reaction with the
hydroxyl radical (OH), creating a lifetime of a few years,
although the reaction with singlet oxygen (O1D) is sug-
gested to be important in the lower stratosphere. Uptake
into the ocean is currently thought to be the dominant sink
with an inferred global HCN biomass burning source of 1.4–

2.9 Tg (N) yr−1 and an oceanic saturation ratio of 0.83 (Li
et al., 2000). This oceanic loss produces a lifetime of 2–5
months (Li et al., 2000, 2003; Singh et al., 2003). Although
HCN may play an insignificant role in atmospheric chemistry
(Cicerone and Zellner, 1983), it is thought to be an important
source of nitrogen in remote oceanic environments (Li et al.,
2000). HCN is currently thought to be a useful tracer of BB
as a consequence of its limited sources and sufficiently long
atmospheric lifetime (Lobert et al., 1990; Holzinger et al.,
1999).

Carbon monoxide (CO), acetonitrile (CH3CN) and HCN
are all currently used as a BB tracer, but a standard approach
has not been well defined. Thresholds of CO are used, but
CO has many other strong sources (e.g. industrial activity).
There can be difficulties in filtering out plumes which do not
originate from BB. Recent studies implementing these vari-
ous methods of identifying a BB plume have resulted in an
uncertainty in the ratio of HCN to CO due to the variabil-
ity observed in fires and potential mixing from other sources
(Simpson et al., 2011; Vay et al., 2011; Hornbrook et al.,
2011; Yokelson et al., 2009 ; Sinha et al., 2003; Andreae and
Merlet., 2001). Using measurements of HCN and CO, BB
plumes can be uniquely identified; enabling emission factors
to be calculated from aircraft measurements.

Previous atmospheric measurements of HCN have been
made using IR spectroscopy (Coffey et al., 1981; Zhao et al.,
2002; Kleinböhl et al., 2006; Rinsland et al., 2007; Li et al.,
2000). In situ measurements were first made in the strato-
sphere using NI-CIMS (negative ion–chemical ionisation
mass spectrometer) (Schneider et al., 1997). Tropospheric
measurements were then made by long-path Fourier trans-
form IR (FTIR) spectroscopy within BB plumes (Goode et
al., 2000a, b; Yokelson et al., 2007b), with a gas chromatog-
raphy (GC) system, using a reduction gas detector (RGD)
(Singh et al., 2003), by NI-CIMS using CF3O− as the reagent
ion (Crounse et al., 2006, 2009; Yokelson et al., 2007a), and
by PTR-MS (proton transfer–mass spectrometry) (Knighton
et al., 2009). Crounse et al. (2006) have shown that CIMS
can be used to detect HCN selectively in the lower atmo-
sphere, with a low detection limit and at a high frequency.
Hornbrook et al. (2011) recently reported HCN to CO ratios
from BB plumes using HCN measurements from a chemical
ionisation mass spectrometer.

The overall goal of “quantifying the impact of BOReal for-
est fires on Tropospheric oxidants using Aircraft and Satel-
lites (BORTAS)” campaign was to investigate the connec-
tion between the composition and the distribution of biomass
burning outflow, ozone production and loss within the out-
flow, and the resulting perturbation to oxidant chemistry in
the troposphere (Palmer et al., 2013). Airborne measure-
ments were taken on board the BAe-146 large atmospheric
research aircraft (ARA) over eastern Canada between 12
July and 3 August 2011. The evolution and composition
of these BB plumes were studied using the airborne instru-
ments, ground instruments and satellites. In order to study
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Table 1. HCN : CO NEMRs (in pptv ppbv−1) for 5 flights during BORTAS campaign in plumes determined by 6 or 10 sigma above back-
ground andR2 of correlations. NEMR units are ppt ppb−1.

Flight Background 1 sigma 6 sigma 6 sigma 10 sigma 6 sigma 10 sigma
(pptv) (pptv) (pptv) slope slope R2 R2

B621 70 6 107 4.7± 0.14 4.68± 0.15 0.83 0.83
B622 46 7 88 0.66± 0.048 0.66± 0.061 0.46 0.46
B624 17 17 173 2.68± 0.09 2.68± 0.090 0.82 0.79
B626 10 10 245 2.72± 0.28 2.82± 0.18 0.81 0.83
B628 8 8 108 3.68± 0.15 3.3± 0.24 0.69 0.45
Average – – 2.89± 0.15 2.83± 0.15 0.72 0.67
Average without B622 – – 3.45± 0.18 3.37± 0.18 0.79 0.73

the characteristics of these plumes, an accurate method of
plume identification is required. The rapid time response of
CIMS utilising the I− ionisation scheme (Le Breton et al.,
2012) is deployed here for HCN measurements. The main
aim of this work is to develop a statistical methodology to
define BB plumes using HCN measurements and chemical
enhancements within the plume which can then determine
their emission factors with respect to CO and volatile organic
compounds (VOCs).

2 Experimental

2.1 CIMS

A chemical ionisation mass spectrometer (CIMS) was used
for real-time detection of HCN. The CIMS instrument em-
ployed here was built by the Georgia Institute of Technol-
ogy as previously described by Nowak et al. (2007) and has
been previously described for formic acid measurements (Le
Breton et al., 2012). Subsequently various adjustments have
been made to the inlet, and these are described in the follow-
ing section. The schematic in Fig. 1 shows the set-up used
and operating conditions of the CIMS on board the airborne
platform FAAM BAe-146 research aircraft.

The inlet consisted of 3/8′′ OD diameter PFA tubing of
length 580 mm, which was heated to 50◦C to reduce sur-
face losses. An orifice of diameter 0.9 mm was positioned
at the front of the inlet to restrict the flow to 5.8 SLM. The
pressure in the ionisation region was maintained at 19 Torr
(133.322 Pa) throughout the flight by controlling the flow of
nitrogen into the ionisation region using a mass flow meter.

2.2 Ionisation scheme

The ion–molecule chemistry using iodide ions (I−) for trace
gas detection has been described by Slusher et al. (2004) and
was utilised here to detect HCN. A gas mixture of methyl
iodide, CH3I, and H2O in N2 is used to obtain reagent ions I−

and water clusters I−
·(H2O), of which the latter is important

for the ionisation of HCN, forming the adduct observed in
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Fig. 1.Schematic of chemical ionisation mass spectrometer (CIMS)
used in this study. Arrows indicate direction of gas flow. Dimen-
sions are not to scale.

the mass spectrum (Fig. 2). HCN was ionised by I− via an
adduct reaction,

I− · (H2O) + HCN → HCN · I− + H2O, (R1)

which enabled HCN to be detected selectively atm/z = 154.

2.3 HCN calibrations, sensitivity and limit of detection

HCN was calibrated relative to that of formic acid, which
was measured and calibrated in-flight throughout the cam-
paign. The sensitivity of HCN relative to formic acid was de-
termined from laboratory calibrations performed with lab air
with a relative humidity (RH)∼ 55 % and dry air by passing
the lab air through a Drierite dryer. Known concentrations of
HCN (Fig. 2) and HCOOH were flowed into the CIMS under
these conditions, and sensitivities for both gases were calcu-
lated. The BW Technologies HCN calibration cylinder was
diluted from a 10 ppm mix with an accuracy of±10 %, and
the formic acid calibration standard was made as previously
described in Le Breton et al. (2012). An average sensitivity
ratio of 33: 1 was observed. The HCN sensitivity was found
to be independent of water cluster counts. The ion count sig-
nal throughout the flights was normalised to the formic acid

www.atmos-chem-phys.net/13/9217/2013/ Atmos. Chem. Phys., 13, 9217–9232, 2013
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Fig. 2.Mass scan from the CIMS during background (blue line) and
encountering a HCN peak at mass 154 (blue line).

sensitivity, which was determined by calibrations before, af-
ter and during the flight. The average sensitivity (±1σ) for
each flight was determined by taking the normalised sensi-
tivity and multiplying by the reagent ion count rate to ac-
count for reagent ion variability from flight to flight. The av-
erage sensitivity for HCN was 4± 0.9 Hz pptv−1 for 1 MHz
of reagent ion signal. The 0.8 Hz data were then averaged
over 3 s for the analysis here. The limit of detection for HCN
averaged to 3 s was 5 pptv.

2.4 STOCHEM-CRI modelling

The STOCHEM-CRI global chemistry-transport model has
been described in detail in several recent papers (Archibald
et al., 2010; Cooke et al., 2010a, b, c; Utembe et al., 2009,
2011) and will only be briefly described here. STOCHEM-
CRI is a global three-dimensional model, which uses a
Lagrangian approach to advect 50 000 air parcels using a
fourth-order Runge–Kutta scheme with advection time steps
of 3 h (Collins et al., 1997). The transport and radiation mod-
els are driven by archived meteorological data, generated by
the Met Office numerical weather prediction models as anal-
ysis fields with a resolution of 1.25◦ longitude and 0.83◦ lati-
tude and on 12 vertical levels extending to 100 hPa (Derwent
et al., 2008). The CRI (Common Representative Intermedi-
ates) chemical mechanism (CRIv2-R5; Jenkin et al., 2008;
Watson et al., 2008; Utembe et al., 2009) has been incor-
porated into STOCHEM. CRIv2-R5 emits methane and 22
non-methane hydrocarbons. Each air parcel contains the con-
centrations of 219 species involved in 618 photolytic, gas-
phase and heterogeneous chemical reactions, using a 5 min
time step. Formation of secondary organic aerosol (SOA)
was derived from the oxidation of aromatic hydrocarbons,
monoterpenes and isoprene (Utembe et al., 2009, 2011). Sur-
face emissions for CO, NOx and non-methane hydrocar-
bons (NMHCs), distributed over five emission types (anthro-
pogenic, biomass burning, vegetation, ocean and soil), are
taken from the POET (Precursors of Ozone and their Effects
in the Troposphere) inventory (Granier et al., 2012). The dis-
tributions for lightning emissions are parameterized based
on the work of Price and Rind (1992) with the emissions

being distributed evenly between the convective cloud top
height and the surface. The emissions are scaled so that the
global total NOx emission from lightning is 5 Tg (N) yr−1.
The NOx emissions from civil and military aircraft are taken
from NASA inventories for 1992 (Penner et al., 1999). The
implementation of the emissions from aircraft is the same as
for lightning with an annual total of 0.85 Tg(N) yr−1.

The model dynamical scheme and depositional schemes
have been tested extensively through comparisons with
222Rn and other models (e.g. Stevenson et al., 1998) and
were part of a major model inter-comparison study of the
CO budget using 26 global chemistry transport models (Shin-
dell et al., 2006). This inter-comparison showed that model
transport schemes compared favourably with measurements
and other models. The model stratosphere–troposphere ex-
change (Collins et al., 2003) and its ability to transport pol-
lutants over a range of scales effectively (e.g. Derwent et al.,
2004) has also been demonstrated. In addition, convection
within the model has been extensively tested and validated
(e.g. Collins et al., 1999, 2002). Therefore, in terms of trans-
port and depositional loss (loss via OH for HCN is slow), the
model is more than adequate for the intended study.

The biomass burning emissions for HCN are distributed
as that of biomass burning emissions for CO with a single ra-
tio used. The distribution is taken from the POET database;
although there are several other distributions, we have not
integrated them using other methods so that we can make a
direct comparison with other model integrations by us. How-
ever, we do provide an analysis of uncertainty in the discus-
sion section of this paper.

2.5 HCN

Using the biomass burning emission ratios derived in this
work for HCN : CO (3.68× 10−3), the total emission of
HCN via biomass burning introduced into the model was
0.92 Tg (N) yr−1. HCN is removed by reaction with OH
(k = 1.2×10−13exp (−400/T ) cm3 molecule−1 s−1) and de-
posited into the ocean at a rate of 3.4×10−15 g (N) cm−2 s−1.
The model-derived lifetime for HCN is then ca. 3 months,
consistent with other studies. Further simulations were car-
ried out using more extreme ratios derived from other stud-
ies (e.g. 0.43× 10−3, which yields a total emission of
0.11 Tg (N) yr−1, and 12.6×10−3, which yields a total emis-
sion of 3.13 Tg (N) yr−1). In addition to these three integra-
tions, a second set of three, using the three HCN BB emission
ratios relative to CO, was performed with a lower deposi-
tion velocity (halved) leading to an overall lifetime of ca. 6
months.

Atmos. Chem. Phys., 13, 9217–9232, 2013 www.atmos-chem-phys.net/13/9217/2013/
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3 Aircraft measurements

In addition to HCN data, observations of CO and CH3CN are
also used in the analysis. CO data are reported at 1 Hz using
a fast fluorescence CO analyser with an uncertainty of±5 %
(Gerbig et al., 1999). CH3CN was measured by PTR-MS (see
Murphy et al., 2010, for experimental details). During the
BORTAS flights the PTR-MS measured selected VOCs with
a cycle time of around 15 s. CH3CN was measured at am/z

value of 42, which corresponds to the CH3CNH+ ion.
The BORTAS-B campaign was conducted between 12

July and 3 August 2011 based in Halifax, Canada. CIMS
data from 5 flights during this campaign are presented here.
Palmer et al. (2013) present an overview of the campaign
with full descriptions of the operating area, all flights and fire
activity maps. Figure 3 shows the flight paths and altitude of
the aircraft for the data presented here.

4 Biomass burning plume identification

HCN is a known BB tracer (Lobert et al., 1990), and CH3CN
is also an indicator of BB emissions, which is not signifi-
cantly enhanced in areas of anthropogenic activity (de Gouw
et al., 2003, 2006). These tracers and CO are regularly used
to identify BB plumes, but a consistent method has not yet
been established. Variation in background levels can make
it difficult to define exactly when a plume is encountered
without the aid of trace gas measurements which are not
characteristic of BB fires. Hornbrook et al. (2011) defined
a BB plume as having a CO mixing ratio above 175 ppbv, a
CH3CN mixing ratio of > 200 pptv and an HCN mixing ra-
tio of > 400 pptv. When the background concentrations are
low, the plumes selected are generally picked by enhance-
ment above background. This method is likely to cause inac-
curacies as there is no definite point at which “plume data”
can be determined. Vay et al. (2011) limited the HCN mixing
ratio to above 500 pptv, CO to above 160 ppbv and CH3CN
to above 225 pptv, but again they will experience similar is-
sues with background concentrations. Simpson et al. (2011)
state that the plume locations are defined by maximum CO
concentrations. Holzinger et al. (2005) define a plume as
CH3CN concentrations increasing three standard deviations
above neighbouring points.

Here we evaluate a statistical approach to plume identi-
fication by assuming that the threshold limit to define “in-
plume” data is 10 times that of the standard deviation above
the variation in the background (ICH-Q2B, 2009). The life-
time of HCN is long enough to allow plumes to be identified
weeks away from the date of the fire. Dilution during this
period will lower the concentrations, but there will still be
a strong characteristic enhancement above the background
levels, which will be analysed to evaluate if the normalised
excess mixing ratio (NEMR) has been changed. The long-
range transport and evolution of BB plumes can be evaluated
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Fig. 3. The flight tracks from BORTAS-B from the CIMS data are
presented here.

using this method as the plume is not identified by a general
enhancement for any air mass.

In order to define the plume, the median background con-
centration for each flight was calculated. Ten standard devia-
tions were initially implemented as the threshold for “plume
data”. It was found that decreasing the number of standard
deviations incrementally by 1 made no significant change in
the NEMR (i.e. the NEMR was within error the same, andR2

until 6 sigma). This threshold was therefore utilised to create
a HCN to CO NEMR as this allowed the maximum num-
ber of data points to be implemented into the calculation.
The difference between the slopes produced by the 6- and
10-sigma approach is within 2-sigma error and have similar
R2 values 0.72 and 0.67 respectively. The 6-sigma method
reports a higherR2 and utilises more data points in the cal-
culation; therefore the 6-sigma approach is used for the anal-
ysis of flights B621, B622, B624, B626 and B628 as shown
in Fig. 4. The HCN to CO ratios derived from the BORTAS
flights are similar to those reported in the literature (Table 2).
In order to evaluate this method, other possible approaches
to BB plume identification were implemented using this data
set. HCN, CO and CH3CN have all been used in previous
work (Vay et al., 2011; Hornbrook et al., 2011) to identify
BB plumes. We have used 7 methods to define a plume: (1) 6
sigma above the HCN background, (2) 6 sigma above the CO
background, (3) 6 sigma above the CH3CN background, (4)
above 100 ppb of CO, (5) above 300 ppt of HCN, (6) above
175 ppt of CH3CN and 100 of ppb CO, and (7) above 200 ppb
of CO. The HCN to CO NEMRs for each of the methods
with the corresponding errors andR2 value are shown in Ta-
ble 3, and the percentage of data calculated to be in a plume
is shown in Table 4.

The 6-sigma HCN method produced the highest average
R2 of 0.72. The methods using CO as a threshold exhib-
ited low correlations on flight B628, as a result of a peak
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Table 2.HCN : CO NEMRs as quoted in literature and the calculated NEMR for HCN from data collected throughout the BORTAS campaign,
excluding flight B622. NEMR ratio units are ppt ppb−1.

Lobert Singh Rinsland Andreae Sinha Yokelson Simpson Hornbrook This work

11.3 (lab) 0.001–0.011 (CA) 9.82± (AS) 0.43± 0.15 (Sv) 9± 3 (Sv) 12.8± 9.5 (MC) 8.2± 2 (Can) 8.8± 3.8 (As) 3.68± 0.149 (Can)
1.5 (TF) 6± 2 (W) 6.6± 4.8 (Yu) 2.4± 0.9 (CA)
1.4(TF) 9± 5 (G) 7± 5.9 (TF) 7.7± 3.2 (Can)

Sv: African savannas, TF: tropical forests, W: savanna woodland, G: savanna grassland, MC: Mexico City region, Yu: Yucatán, As: Asian, CA: California,
Can: Canada, Lab: laboratory.

Table 3.The HCN : CO NEMRs (in pptv ppbv−1) with R2 of slope for 5 flights during BORTAS campaign calculated using varying methods
previously described in literature.

6 sigma of CH3CN 175 ppt CH3CN
6-sigma HCN 6-sigma CO 6HCN : CO 100 ppb CO 300 ppt HCN and 100 ppb CO 200 ppb CO

Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2

B621 4.70± 0.140 0.83 4.92± 0.114 0.83 4.75± 0.33 0.83 4.81± 0.105 0.85 5.03± 0.180 0.82 5.11± 0.147 0.84 5.81± 0.261 0.83
B622 0.66± 0.048 0.46 0.74± 0.030 0.62 0.85± 0.063 0.74 0.73± 0.033 0.59 0.40± 0.090 0.25 0.78± 0.039 0.61 0.69± 0.051 0.45
B624 2.68± 0.087 0.82 2.91± 0.111 0.76 3.24± 0.216 0.85 2.93± 1.254 0.72 2.72± 0.105 0.76 2.98± 0.141 0.70 3.13± 0.192 0.64
B626 2.72± 0.282 0.81 2.85± 0.222 0.83 2.83± 0.327 0.96 2.94± 0.150 0.83 2.97± 0.207 0.83 3.00± 0.402 0.81 2.64± 0.762 0.74
B628 3.68± 0.149 0.69 6.77± 0.30 0.60 0 0 6.21± 0.51 0.42 0.74± 0.330 0.24 4.66± 0.27 0.30 0 0
Average 2.89± 0.141 0.72 3.64± 0.156 0.73 2.33± 0.186 0.68 3.52± 0.186 0.68 2.37± 0.183 0.58 3.31± 0.309 0.65 2.45± 252 0.53

Table 4.Percentage of data determined to be within a plume from the BORTAS flights using varying possible plume identification methods.

% data in plume

Flight 6-sigma HCN 6-sigma CO 6-sigma CH3CN 100 ppb CO 300 ppt HCN 175 ppt CH3 200 ppb CO
Cn and 100 ppb CO

B621 25.05 38.60 22.35 43.28 16.65 39.00 11.00
B622 46.80 83.47 62.51 73.40 12.31 51.00 49.00
B624 58.25 64.92 55.23 61.07 49.42 49.00 37.00
B626 13.71 22.12 13.89 48.23 24.22 8.00 3.00
B626 46.49 63.65 0 48.52 2.52 12.00 0.00
Average 38.06 54.44 30.80 54.90 21.02 31.80 20.00

in CO during low-level sections of the flight, as shown in
Fig. 5. This can be attributed to non-BB sources of CO en-
hancing the CO levels where no HCN sources were present,
as CO is known to have other natural and anthropogenic
sources (Logan et al., 1981). This highlights a potential prob-
lem when using CO as a marker, as other measurements are
required in order to determine the source. B622 had low
CO concentrations but did show structure which was recip-
rocated by the HCN measurements. The CH3CN data were
too close to the detection limit during flight B628 to be able
to determine a 6 sigma above background. The 200 ppb CO
threshold approach removed all of these data from this flight,
which would suggest that none of the flight encountered a
BB plume. The method previously used by Hornbrook et al.
(2011) produced anR2 of 0.30 for this flight as a result of
the low CO and CH3CN concentrations, whereas the 6-sigma
HCN approach produced anR2 of 0.69. Using CO as a BB
marker is limited due to the variability in sources of CO. This
method can be used for relatively fresh and unmixed plumes,

whereas aged plumes may suffer from enhancements of CO
from other sources.

The methods using CH3CN data did produce a highR2 on
many flights, as shown in Table 3. However, the limit of de-
tection (LOD) of the PTR-MS to CH3CN during BORTAS
was a factor of 2.5 worse than the LOD of the CIMS towards
HCN. As a result when sampling aged (and hence diluted)
plumes, theS/N ratio is not significant enough to identify
a plume, as exemplified by flight B628. Furthermore, as the
PTR-MS was used to detect a range of compounds during
each flight, the time response was slower than that of the
CIMS system. As a result, the CH3CN data have a time aver-
age from 9 to 20 s, depending on the number of target gases
that were being measured. With this particular sampling pro-
tocol, it is difficult to measure accurately plumes close to
the source as the lower measurement frequency may strug-
gle to pick up small plumes as a result of the speed of the
aircraft. Nevertheless, CH3CN can be used to detect a BB
plume accurately, under most conditions, as exemplified by
flight B626.
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Fig. 5. In plume HCN : CO ratio from flight B628 using the 6-sigma HCN approach and the 175 ppt CH3CN and 100 ppb CO thresholds.

Figure 6 displays an altitudinal profile performed in clean
air from flight B622. An average concentration of 45 pptv
is observed to remain fairly constant up to an altitude of
6000 m. The concentration then rises at 6000 m to a maxi-
mum of 111 pptv at 7000 m. Figure 7 represents the whole
data set from flight B622 exhibiting stratification between
atmospheric layers. There is clear evidence of BB plumes
as a function of altitude, providing further evidence of the
preservation of distinct BB plumes. Further investigation into
the variance of NEMRs with altitude shows that all separate

plumes’ NEMRs lie within 2 standard deviations when plot-
ted against the altitude at which they were intercepted. The
biomass-burning-influenced plumes detected throughout the
campaign ranged from 1 to 11 days old when the photochem-
ical age is calculated. Mixing with fossil-fuel-influenced air
masses would change the HCN : CO NEMR, although a high
average HCN : COR2 correlation coefficient of 0.86 indi-
cates that these plumes have not been influenced by fossil
fuel plumes from North America.
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Fig. 7. Altitudinal profile performed during flight B622 in “clean
air”.

Figure 8, presenting all HCN data used to calculate an av-
erage NEMR, exhibits a change in gradient half way along
the axis, possibly due to the higher HCN : CO ratio observed
in flight B621. This outbound transit flight intercepted a
strongly enhanced plume to the east of the Gulf of Saint
Lawrence between 4 km and 7 km. This enhancement was
observed throughout an altitudinal descent until 2 km, where
another layer of BB is encountered. Back trajectories for this
flight (discussed further in O‘Shea et al., 2013) confirm the
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Fig. 8. HCN : CO correlations within BB plumes from the BOR-
TAS campaign as determined using the 6-sigma HCN approach.
Flight B622 data have been excluded due to the possible two sepa-
rate slopes observed.

air mass passed over northwest Ontario, although it may have
also been influenced further afield in areas such as northern
Alberta and the Northwest Territories, possibly explaining
the slight non-linear fit observed in Fig. 8, indicating a de-
gree of mixing during this flight. Acetylene (C2H2) data also
follow the same structure that HCN, CO and black carbon
exhibit.

5 Emission ratios

The 6-sigma technique is used here to calculate the emis-
sion ratio of HCN from 4 flights during the BORTAS cam-
paign 2011. Figure 8 shows all the data points which are used
to calculate the mean NEMR: 3.68± 0.149 pptv ppbv−1. The
NEMR was calculated using the equation

NEMR =
1 [X]plume− [X]background

[CO]plume− [CO]background
. (1)

The data from flight B622 were omitted from this calcu-
lation due to the possible ageing and mixing of the plume.
The NEMRs calculated during BORTAS are similar to those
found in previous work, as seen in Table 2. The NEMRs re-
ported in previous work vary from 0.43 to 12.8 pptv ppb−1.
The NEMR calculated here for HCN from Canadian BB
plumes is lower than that found by Simpson et al. (2011),
8.2 pptv−1 ppb−1. Hornbrook (2011) highlights the observed
variation in the ratios, and offers a possible explanation
for the difference between these NEMRs, but this varia-
tion is not seen from flight to flight during the BORTAS
campaign, which measured both fresh plumes and aged
plumes. Californian fire emission ratios during ARCTAS-
CARB were significantly lower than the Canadian and Asian
fires (Hornbrook et al., 2011), ranging from 2.4± 0.9 to
8.8± 3.8 pptv ppbv−1 respectively. Using the NEMRs calcu-
lated by Hurst et al. (2001), Hornbrook et al. (2011) report
the low ratio of 0.43 pptv ppbv−1 originating from African
savannas, tropical forests and extratropical forests, whereas

Atmos. Chem. Phys., 13, 9217–9232, 2013 www.atmos-chem-phys.net/13/9217/2013/
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Yokelson et al. (2007b) reported a ratio in the Mexico City re-
gion of 12± 7 pptv ppbv−1. The increase in these ratios may
be attributed to the high NOx levels found around Mexico
City. Although emissions of HCN from motor vehicles are
not believed to be important on a global scale, localised emis-
sions may become significant (Crounse et al., 2009). Boreal
forests are the primary source of fires in Canada, whereas
Californian fires may be a result of varying fuels, such as
coniferous forests and grass and shrubs (Hornbrook et al.,
2011).

The 6-sigma HCN method of identifying BB plumes
has shown the veracity of HCN as a BB-influenced plume
marker. In addition, this method performed better than the
others over the BORTAS campaign, as indicated by the statis-
tics presented. Also, the 6-sigma HCN method showed the
ability to define BB plumes accurately in air masses which
had a low HCN background, enabling the identification of
BB plumes in air masses distant from sources that were not
constrained by a set threshold concentration. For example, a
plume may have dispersed over large distances, lowering the
concentration below the limit that defines a plume using pre-
vious methods. Nonetheless, this 6-sigma technique is still
able to identify these plumes, as they are defined relative to
the background. This 6-sigma method also has the same abil-
ity to determine VOC to CO ratios with the percentage of
data at a high time resolution (3 s). This method is therefore
used to determine a HCN to CO ratio for models to calculate
a global HCN budget.

6 Model results

The purpose of the model integrations was to inspect
the global HCN levels generated using the extreme HCN
biomass ratios (relative to CO) reported in the literature and
the value determined in this study, using two ocean deposi-
tion velocities that lead to HCN lifetimes of ca. 3 months and
ca. 6 months. It should be noted that the variation in emission
ratio reported in the literature is not in question here. There
are myriad reasons for the variation in terms of vegetation
type, temperature of the burn, etc. It is also noted that the
limited available field measurements make comparison and
constraint of the model somewhat limited. However, as we
hope to show, the model results are instructive. The model
results are in line with basic expectations: as the emission
ratio increases, the global HCN level increases; when the de-
position velocity is decreased, the global HCN for all three
integrations also increases. Model results are presented in
Fig. 9, which shows yearly averaged latitude–altitude pro-
files. Given the overall uncertainties, it is not justified to
present more detailed seasonal results. We have deliberately
used one HCN / CO ratio to distribute HCN emissions in
these model runs to simplify them. We are not trying to repro-
duce any field data, but we can compare with measurements
and of course compare between the integrations performed

in a straightforward manner. If we assume the lower depo-
sition velocity leading to a lifetime of about 6 months, we
observe that an emission ratio of 0.4×10−3 leads to a global
yearly averaged HCN level of 10–20 ppt. An emission ratio
of 12.6× 10−3 leads to a global yearly averaged HCN level
of 300–600 ppt, and an emission ratio of 3.7× 10−3 leads to
a global yearly averaged HCN level of 80–180 ppt. In each
case the highest levels are observed over the tropical regions,
obviously driven by high biomass burning, with little vari-
ation in vertical structure, reflecting the surface deposition
process dominating loss and leading to a sink in the South-
ern Hemisphere in the model.

There is no attempt here to reproduce field measure-
ments, but it is instructive to compare field data with the
model. We have concentrated on lower and mid-tropospheric
measurements and note that there are measurements in
the upper troposphere and lower stratosphere. Liang et al.
(2007) observed HCN using aircraft during INTEX-A (July–
August 2004). This field campaign ranged across the USA
and Canada and took in measurements in both the Pacific
and Atlantic oceans. Although very high levels were de-
tected in biomass burning plumes (1090± 850 ppt), the back-
ground levels observed were 290± 70 ppt. In their compar-
ison, Liang et al. (2007) reported levels in Asian plumes of
420± 60 ppt compared with 270± 80 ppt returned by Jacob
et al. (2003) during Trace-P. Notholt et al. (2000) conducted
vertical column measurements of HCN and other gases be-
tween 57◦ N and 45◦ S across the central Atlantic. HCN was
detectable between 30◦ N and 30◦ S, with column amounts
retrieved between 0 and 12 km. The HCN column amounts
ranged from 100 to 220 ppt, with the maximum occurring
just south of the Equator (10–15◦ S). Singh et al. (2003) re-
port HCN levels of around 250± 150 pptv for HCN in Febru-
ary to April, and Ambrose et al. (2012) and Rinsland et al.
(2007) report mean mixing ratios of 360 ppt and 220 ppt re-
spectively, while Knighton et al. (2009) report a concentra-
tion ranging from 100 to 600 ppt and a mean background
of 200 ppt. Therefore, based on the available measurements
discussed thus far, we would conclude that yearly averaged
levels of HCN vary between approximately 100 and 450 ppt
in the lower to mid-troposphere. In the upper troposphere
lightning may well contribute an additional non-negligible
source, and this region will be impacted by continental-scale
plumes, evidenced by a variety of measurements (e.g. Liang
et al., 2007; Singh et al., 2007; Park et al., 2008; Randel et
al., 2010; Wiegele et al., 2012). These plumes will contain
a mixture of potential sources of HCN, of which biomass
burning may well be the most predominant. It is also recog-
nised that emission ratios will vary for different types of
biomass burning, depending on vegetation type, temperature
of burn, etc. No one ratio will be representative of the global
emission. However, inspection of the model integrations sug-
gests that the extreme ratios returned from field measure-
ments are indeed extreme values: adopting a uniform ratio
of 0.4× 10−3 returns a globally averaged HCN that is far
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too low, irrespective of whether the lifetime is 3 or 6 months.
Similarly, adopting a ratio of 12.6×10−3 produces HCN lev-
els that have been observed but they are somewhat higher
than expected for a yearly average, given the background
measurements made. Using the ratio derived in this study
as a global value produces HCN levels that are reasonable,
compared with available field measurements, but are an un-
derestimate. An underestimate is completely consistent with
the fact that more influential biomass burning regions have

returned a higher HCN : CO ratio. The satellite-derived mea-
surements of Wiegle et al. (2012), although restricted in al-
titude to above 5 km, suggest strongly that biomass burn-
ing (particularly that located in the Southern Hemisphere)
is a dominant source and lends confidence to the present
broad brush model comparisons with measurements. Vege-
tation has also been suggested as a non-negligible source of
HCN (e.g. Fall et al., 2001), and vertical profile data from the
Jungfraujoch station in Switzerland (Rinsland et al., 2000)
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Table 5. Estimated CO emission totals from biomass burning in
Tg yr−1. * Totals reported following the analysis of Stroppiana et
al. (2010).

Total (Tg yr−1) Source Reference

720 inventory Andreae and Merlet (2001)
1422 VGT inventory Liousse et al. (2010)∗

548 ATSR inventory Mieville et al. (2010)∗

770 MODIS inventory Chin et al. (2002)∗

365 GFED3 inventory Van der Werf et al. (2010)∗

594 MOPITT inventory Pétron et al. (2004)
270 Model derived Taylor et al. (1996)
507 Model comparison Shindell et al. (2006)
494 POET inventory Granier et al. (2005)

suggest that, in addition to biomass burning, there may well
be a significant direct emission from vegetation.

It is clear that the depositional velocity adopted for HCN
is crucial in any budget analysis, and for the ones used in this
study increasing the lifetime of HCN from ca. 3 months to
6 months increases model HCN levels by a factor of∼ 1.4,
irrespective of the emission ratio used. In this integration the
CO biomass burning total used is∼ 500 Tg yr−1. There are a
range of estimates for this total summarised in Table 5.

There is a wide range of estimates, but the majority lie be-
tween 750 Tg yr−1 and 350 Tg yr−1. Therefore to a first ap-
proximation the model-estimated HCN levels will vary by a
factor of 1.5 based on the CO emission uncertainty alone.
HCN : CO biomass burning emission ratios will vary with
type of burn and vegetation and are summarised in Table 5.
Note that this ratio will vary with vegetation type and that
using one ratio is not physically correct. However, the range
reported has allowed us to investigate in a simple way the
impact of these ratios on atmospheric levels.

In summary, model integrations suggest that the extreme
ratios reported in the literature generate too little or too much
HCN and really are extreme values. Using the ratios reported
in this study to drive the model emissions produces HCN
levels that are an underestimate compared with a range of
field measurements, which are consistent with the fact that
higher ratios are seen in tropical biomass burning events for
example. However, the model integrations highlight that de-
positional loss is very important to determining HCN atmo-
spheric background levels and that further work is required
to constrain this loss process. In addition, more atmospheric
measurements are welcome, particularly vertical column and
transects.

7 Conclusions

A CIMS instrument was developed for the airborne mea-
surement of HCN in the lower atmosphere using methyl io-
dide as the ionisation reagent gas. HCN measurements were
successfully attained over Canada in July and August 2011,

during the BORTAS-B 2011 campaign on board the FAAM
BAe-146 aircraft. The high sensitivity (4± 0.9 ion counts
s−1 pptv−1), low limit of detection (5 pptv) and selectivity
of the data acquired and presented here with a time resolu-
tion of 3 s illustrate the ability of this instrument to measure
HCN with a high precision; it is, therefore, a highly sophis-
ticated instrument for detecting BB-influenced plumes. The
mixing ratios measured through the BB-influenced plumes
ranged from 0.67 to 5.2 ppb covering the range of previ-
ously reported atmospheric levels (Singh et al., 2003, 2012;
Knighton et al., 2009) and were strongly correlated with CO
and CH3CN, strengthening the ability of HCN to be a unique
marker for biomass burning.

The 6-sigma methodology implemented and tested here
for plume definition has been shown to produce the strongest
correlation with CO, indicating that it is potentially an ex-
cellent method for defining biomass burning plumes. The
NEMR (relative to CO) calculated using this plume identifi-
cation method was 3.68± 0.149 pptv ppbv−1, which is in the
range of previously reported values (Andreae et al., 2001;
Sinha et al., 2003; Yokelson et al., 2009; Hornbrook et al.,
2011) indicating the precision of the HCN measurements.
The study-averaged NEMR was then used to estimate the to-
tal emission of HCN via biomass burning, which was calcu-
lated to be 0.91 Tg (N) yr−1.

These first results of HCN measurements by CIMS using
I− chemistry show the capability of CIMS to attain high-
frequency HCN measurements in the lower atmosphere with
a high sensitivity and low limit of detection. The data pro-
duced also show the accuracy at which HCN measurements
can define biomass burning plumes and the reliability of this
method.
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