
F-Logic:
A Higher-Order Language for Reasoning
about Objects, Inheritance, and Scheme

Michael Kifer*
Department of Computer Science

SUNY at Stony Brook, Stony Brook,
NY 11794, U.S.A.

Abstract

We propose a database logic which accounts in a clean
declarative fashion for most of the “object-oriented”
features such as object identity, complex objects, in-
heritance, methods, etc. Furthermore, database schema
is part of the object language, which allows the user to
browse schema and data using the same declarative for-
malism. The proposed logic has a formal semantics and
a sound and complete resolution-based proof procedure,
which makes it also computationally attractive.

1 Introduction

Object-oriented approach to databases has generated
considerable interest in the community in the past few
years. Although the very term “object-oriented” is
loosely defined, a number of concepts have been identi-
fied as the most salient features of that approach. Ac-
cording to [4,39,9,43] and a number of other surveys,
these concepts are: complex objects, object identity,
methods, and inheritance.

One of the reasons for the interest in object-oriented
database languages is that they show promise in over-
coming the, so called, impedance mismatch [28,9] be-
tween programming and database languages. Mean-
while, a different, de&dive, approach has gained enor-
mous popularity both in databases and programming

*Supported in part by the NSF grant DC%8603676; Work
partially performed while visiting the University of Mannheim,
W. Germany

Permiuion to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is
given that copying is by pemksion of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-317-5/89/ooO5/0134 $1.50

Georg Lausen
Fakult &t fiir Mat hematik und Informatik

Universitgt Mannheim, D-6800 Mannheim,
West Germany

languages. Since logic programming can be used as
a full-fledged computational formalism as well as a
database specification language, proponents of the de-
ductive approach have also argued that it is capable of
overcoming the aforesaid mismatch problem. However,
in their present form both approaches have shortcom-
ings. The main problem with the object-oriented ap-
proach is the lack of formal semantics which is tradition-
ally considered to be very important in databases. On
the other hand, deductive databases normally use flat
data model and do not support object identity and data
abstraction. It therefore can be expected that combin-
ing the two paradigms will yield significant benefits.

A number of attempts to combine the two approaches
[1,2,5,6,7,13,20,23,22,27,37] have been reported in the
literature, but, in our opinion, none of them succeeds
in meeting all of the above goals. These approaches
either do not support object identity, or restrict the
kinds of complex objects and queries one can use, or do
not support inheritance, limit deduction, etc.

In this paper we propose a formalism, called Frame
Logic (abbr. F-logic), which is a full-fledged logic
achieving a21 of the goals listed above and, in addi-
tion, is suitable for defining and manipulating database
schema. Our work has also implications for the frame-
based languages in AI [16,33], which are essentially
scaled down versions of complex objects with identity,
inheritance, and deduction. It is this connection that
the name “F-logic” was derived from.

To reason about inheritance and schema we need ca-
pabilities of higher-order logics. However, these are usu-
ally much too powerful to be useful for our purposes. A
number of researchers have suggested that the “useful”
parts of higher-order logics can be given a first-order se-
mantics by encoding them in predicate calculus [18,32].
However, this provides only an indirect semantics and
is not true to the spirit of object-oriented programming
and frame-based languages in AI. In contrast, we pro-
pose a logic which has an appearance of a higher-order
logic, but, unlike it, is tractable and has a natural di-

134

rect first-order semantics. More precisely, according to
the classification of [12], F-logic has a higher-order syn-
tax and a first-order semantics. A sound and complete
proof procedure for F-logic will be described in the full
paper.

This work is an extension of [20], which in turn was
based on Maier’s O-logic [27]. In [20] a distinction be-
tween objects, classes, and relationships is maintained,
which is the main reason why inheritance, methods, and
schema cannot be reasoned about in these formalisms.

This paper is organized as follows. In Section 2 we
present the syntax and semantics of F-logic, and Sec-
tion 3 presents Skolem and Herbrand theorems; in Sec-
tion 4 we illustrate the higher-order capabilities of F-
logic.

2 Syntax and Semantics of F-
logic

In this section we describe the proposed logic by means
of an example, followed by a formal account of the syn-
tax and semantics.

2.1 F-logic by Example

In developing F-logic we were motivated by the desire
to capture in a logically clean way a number of scenar-
ios whose most salient common features are depicted
by way of an example in Figures 1 and 2. Figure 1
shows part of the IS-A hierarchy. All classes and indi-
vidual objects are taken from the same domain and are
organized in a lattice. It asserts that a faculty and an
assistant are employees, student and empl are persons,
“Mary” and “CS” are strings, mary is a f acuity, while
sally is a student. Notice that the lattice is ordered
with respect to the “definedness” ordering of denota-
tional semantics, or, equivalently, with respect to the
relative “knowledge content” [17]. For instance, a state-
ment assistant : john (john is an assistant) is more in-
formative than empl : john because every assistant is
an employee, but not vice versa. Therefore, assistant
has more knowledge content and is located above empl.
In general, a class is always located below each of its
instances. Furthermore, note that classes are reified by
being placed in the same domain with their instances.
Thus the same object (e.g. empl) can be viewed as
an instance of its superclass (person) and, at the same
time, as a class of all objects located above it in the
lattice.

Figure 2 presents facts about employees, students,
etc. The first clause says that object bob is a faculty
whose name is “Bob” (notice: bob is an id of the ob-
ject, while “Bob” is a string representing bob’s name).

Additionally, this clause states that bob works in the
department csl, the department name is “CS” and
the manager is an employee denoted by the constant
Phil. Clauses (2) through (4) present similar infor-
mation about mazy, john, and sally. Note that the
f Tiends attribute in mary’s record is set-valued, which
is syntactically expressed by means of the set construc-
tor { }. Our syntax is that from [27,20] with some em-
bellishments from [l3].

Clauses (5), (6), and (7) provide general information
about classes faculty, students, and empl, such as that
faculty are normally supervised by faculty and are mid-
dle aged, students are normally young, etc. Clause (8)
is a rule stating that employee’s supervisor is the man-
ager of the department the employee works in.

Clause (9) is a rule defining a method: for each per-
son, X, the method children is a function which for a
given argument, Y, returns a set of persons containing
all the children common to X and Y. Notice that the
term children(Y) appears in the same clause (9) in two
different roles: in the head of (9) it is in the “attribute”
position, where it denotes the aforesaid method, and it
is in the “object” position in the body of (9), where it
denotes the id of the object whose content is the set
of children of Y. Thus, any ground instance of this
term, say chiIdren(mury), has two different roles: it
denotes the object representing all mary’s children and
also a function which, for each person, returns a (possi-
bly empty) set of all children mary has with that per-
son. Thus, in F-logic, the same syntactic term may
denote different things, depending on the context it ap-
pears in. This feature allows one to pose meta-queries
about the objects, such as “retrieve a set of all objects
which represent the labels defined for a certain object”.

Two applications of method children are demon-
strated by queries (10) and (11). Query (10) asks for
the father of mary’s child sally, and (11) requests all
children mary has with Phil. Query (12) is requesting
information about all middle aged employees working
for the “CS” departments. Particularly, for each such
employee, it is requesting the supervisor, age, and the
department. The expected answer to this query is
(13) bob[euperuisor + T, age ---) 40, works -+ CLQ]

(14) mary[superuisor 3 f acuity, age -t 30,
works + ~821

To see that bob is an answer, first observe that, by (l),
bob is working for the “C‘S” department and that bob
has age 40, which is a value belonging to class midaged
(see Figure 1). The value for SUpeTUiSOT is partly in-
ferred from the rule (8) and partly inherited from the
general description (5) of class f acuity. Indeed, the rule
suggests that bob’s supervisor should be Phil, while on
the other hand, being a faculty, bob’s supervisor has

135

ehi&n(john)

I

Figure 1: Part of the IS-A hierarchy

Facts:

(1) facUZQ/ : bob[name --) “Bob”, age + 40, works + dept : csl [dname + “C’S”, mngr + empl : Phil]]

(2) f acuZty : mary[name + “Mary”, age + 30, f Tiends + {bob, sally), woTk8 + dept : caz[dname + ‘C’S”]]

(3) assistant : john[name + “John”, works t csl[dname ---) “CS”]]

(4) student : saZZy[age + midaged]

General Class Information:

(5) faalty[au pe Tvisor -+ f acuZt y, age -P midaged]

(6) student[uge + young]

(7) empZ[eupervis~ + empl]

Rules:

(8) E[SU~~ZTV~SOT -+ M] ti empZ : E[wmks + dept : D[mngr + empl : M]]

(9) X[chiZdren(Y) -+ {Z}] *person : Y [chiZdTen_obj -+ chiZdren(Y)[membere -+ {pereon : Z}] 1,

Queries:

person : X[chiZdTen-obj ---) chiZdren(X)[members --) (person : Z}]]

(10) mary[chiZd?en(Y) --) {sally}]?

(11) mary[chiZdTen(phiZ) -+ {Z}]?

(12) empl: X[su pe rvieor + Y, age -+ midaged : 2, works + D[dname + “CS”]]?

Figure 2: A Sample Database

136

to be in the class faculty. However, looking at Fig-
ure 1, we observe that phi1 is not an instance of faculty.
The semantics of F-logic then suggests that the value of
SU~TV~SOT for bob should be Zub(phi1, faculty) which is
T (see Figure 1). That is, the information about Phil’s
supervisor is inconsistent.

Clause (14) is retrieved because mar y is in the yuppie
age, and thus is also a middle aged person. On the
other hand, the object denoted by constant john is
not retrieved because john, being a student, inherits
young from (6), and according to Figure 1, young is
not an instance of midaged. However, if the restric-
tion midaged : Z in query (10) were dropped, then the
following clause will be retrieved as well:

(15) john[eupervisor -+ phil, age + young,
works + CLQ]

The supervisor of john is inferred by rule (8), since
john is working in csi, and, due to clause (l), depart-
ment csi is managed by Phil. An interesting point here
is that, unlike bob, john is not a f acuity and therefore
is not subject to the restriction imposed by clause (5)
that his supervisor must be a faculty. Therefore, no
contradiction with john’s supervisor being phi1 arises!

One additional important observation is that dis-
agreements in attribute values need not always result
in inconsistency as in the bob’s case. For instance, sally
is midaged according to (4), but, being a student, she
inherits young from (6). In F-logic this logically en-
tails saZZy[uge + Zub(young, midaged)], which is yuppie
according to Figure 1.

The example of Figures 1 and 2 alludes to the point
that in F-logic we are dealing with higher-order con-
cepts. For instance, in Figure 2, attribute friends is
essentially a set-valued function which for each person
returns a set of persons. Similarly, the user can think
of objects of the lattice displayed in Figure 1 as sets
ordered by subset relation, and use higher-order intu-
itions to develop programs and models. However, the
underlying semantics formally remains first-order (see
[12] for details), h h 11 w ic a ows us to overcome the diffi-
culties normally associated with truly higher-order the-
ories.

The first-order behaviour with respect to sets is
achieved by introducing typing so that single-valued
and set-valued functions do not mix. Furthermore, for-
mally, F-logic has only flat sets, but we can model arbi-
trarily deeply nested sets in a very natural way. F-logic
shares this behaviour with respect to sets with other
two related formalisms [13,20] and more discussion on
that can be found in [20]. The first-order behaviour
with respect to the class/subclass hierarchy is achieved
by defining a lattice structure on the set of objects and
classes which allows us to model sets in quite an au-

thentic, yet inexpensive, way.

2.2 Syntax

The alphabet of F-logic consists of (1) a set 0 of basic
objects, (2) a set of object constructors 7, (3) an infinite
set of variabZes, V, and (4) usual logic connectives and
quantifiers V, A, V, 3, 7, e, etc.

The “objects” in F-logic are either complex objects
in the usual sense, or classes of objects. Unlike other
approaches which treat classes and instances as inher-
ently different entities, we do not emphasize the distinc-
tion. For instance the object student can be viewed
as representing the class of students (each individual
student being its instance) and at the same time as
an instance of its superclass represented by the object
person. Thus, in F-logic classes have the same meaning
as in frame-based formalisms (e.g. [16,33]) in the sense
that a class is viewed as an instance (rather than a sub-
set) of a superclass. This feature is largely responsible
for the fact that inheritance is naturally built into the
semantics of F-logic, contrasting it to algorithmically
defined inheritance in other approaches.

Basic objects (elements of 0) are the constants of F-
logic. Object constructors (elements of 7) are logically
function symbols over 0 of arity >_ 1; they are used to
construct new objects. Although members of 0 can be
viewed as 0-ary object constructors, it is convenient to
consider them separately, and we assume that 0 and 3
are disjoint. An id-term is a term composed of function
symbols (i.e. object constructors), constants (i.e. basic
objects), and variables in the usual way. The set of all
ground (i.e. variable-free) id-terms is denoted by O*. In
the following we will show that 0’ essentially plays the
role of Herbrand universe of F-logic. Conceptually id-
terms should be viewed as objects themselves or as ob-
ject abstractions which are commonly referred to as ob-
ject identity [19]. Objects represented by id-terms other
than constants (non-basic objects) are best perceived as
being constructed from simpler objects. For instance,
the object university(state) can be taken as a class rep-
resenting universities, while the object university(nys)
is the class of universities in New York State (assuming
nys is an instance of class state).

In O-logic [27,20], which is a predecessor of F-logic,
there was a distinction between objects and Za5eZs and
the latter were viewed exclusively as binary relations
among objects. This distinction made it difficult to rea-
son about entities and relationships in a uniform frame-
work; it can be traced to the Entity-Relationship model
where entities (objects) and relationships (labels) con-
stitute two disjoint categories.

In F-logic, every object can be viewed as an entity
or a relationship depending on the situation (namely,

137

on its syntactic position in a formula). In its role as
a label, each object has a type: a label can be either
single-valued (sometimes also called functional) or set-
valued. Accordingly, we partition 0’ into a pair of
disjoint sets t# (for objects typed as functional labels)
and C, (for objects typed as set-valued labels).

We require the aforesaid partition to be congruent:
ifti,si, t,, 8, E U*, where for each i, ti and 4 are
in the same partition, and f E 3 is an n-ary object
constructor, then f(ti,. . . , t,) and f(zi, . . . , an) belong
to the same element of the partition (C, or C,).

This restriction is needed to be able to specify types
on CY* effectively and check them efficiently. Indeed,
under the congruence assumption, assigning types to
elements of UC involves the following: (1) assigning a
type to each element of 0; (2) specifying the type of
f(Cl, ***, Ln) for every n-ary function symbol f E 3
and each n-tuple < Cl, . . . , L, >, where each Lj is
either L# or L,. Since the cardinality of 0 and 3 is
finite in practical cases, this procedure is effective. To
check the type of a term t E U*, one needs to “evaluate”
this term by substituting types for subterms, starting
with constants. This procedure is linear in the size of
the term. Furthermore, we suspect that, in practice,
one needs to assign only a single type to the range
of each function symbol (regardless of the argument
types), which then makes type definition linear in the
sizes of 0 and 3, and type checking can be done in con-
stant time by checking the range type of the outermost
function symbol.

The language of F-logic consists of a set of formulae
constructed out of the alphabet symbols. Formulae are
built from atomic formulae by means of the usual con-
nectives 7, V, and A, and quantifiers 3 and V. Atomic
formulae are, so called, F-terms (F-logic terms). Later
we will see that the id-terms introduced earlier can be
viewed as a special case of F-terms.

For convenience, we will use names starting with
lower-case letters to denote ground terms, and names
starting with capital letters to denote possibly non-
ground terms. An F-term (cf. [27,20]) is

(1)

(2)

a simple F-term, P : Q, where P and Q are id-
terms, or

a complez F-term, P : Q [Flabl + Tl, . . . ,
Flab,,, * Tin, Slab1 --) {&,I, . . . , %,I), . . . ,
Slab1 -+ {&,I, . . . , Sk,,r}]. Here P, Q are id-terms;
Flabi and Slabj are also id-terms, but we chose to
name them differently to indicate that their syn-
tactic position within the F-term emphasizes their
role as labels. Furthermore, the appearance of the
set construct, { }, indicates that the respective id-
terms SlabI, Slab, are supposed to be typed as
set-valued labels; the rest of the labels, FlabI,

Flab,, are functional. The order of labels in an
F-term is immaterial. Finally, in the above, Ti and
Sri,,, denote F-terms.

It is worth noting here that, since we chose a sort-
less setting for F-logic, typing of nonground labels is
virtually impossible. Consequently, say, t = a[X -+ b]
is considered to be a syntactically correct term, even
though X may be bound to ground id-terms typed as
functional as well as set-valued labels. However, the
semantics is set up in such a way that, since the syn-
tax of t calls for a functional label, t will be always
false whenever X is universally quantified. Further-
more, even the constructs such as a[Zab+ c, lab -+ {d}]
are syntactically correct F-terms, despite the fact that
lab must be a functional label due to one part of the
term, and a set-valued label due to the other. How-
ever, according to the F-logic semantics, this term is
unaatiafiable.

Intuitively, the F-term (2) above is a statement about
an object, Q, asserting that it is an instance of the class
P and haz properties specified by the labels. Thus,
when no labels are specified we can omit the brackets,
thereby reducing a complex F-term, P : Q[1, to the
simple F-term P : Q.

To account for the higher-order features of frame-
based and object-oriented formalisms without incurring
the overhead of the higher-order predicate calculus, we
reify classes and model class membership by means of a
lattice ordering instead of the true set-theoretic mem-
bership. Formally, we assume that the elements of 0’
are organized in a lattice1 by means of the ordering
40 . As usual, -& stands for 40 or =. We distin-
guish in 0’ the maximal element, T, and the minimal
element, 1. The maximal element, T, can be viewed as
a “meaningless” object which represents a class with no
instances; I can be perceived as the object representing
the biggest class (or as the “unknown” object).

The lattice on U* is a static part of the language2,
and can be viewed as part of schema specifica-
tion: the lattice represents the transitive closure of
the “subclass-of” and the “instance-of” relationships
among classes, so that p 40 q (e.g. person 40 student
or student 40 john) means that q is a (possibly indi-
rect) subclass or instance of p. As mentioned earlier,
we do not distinguish between individual objects and
classes: any object, d, is treated as a class whose exten-
sion contains all objects/classes found above d in the
lattice. Therefore, any element p E U* may appear in
an F-term in the “instance position”, q : p[...], and in

1 When objects are considered in their role as labels, the lattice
structure on labels is ignored.

ll’his assumption is needed for F-logic unification to be

decidable.

138

the “class position”, p : T [...I. This gives F-logic a “feel”
of a higher-order language, although its semantics is es-
sentially first-order [12]. Accordingly, we will use the
terms “instance” and “class” to refer to the same ob-
ject, p, depending on whether we want to emphasize
p in its role as a class or as an instance in its respec-
tive superclass. Part of a sample lattice structure on
0’ is depicted in Figure 1. We impose the following
monotonicity restriction on the lattice U*:

if tl 30 al, t, 50 8, then
fbl ,-&a) Ib f(81r .a-, 4;

This simply means that object constructors are
monotonic functions on the lattice: for instance,
if pereon+ john, i.e., John is a person, then
car(person) 40 car(john) meaning that John’s cars be-
long to the class of cars owned by persons.

Monotonicity is necessary for the resolution proce-
dure to be complete, which will be discussed in the
full paper. Apart from that, this ensures that the lat-
tice structure on U* can be given effectively as part
of schema specifications and that the “instance-of” re-
lationship can be verified efficiently. Indeed, in prac-
tical cases, 0 and 3 are finite and 40 can be first
specified on 0. To complete the specification of the
lattice order, one only needs to provide typing informa-
tion for each of the finite number of object construc-
tors by specifying the classes for the range and the
arguments. For instance, con8 : edge x path-path
(meaning path 40 cons(edge,path)) is an example of
such typing information. Additional typing for func-
tion symbols can be automatically inferred using the
well known type inference techniques (e.g. see [lo]).
Verification of whether t 30 8 holds for a pair of ground
id-terms t, 8 E U* can be done in a way resembling the
usual unification algorithm and will be discussed in the
full paper.

Every F-term is also an (atomic) F-formula. F-
formulae are constructed from other (simpler) F-
formulae by means of logical connectives and quanti-
fiers.

To simplify the notation we assume the follow-
ing convention: if a single-valued label, Lab, in an
F-term is omitted then the intention is Lab-t I :
I; similarly, if a set-valued label, Lab’ is omit-
ted then we assume Lab’-+ { }. Furthermore, if
a class specification is omitted then I is assumed.
Thus, for instance, john[name --tat&g : “john”]
and I : john[name + string : “john”, pay+ -L :
I, children + { }] are considered to be the same term.
This convention allows us to view id-terms as a special
case of F-terms by identifying P and I : P[1.

2.3 Semantics

Before presenting the semantics, we will need to intro-
duce an ordering on the powerdomain of a lattice. This
ordering was also used in [5] and is sometimes called
Hoare’s ordering [8]. Given a lattice U with the order-
ing 5~ and maximal and minimal elements TV and Iv,
the preorder & on the powerset 2’ is defined as fol-
lows: for any pair of sets X, Y E U, we write X & Y
iff for every element z E X there is y E Y such that
X3UY.

The preorder & on 2 IJ is not an order, since it
is cyclic. For instance {u} & {a, Iv} !& {u} and
{Tu} Eu U Cu {Tu}. II owever, 2” can be considered
a lattice modulo the equivalence relation MU, where
X R:LI Y if and only if X &I Y and Y & X. The
maximal and minimal elements in this lattice are the
equivalence classes of { } (the empty set) and {Tu},

respectively. To simplify the language, we will often
talk about the lattice structure on the powerset of U
disregarding the aforesaid subtlety.

Similarly, given a pair of lattices, U and V, we
can define a lattice structure on the set of mappings
U + V, denoted Mup(U, V), as follows: f +ap(U,V) g
if for every u E U, f(u) 5~ g(u). Two kinds of lat-
tice mappings, monotonic (denoted Mon(U, V)) and
homomorphic3 (denoted Hom(U, V)) are of particular
importance. Clearly, Hom(U, V) C ikfon(U, V).

Semantics of F-logic can now be defined as follows.
Given a language of F-logic, its interpretation, I, is a
tuple < U, go, gz, I#, J* >. Here U is a universe of all
objects which is required to have a lattice structure with
Iv and TV being the smallest and the largest elements,
respectively, and with the lattice ordering 5~; U is par-
titioned into a pair of subsets U# and U, to account for
the types of elements of 0’. It is useful to think of the
elements of U* as the names of objects, while the ele-
ments of U are best thought of as the object8 themselves
in the possible world I.

The homomorphism go : 0’ + U is interpreting ob-
jects of U* by elements of U, so that g,,(t#) c U#
and gO(L,) c U,. The mapping gP : 3+Mon(Uk, U)
interprets each k-ary object constructor, f E 3, by a
monotonic mapping Uk + U. Additionally, go and gr
are related as follows: if t = f(.q,a.) E U* then
So(t) = 97(f)(90(81),...rSo(8n)).

The reader may notice that constants and function
symbols are interpreted essentially the same way as in
predicate calculus. The only difference is that the set of
ground terms, U’, and the domain, U, now have lattice
structures which must be accounted for.

In their role as labels, objects are interpreted

3i.e. the ones preserving lub and glb.

139

by associating appropriate mappings to each ele-
ment of U using functions J# and 3,. More specif-
ically, J# : U# + Mon(U, U) associates a mono-
tonic mapping U -+ U with each element of U# and
3* : U, -+ Mon(U, 2”) associates monotonic mappings
U + 2’ with elements of U,. Notice that J# and J+
ignore the ordering +J induced on Us and U, by U.

Thus, set-valued labels are interpreted by monotonic
set-valued functions, while functional labels become
monotonic single-valued functions. Notice that these
functions are associated with the elements of U, not
U’, because, as noted earlier, 0’ is, strictly speaking,
only a set of object names; these are interpreted by the
“real” objects in a possible world, I, and it should be
the objects, not their names, who can assume roles (of
labels) 4.

A variuble assignment, V, is a mapping from vari-
ables, V, to the domain U. We extend it to id-terms
in the usual way: y(d) = go(d) if d E 0 and, recur-
sively, v(f (..., T, . ..)) = gF(f)(. . . . v(T), . ..). To simplify
the notation, we will also extend variable assignments
to F-terms as follows: V(P : Q[. . .]) = V(Q).

Let I be an interpretation and Y a variable assign-
ment. The meaning in I under Y of an F-term T,
denoted MI,“(T), is a statement about the existence
(true) or nonexistence (false) in I of an object v(T)
with the properties specified in v(T). Consider an F-
term, T = P : Q[. . . , Flabi --tTi, Slabi -+ {Sl,
S,}, . . .], where P, Q are id-terms in their role as ob-
jects, Flab{, Slabj are id-terms in their role as func-
tional and set-valued labels, respectively, and T{, Sk
are F-terms. Then
conditions hold:

J%v m = true iff the following

(1)

(2)

(3)

v(P) dcr y(Q);

for each id-term
3,

Flabi (intended as a functional la-

Y(FZabi) E U#,
: v(Z) -+I 3#(u(FM))(y(Q)), and
- MI,,&) = tT’UE;

for each id-term Slabj (intended as a set-valued la-
bel),

u(Slabj) E U*,
4 (S) v I J~~~J~(sm)~ Eu J*(v(Slabj))(dQ)h and
- MI,,,(Sk) = true for k = 1, m.

Here (1) simply says that the object V(Q) must be in the
class V(P) in the possible world I. In (2) and (3), the
first condition says that id-terms representing the la-
bels must be appropriately typed; the second condition

‘There is also a tecbnicd reason for that, which becomes ap-
parent when one tries to define formula satisfaction w.r.t. a vari-
able assignment.

says that for an F-term, T, to be satisfied by a possi-
ble world, I, w.r.t. Y, that world must have at least
as much information about the object denoted by u(T)
as the amount of information asserted by T. Finally,
the third condition in (2) and (3) simply says that the
properties of Q asserted by T (i.e., Ti, Sj, etc.) must
also be true in I w.r.t. V.

Notice that according to these defi-
nitions, MrlY(T) = MI,“(~) = MIIY(d) = true and
MI,~(~ : d) = MI,,(d : T) = true for every d E 0’.
Similarly, if I -+J d 40 T then MI,,(d : I) = Ml,,(T :
d) = false.

Meaning of the formulae 4 V 4, 4 A 4, and -$ is de-
fined in the standard way: MI,,(# V ~6) = true (resp.,
Mr,Jd A $1, r-p. MI,~(%)) iff MzJd) = tTw V
MI,,,($) = true (resp. MI,,(+) = true A MI,,($) =
twe, resp. MllY(+) # true). The meaning of quan-
tifiers is also quite standard: MI,“($) = true, where
$ = (VX)q5 (resp. II, = (3X)$) if for every (resp. some)
p which agrees with u everywhere, except possibly on
X, MI,,($) = true.

Clearly, for a closed formula, $, its meaning is inde-
pendent of a variable assignment, and we can simply
write MI($). A n interpretation I is a model of II, if
M&b) = t+ue.

As an aside, other orderings on powersets over lattices
are possible. For instance, according to the Smyth ‘a or-
dering [8], X CZu Smyth Y iff for every element y E Y
there exists z E X such that 2 5~ y. Presumably, we
could use this ordering instead of Hoare’s in our seman-
tics. This would allow us to enforce typing constraints
on elements of sets the same way as we do it for func-
tional labels (see Section 4.2). However, switching to
Smyth’s ordering would permit certain unnatural infer-
ences, such as: from a[lab + {b)] infer a[Zab -+ {b, c}] for
any c. Ideally, we would like to use the so called Egli-
Milner’s order, which is Hoare’s and Smyth’s orderings
combined. We could then benefit both from the right
semantics of sets achieved through Hoare’s ordering,
and from type enforcement which Smyth’s order has
to offer. Unfortunately, in order to be able to group el-
ements into sets under Egli-Milner’s ordering, we would
have to change F-logic syntax by introducing variables
over sets. Particularly, instead of being first-order, as in
O-logic [20], set grouping will become second-order, as
in LDL [6], which makes handling of sets an expensive
proposition.

2.4 Databases and Queries

A database is a set of formulae. We distinguish be-
tween the extensional part of a database (the set of
F-terms) and its intentional part (the set of formulae
“more complex” than F-terms). If S is a set of formulae

140

and 4 a formula, we write S + 4 (4 is logically implied
or entailed by S) iff 4 is true in every model of S.

Given a language L with a set of variables V and a
set of basic objects 0, a substitution is a mapping u :
V -+ {id-terms of L} which is identity everywhere out-
side some finite set &m(u) E V, called the domain of u.
It is extended to id-terms by letting u to commute with
object constructors and, recursively, to F-terms so that
Q(P : Q[. . . . FZab+T, Slab-+{ S, . ..}I =
Q(P) : 4QK.. , a(FZab)+u(T),u(SZab)-.
1 . ..) u(S), . . .)]. Finally, substitutions are extended
to F-formulae by letting them commute with logical
connectives. A substitution is ground if u(X) E U* for
each X E dam(u). Given a substitution u and a for-
mula 4, u(b) is called an inrtance of 4. It is a ground
instance if it contains no variables.

A query is a statement of the form Q?, where Q is an
F-term. The set of un8wer8 to Q? w.r.t. a database D is
the smallest set of ground F-terms which is (1) closed
under + and (2) contains all instances of Q logically
entailed (b) by D.

3 Skolemization and
brand Theorem

Skolemization procedure in F-logic is

the Her-

not any different
from that of predicate calculus. As in predicate calcu-
lus, we have the following result.

Theorem 1 (cf. the Skolem Theorem) Let D be a
set of F-formulue and 4 an F-formulu. Let D’, 4’
denote dome akolemi%otion of D and 4, respectively.
Then D U {T$) is unsati8fiable (ho8 no model) ifl 80

is D’ u {+‘}.

Given a language L of F-logic, its Herbrand universe is
0’. A Herbrund interpretction, H, is an interpretation
whose domain is U’ together with the lattice ordering
40 originally supplied with 0’ (in L). Herbrand in-
terpretations interpret objects and object constructors
in the usual way: for d E 0 and f E 3, go(d) = d and
9F(fPl> tk) = f(tl, tk).

We can compare interpretations (Herbrand, in par-
ticular) as follows: For&a pair of interpretations I =
(u,go,gF,3#,3+) and I = (u,go,gF,&,j+) differ-
ing only in the way they interpret objects as la-
bels, we write I 5 f iff for every object d E 0’
typed as a functional label and every set-valued la-
bel, e E a’, s#(go)(d) ~M=~~(u,u) &(g,)(d) and
3*(g0)(e) ~M~~(u,P) Ah)(e). The ordering on lat-
tice mappings was introduced at the beginning of Sec-
tion 2.3. To spell it out for this particular case, it means
that for ~JI u E u, 3#(go)(d)(u) 5~ &(g,)(d)(u) ad

fr(90)(e)(u) Eu Lt(90)(e)(u).

Because &U is, strictly speaking, only a preorder (see
Section 2.3), 3 is too a preorder, but not an order.
However, as &, it is an order modulo the equivalence
relation %, whereI~~iffI~~andi~1.

Having defined 5, we can now talk about minimal
models: I is minimal if there is no J s.t. J 3 I but
not I 5 J. The reader can notice that our definitions
of minimality and order are in the spirit of the corre-
sponding classic notions for Herbrand interpretations,
where “smaller” means “less defined”.

In classic logic programming [26], Herbrand interpre-
tations are defined as subsets of the Herbrand base,
where the latter is just the set of all ground atomic
formulae. In F-logic, the analogue of Herbrand base is
the set of all ground F-terms with the class information
stripped off 5. The class information is superfluous here
since the validity of the “‘instance-of’ statement of the
form p : q, where p, q E U*, is a consequence of the
lattice structure (which is part of the language), and is
therefore independent of the program. Let us call such
F-terms base.

As in classic logic, in F-logic every subset of the Her-
brand base can be associated with a unique Herbrand
interpretation.

Proposition 1 For any subeet S of Herbrund base
there is a Herbrand interpretation H such that:

a H sutiafies every F-term in S;

l H is u minimal interpretation w.r.t. the preorder
4. -t

Furthermore, such interpret&ion H ia unique module
the equivalence relation M defined earlier.

However, this relationship between sets of bare F-terms
and the corresponding Herbrand interpretations is less
obvious than in the classic case. For instance, the
set S = {d[l a b + a, lab’ + Cc}], d[Zab-, b, lab’ + {e}] }
corresponds to the interpretation in which lab maps d
into Zub(a, b) and lab’ maps it into the set {c, e}. The
rest of the labels map everything to I or { }, depending
on the type.

Theorem 2 (cf. the Herbrand Theorem) A finite
aet of form&e, S, is incondistent i# 80 i8 dome finite
subset of its ground instances.
Herbrand Theorem is a basis for the resolution based
semi-decision procedure in predicate calculus [ll]. In
the full paper we will show that, extending the result
of [20], a sound and complete resolution-based proof
procedure can be defined for F-logic. This, in turn,
provides a firm basis for the theory of logic program-
ming. Particularly, model-theoretic semantics of logic

6Recall that according to Section 2.2, a term without the class
information, e.g. d[lab-+c], is an abbreviation of the term I :
d[lob 4 I : c].

141

programs (e.g. perfect model semantics [36]) can be ex-
tended to F-logic. This will be discussed in a companion
paper.

4 Inheritance, Methods, and
Higher-Order Queries

In this section we discuss some salient features of the
proposed semantics and illustrate them by a number of
examples.

4.1 Inherit ante

The notion of inheritance is fundamental in AI and
object-oriented programming, and a number of re-
searchers have worked on incorporating it into program-
ming languages. Cardelli [lo] considered inheritance
in the framework of functional programming. He de-
scribed a type inference procedure which is sound with
respect to the denotational semantics of his system. In
contrast, we have devised a logic in which inheritance
is built into the semantics and the proof procedure (in
the full paper) is sound and complete.

Ait-Kaci and Nasr [3] incorporate inheritance into
logic programs by means of a unification algorithm.
Although intuitively appealing, this algorithm was not
given any semantically sound justification. In addition,
Maier [27] has pointed out that their algorithm may
be correct for type inferencing, but not for querying
databases. Later, Smolka and Ait-Kaci [38] presented
a semantics to the unification algorithm of [3] using
equational logic. However, it is not clear how to extend
this semantics to a full-fledged logic in such a way that
the resolution procedure based on the proposed unifica-
tion algorithm will be sound and complete. Even if it is
possible, this still does not make this system applicable
to database querying.

There is also ample literature on, so called, nonmono-
tonic inheritance (e.g. [40,41,15]), which is different
from the monotonic inheritance of F-logic (see later).
Furthermore, in these works inheritance is defined al-
gorithmically and is not built into the semantics, which
we consider to be inappropriate for a logic for object-
oriented programming. In contrast, F-logic inheritance
is built into the semantics, as follows from the next the-
orem:

Theorem 3 Let D be a database, T = p[Lab+ Q,
Lab’4 {R}] be an F-term and D b T. (Since Q, R
and Lab, Lab’ can be nonground F-terms and id-terms,
respectiveZy, T should be viewed as a universally quanti-
fied F-term.) Suppose v E 0’ is an id-term s.t. ~30 v,

i.e. v is an instance of class p. Then

D b v[Lab+Q, Lab’-+(R)].

Thus, whenever p 30 v, properties of p also hold for
v. In other words, v inherits properties ofp. Theorem 3
justifies our intuitions about the example of Section 2.1.
For instance, since faculty30 mary (Figure l), mary
inherits supervisor --+ fact&y from clause (5) of Figure
n

Sally (clause (4)) p rovides a more sophisticated
example. Since student -& saZZy, saZZy inherits
age --) young from clause (6) of Figure 2. However,
since clause (4) states that sally is midaged, in ev-
ery interpretation in which both saZZy[age --) young]
and saZZy(age -+midaged] are true, necessarily it is
the case that saZZy[age --+ Zub(young, midaged)] (G
saZZy[age - yuppie]) is also true, i.e. clauses (4)
and (6) logically entail saZZy[age + yuppie]. Indeed,
in every interpretation I =< U,g,, g7, J#,J, >
the label age, being interpreted as a monotonic
single-valued function J#(age), has to map g,(saZZy)
into something which is above both go(young) and
go (midaged). Since go : 0 --) U is a lattice homo-
morphism, we have Zub(g,, (young), g,(midaged)) =
gO(Zub(young, midaged)) = gO(yuppie). Since I
is an arbitrarily chosen interpretation, we derive
saZZy[age + yuppie]. Thus, although the inherited
property age +young is still true, in fact, we have
more: age + yuppie. This effect can be called mono-
tonic overwriting of inheritance.

It is arguable whether monotonic overwriting suffices
for all the needs of real world modeling. It is not diffi-
cult to think of a situations when, in the above example,
one would want sally to be midaged, completely disre-
garding the inherited age young. Furthermore, in some
cases (recall the paragraph discussing bob’s supervisor
in Section 2.1) inheritance contradicts the other infor-
mation to such an extent that we have to declare local
inconsistency (cf. bob[supervisor ---) T]). Although in
some cases this indeed may be the intention, in other
situations it may be not, and one needs a formal ac-
count for the latter case. Such complete overwriting of
inheritance is a (rather simple) instance of nonmono-
tonic inheritance mentioned earlier, and it is desirable
to have it built into the logic the same way as its mono-
tonic counterpart. However, this raises a host of diffi-
cult problems and is an issue for future research.

4.2 Browsing Database Schema

As explained earlier, although F-logic formally has a
first-order semantics, it is capable of modeling certain
higher-order features such as sets, class/subclass hierar-

142

thy, and scheme quite naturally. The first two are mod-
eled by means of set-valued functions and the lattice
structure on CY, while schema can be reasoned about
because labels (which correspond to attributes of the re-
lational model) are represented by id-terms which are
virtually indistinguishable from objects.

In this section we discuss the browsing capabilities of
F-logic. Some of the higher-order capabilities described
in this section were also discussed in [21] in the context
of deductive databases. However, the treatment in [21]
is not as general and integrated as in the present paper.

Typically, queries in database systems are specified
with respect to an existing scheme, which is assumed
to be known to the user. The practice shows, however,
that this assumption is unrealistic and some kind of
browsing of the database is necessary. This means that
the user has to apply intuitive or exploratory search
through the structure of the scheme and the database
at the same time and even in the same query (cf. [34]).
Many user interfaces to commercial databases support
browsing to different extents. The purpose of the fol-
lowing examples is to demonstrate that F-logic pro-
vides a unifying framework both for data and schema
exploration. We again refer to the example of Sec-
tion 2.1.

The following pair of rules collects for each instance
of class faculty all labels which are “more defined” than
person or (person} (including the inherited labels):

definedlabels [labels + {L}] G=
faculty : X[L + person : Z]

defineddabeZs(X) [labels -+ {L}] e
faculty : X[L + Cperson : Z)]

For the example of Figures 1 and 2, we have:
de f inedJabeZs(mary) = {f&ends, supervisor}. Re-
placing person by I and adding Z # I in the bodies
of the above rules yields the set of all labels which are
strictly more defined than 1.

Another example of browsing is retrieval of all ob-
jects which mention, say, “CS” directly or indirectly
(through other objects). This can be specified as fol-
lows:

fina!er(“CP) [content + {X}] e X[Y + “CS”]
finu?er(“CS’) [content + {X}] e X[Y * { “CS”}]
finder(“CSn)[content --, {X}] * X[Y 3 21,

fincZer(“CS”)[content ---) (Z}]
finder(“CSn)[content --) {X}] * X[Y + {Z}],

finder(“CS”)[content --f {Z}]
For our running example, the query fincZer(“CS”)

[content + (X}] ? will return the set {csr, ~82, bob,
mary, john}.

The inheritance mechanism discussed in the previous
section can be also used to enforce the domains of la-
bels. For instance, specifying person[name + string]

will cause every instance of person to inherit the do-
main string for the label name. Now, if an F-term
specifies a value for name, e.g. john[name + “John”],
and this value is an instance of string, then everything
goes well and, as explained in Section 4.1, “John” over-
writes string. However, if the specified value is incom-
parable with string, e.g. john[name + 201, then, since
Zub(20, string) = T, john[name ---) T] is derived.

In relational model, relation schema is usually fixed
(e.g., suppZieT(sno, sname)) so that the tuples in a re-
lation are defined over the schema attributes only. In
contrast, in object-oriented languages (F-logic in par-
ticular), attribute set may vary from object to object.
In fact, the general class information (cf. clauses (5)
to (7) in Figure 2) limits the schema “from below” by
specifying what is generally true about the class, while
relational model limits schemes “from above” by spec-
ifying the only set of meaningful attributes for a rela-
tion. We do not take a stand on whether the notion of
schema in relational databases is a modeling necessity
or merely an implementational convenience. The fol-
lowing example shows that, if desired, schema restric-
tion in the relational sense can be imposed in F-logic:

suppZier[X + T] +== suppZier[X + 11,
X # 87x0, X # sname

suppZier[X --) (T}] (= suppZier[X --) { }]

The first clause states that every label other than sno
and sname maps supplier to T; the second clause says
that every set-valued label maps supplier to the top
set. Now, every individual supplier s will inherit these
restrictions and therefore every label outside the sup
plier’s scheme will yield meaningless information re-
garding 8.

4.3 Met hods

Methods are the means of incorporating data abstrac-
tion into object-oriented programming. Since they
embody the procedural aspect of the object-oriented
paradigm, many researchers believed that methods can-
not be cast into a declarative setting. For instance,
[24,25] propose a formal data model intended to sup-
port a procedural object-oriented language. Similarly,
in [7] methods written in a procedural language are in-
tegrated into a declarative setting.

We believe that the infamous impedance mismatch
between programs and data should be overcome in a
declarative fashion, which requires methods to be de-
fined declaratively. This is not to say that procedural
languages are of no use. However, our contention is
that the procedural component should be integrated in
a declarative framework in a clean way, e.g. the one
alluded to at the end of this section.

143

In F-logic, declarative definitions of methods are pos-
sible because nonground id-terms are allowed to appear
in label positions in F-terms. One example to this ef-
fect was given in Figure 2. For another one, consider
the rule
person : X[graduation-date(I) -‘Y] *

univ : I[aZumni ---) {aZumn-ret : G[stud --)
person : X, date -+ year : Y]}]

For each person, the graduation-date method is a func-
tion from universities to years, and one can ask queries
such as

X[graduation-date(I) + 1987]?
john[graduation-date(I) --$ Y]?

to find all persons who graduated from anywhere in
1987, or to find dates and universities john graduated
from.

By modifying the browsing example of the previous
section, we can define a method which returns the set
of all objects directly or indirectly referring to the ob-
ject passed to the method as an argument (the Stuff
variable):

finder[find(Stuf f) -b {X}] G= X[Y + Stuff]
finder[find(Stuff)+{X}] += X[Y -{Stuff}]
finder[find(Stuf f) -t {X}] += X[Y + 21,

finder[find(Stuff)+(Z}]
finder[find(Stuf f) --$ {X}] k= X[Y ---* {Z}],

finder[find(Stuff)--,{Z}]
In object-oriented languages, the ability to inherit

methods and build them incrementally is responsible for
much of the success of this approach in human interfaces
and graphics. The following example illustrates how
these phenomena can be accounted for in F-logic.

Suppose that person -& male, female, w+iter. We
can define the method legal-name as follows. Normally,
the legal name is the last name of a person. However,
maiden name of a married female as well as a pen-name
of a writer is also considered to be a legal name. We
can first define this method for each person:

X[ZegaZ-names(Y) + {IV}] -+= year : Y,
person : X[Zast-name(Y) + string : N]

and then refine it for females and writers:
X[ZegaZ-names(Y) + {IV}] += year : Y,

female : X[maiden-name(Y) + string : N]

X[ZegaZ-names(Y) -+ {IV}] += year : Y,
writer : X[pen-name(Y) + string : N]

Thus, if in 1988 mary was a married female, a writer,
and uses her husband’s last name, she will have three
different legal names in that year. On the other hand,
for a ioe who is a male and not a writer, this method
will return only one legal name.

This example is also an instance of operator overload-
ing - another feature attributed to object-oriented pro-

gramming. This means that the same method name can
be used to denote quite different procedures, depending
on the class where this name is used. Another instance
of overloading can be obtained by modifying the pre-
vious example to include the class company which is
incomparable to person. Since companies have a com-
pletely different set of rules regulating their legal names,
the definition of legal-name for class company may
have little resemblance of the definition of this method
for classes person, female, and writer, yet syntacti-
cally the name is the same.

Note that, in F-logic, methods are essentially “la-
bels with parameters” and therefore plain labels can
be viewed as parameterless methods. This uniformity
is rather pleasing and corresponds to the situation in
abstract data types. The technique described above al-
lows one to define arbitrarily complex methods, since
the full power of logic programming is at our disposal.
Alternatively, we could incorporate procedures written
in a nonlogic language, such as C or SmallTalk, by con-
sidering nonground labels as “computed functions” and
adapting the ideas from [30,31].

5 Conclusions

Unlike the relational approach to databases which was
initiated by Codd [14] and was based on firm theo-
retical grounds, object-oriented databases were dom-
inated by “grass-roots” activity where several imple-
mentations have been done [44,42,29] without the ac-
companying theoretical progress. As a result, many re-
searchers had a feeling that the whole area of object-
oriented databases is misguided, lacking direction and
needing a spokesman, like Codd, who could “coerce the
researchers in this area into using common set of terms
and defining a common goal that they are hoping to
achieve [35]“.

Our contention is that the problem lies much deeper.
When Codd made his influential proposal, he relied on
a large body of knowledge in Mathematical Logic con-
cerning predicate calculus. Essentially, he merely ap-
plied (in different terms) what logicians had already
known for several decades. Logical foundations for
object-oriented databases that are parallel to those that
underly the relational theory were lacking and, in our
opinion, this was a major factor for the uneasy feeling.
In his pioneering work [27], Maier proposed a frame-
work for defining model-theoretic semantics for object-
oriented logics. However, he encountered certain se-
mantic difficulties with his approach and subsequently
abandoned this direction. As it turned out, the diffi-
culties were not fatal, and the theory was repaired and
significantly extended in [13,20].

144

In the present paper, we presented a novel logic which
takes the C- and 0-logics of [13,20] into a new dimen-
sion: F-logic is capable of representing most of what is
known as the object-oriented paradigm. We provided a
formal semantics for that logic and showed that it em-
bodies in a natural way the notions of complex object,
object identity, inheritance, methods, and schema. Al-
though not presented in this paper, we note that F-logic
has a sound and complete resolution-based proof pro-
cedure which makes it also computationally attractive
and renders it a suitable basis for developing a theory
of object-oriented logic programming. This issue will
be discussed in a companion paper.

Acknowledgements: We have obviously benefited
from Dave Maier’s original paper on O-logic [27], as
well as from his valuable suggestions. Discussions with
Dave Warren have been extremely helpful; in particu-
lar, Dave helped us understand the “orderness” of the
semantics we have developed. We also thank James
Wu for finding several inaccuracies in the earlier draft
of this paper.

References

PI

PI

PI

PI

PI

PI

PI

S. Abiteboul and C. Beeri. On the Power of
Languages for Manipulation of Complex Objects.
1987. manuscript.

S. Abiteboul and S. Grumbach. COL: A
Logic-Based Language for Complex Objects. In
Workshop on Database Programming Languages,
pages 253-276, Roscoff, France, September 1987.

H. Ait-Kaci and R. Nasr. LOGIN: A Logic Pro-
gramming Language With Built-in Inheritance. J.
Logic Programming, 3:185-215, 1986.

F. Bancilhon. Object-Oriented Database Systems.
In Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of database
Systems, pages 152-162, 1988.

F. Bancilhon and S.N. Khoshafian. A Calculus
of Complex Objects. In Proceeding8 of the ACM
SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of database Systems, pages 53-59, March
1986.

C. Beeri, S. Naqvi, 0. Shmueli, and S. Tsur.
Sets and Negation in a Logic Database Language
(LDL). Technical Repcrt, MCC, 1987.

C. Beeri, R. Nasr, and S. Tsur. Embedding $-
terms in a Horn-clause Logic Language. In Third
International Conference on Data and Knowledge
Bases: Improving Usability and ReSpOnSiVeneSS,

pages 347-359, Morgan Kaufmann, 1988.

PI

PI

PO1

Pll

PI

P31

1141

PI

P61

P71

PI

PI

WI

WI

P. Buneman and A. Ohori. Using Powerdomains
to Generalize Relational Databases. Theoretical
Computer Science, 1989. to appear.

H. Ait-Kaci C. Zaniolo, D. Beech, S. Cammarata,
L. Kerschberg, and D. Maier. Object-Oriented
Database and Knowledge Systems. Technical Re-
port DB-038-85, MCC, 1985.

L. Cardelli. A Semantics of Multiple Inheritance.
In Int. Symp. on Semantics of data l$pes, LNCS
173, pages 51-67, June 1984.

C.L. Chang and R.C.T. Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press,
1973.

W. Chen, M. Kifer, and D.S. Warren. HiLog:
A First-Order Semantics for Higher-Order Logic
Programming Constructs. In 2-nd Intl. Workshop
on Database Programming Languages, Morgan-
Kaufmann, June 1989.

W. Chen and D.S. Warren. C-logic for Complex
Objects. In Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
database Systems, March 1989. to appear.

E.F. Codd. A Relational Model For Large Shared
Data Banks. Communications of ACM, 13(6):377-
387, 1970.

D.W. Etherington and R. Reiter. On Inheri-
tance Hierarchies with Exceptions. In AAAI-89,
pages 104-108, Washington, D.C., 1983.

R. Fikes and T. Kehler. The Role of Frame-Based
Representation in Reasoning. Commun. ACM,
28(9):904-920, 1985.

M.L. Ginsberg. Multivalued Logics. In M.L. Gins-
berg, editor, Readings in Non-Monotonic Reason-
ing, pages 251-255, Morgan-KauGnann, 1987.

P.J. Hayes. The Logic for Frames. In D. Metzing,
editor, Frame Conception and Text Understanding,
pages 46-61, Walter de Gruyter and Co., 1979.

S.N. Khoshafian and G.P. Copeland. Object Iden-
tity. In OOPSLA-86, pages 406-416, 1986.

M. Kifer and J. Wu. A Logic for Object-Oriented
Logic Programming (Maier’s O-logic Revisited).
In Proceeding8 of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of database
Systems, March 1989. to appear.

R. Krishnamurthy and S. Naqvi. Towards a Real
Horn Clause Language. In Proceeding8 of the Intl.
Conference on Very Large Data Bases, 1988.

145

1231

1241

PI

WI

P71

PI

P91

[301

[311

[321

PI

G. Kuper and M.Y. Vardi. A New Approach
to Database Logic. In Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of database Systems, 1984.

G.M. Kuper. An Extension of LPS to Arbitrary
Sets. Technical Report, IBM, Yorktown Heights,
1987.

C. Lecluse and P. Richard. Modeling Inheritance
and Genericity in Object-Oriented Databases. In
2-d Int. Conf. on Database Theory (ICDT),
LNCS 396, pages 223-238, Springer Verlag,
Bruges, Belgium, 1988.

C. Lecluse, P. Richard, and F. Veles. 02, an
Object-Oriented Data Model. In Proceedings of
the ACM SIGMOD Conference on Management of
Data, pages 424433, 1988.

J.W. Lloyd. Foundations of Logic Progmmming
(Second Edition). Springer Verlag, 1987.

D. Maier. A Logic for Objects. In Workshop
on Foundations of Deductive Database8 and Logic
Programming, pages 6-26, Washington D.C., Au-
gust 1986.

D. Maier. Why Database Languages are a Bad
Idea (position paper). In Proc. of the Workshop
on Database Programming Languages, Roscoff,
France, September 1987.

D. Maier, J. Stein, A. Otis, and A. Purdy. Devel-
opment of an Object-Oriented DBMS. In Proceed-
ings of OOPSLA-86, pages 472-482, 1986.

D. Maier and D.S. Warren. A Theory of Computed
Relations. Technical Report 80/12, Department of
Computer Science, SUNY at Stony Brook, Novem-
ber 1980.

D. Maier and D.S. Warren. Incorporation Com-
puted Relations in Relational Databases. Technical
Report 80/17, Department of Computer Science,
SUNY at Stony Brook, December 1980.

J. McCarthy. First Order Theories of Individual
Concepts and Propositions. In J.E. Hayes and D.
Michie, editors, Machine Inteligence, pages 129-
147, Edinburgh University Press, 1979.

M. Minsky. A Framework for Representing Knowl-
edge. In J. Haugeland, editor, Mind design,
pages 95-128, MIT Press, Cambridge, MA, 1981.

1351

WI

VI

P81

PI

PO1

WI

WI

PI

PI

E. Neuhold and M. Stonebraker. Future Directions
in DBMS Research. 1988. The Laguna Beech Re-
port.

T.C. Przymusinski. On The Declarative Seman-
tics of Deductive Databases and Logic Programs.
In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 193-216,
Morgan Kaufmann, Los Altos, CA, 1988.

M.A. Roth, H.F. Korth, and A. Silberschatz. Ex-
tended Algebra and Calculus for 7lNF Relational
Databases. Technical Report 84-36, Univ. of Texas
at Austin, 1985.

G. Smolka and H. Ait-Kaci. Inheritance Hiemr-
chies: Semantics and Unification. Technical Re-
port AI-057-87, MCC, May 1987.

M. Stefik and D.G. Bobrow. Object-Oriented Pro-
gramming: Themes and Variations. The AI Mag-
azine, 40-62, January 1986.

D.S. Touretzky. The Mathematics of Inheritance.
Morgan-Kaufmann, Los Altos, CA, 1986.

D.S. Touretzky, J.F. Horty, and R.H. Thoma-
son. A Clash of Intuitions: The Current State of
Nonmonotonic Multiple Inheritance Systems. In
IJCAI-87, pages 476-482, 1987.

Vbaee Object Manager. Ontologic, Inc., 1986. User
Manual.

P. Wegner. The Object-Oriented Classification
Paradigm. 1987. manuscript.

D. Woelk, W. Kim, and W. Luther. Multimedia
Information Management in an Object-Oriented
Database System. In Proceedings of the Intl. Con-
ference on Very Large Data Bases, 1987.

[34] A. Motro. BAROQUE: A Browser for Relational
Databases. ACM Bans. on Ofice Information
Systems, 4(2):164-181, 1986.

146

