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Abstract 

We propose a database logic which accounts in a clean 
declarative fashion for most of the “object-oriented” 
features such as object identity, complex objects, in- 
heritance, methods, etc. Furthermore, database schema 
is part of the object language, which allows the user to 
browse schema and data using the same declarative for- 
malism. The proposed logic has a formal semantics and 
a sound and complete resolution-based proof procedure, 
which makes it also computationally attractive. 

1 Introduction 

Object-oriented approach to databases has generated 
considerable interest in the community in the past few 
years. Although the very term “object-oriented” is 
loosely defined, a number of concepts have been identi- 
fied as the most salient features of that approach. Ac- 
cording to [4,39,9,43] and a number of other surveys, 
these concepts are: complex objects, object identity, 
methods, and inheritance. 

One of the reasons for the interest in object-oriented 
database languages is that they show promise in over- 
coming the, so called, impedance mismatch [28,9] be- 
tween programming and database languages. Mean- 
while, a different, de&dive, approach has gained enor- 
mous popularity both in databases and programming 
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languages. Since logic programming can be used as 
a full-fledged computational formalism as well as a 
database specification language, proponents of the de- 
ductive approach have also argued that it is capable of 
overcoming the aforesaid mismatch problem. However, 
in their present form both approaches have shortcom- 
ings. The main problem with the object-oriented ap- 
proach is the lack of formal semantics which is tradition- 
ally considered to be very important in databases. On 
the other hand, deductive databases normally use flat 
data model and do not support object identity and data 
abstraction. It therefore can be expected that combin- 
ing the two paradigms will yield significant benefits. 

A number of attempts to combine the two approaches 
[1,2,5,6,7,13,20,23,22,27,37] have been reported in the 
literature, but, in our opinion, none of them succeeds 
in meeting all of the above goals. These approaches 
either do not support object identity, or restrict the 
kinds of complex objects and queries one can use, or do 
not support inheritance, limit deduction, etc. 

In this paper we propose a formalism, called Frame 
Logic (abbr. F-logic), which is a full-fledged logic 
achieving a21 of the goals listed above and, in addi- 
tion, is suitable for defining and manipulating database 
schema. Our work has also implications for the frame- 
based languages in AI [16,33], which are essentially 
scaled down versions of complex objects with identity, 
inheritance, and deduction. It is this connection that 
the name “F-logic” was derived from. 

To reason about inheritance and schema we need ca- 
pabilities of higher-order logics. However, these are usu- 
ally much too powerful to be useful for our purposes. A 
number of researchers have suggested that the “useful” 
parts of higher-order logics can be given a first-order se- 
mantics by encoding them in predicate calculus [18,32]. 
However, this provides only an indirect semantics and 
is not true to the spirit of object-oriented programming 
and frame-based languages in AI. In contrast, we pro- 
pose a logic which has an appearance of a higher-order 
logic, but, unlike it, is tractable and has a natural di- 
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rect first-order semantics. More precisely, according to 
the classification of [12], F-logic has a higher-order syn- 
tax and a first-order semantics. A sound and complete 
proof procedure for F-logic will be described in the full 
paper. 

This work is an extension of [20], which in turn was 
based on Maier’s O-logic [27]. In [20] a distinction be- 
tween objects, classes, and relationships is maintained, 
which is the main reason why inheritance, methods, and 
schema cannot be reasoned about in these formalisms. 

This paper is organized as follows. In Section 2 we 
present the syntax and semantics of F-logic, and Sec- 
tion 3 presents Skolem and Herbrand theorems; in Sec- 
tion 4 we illustrate the higher-order capabilities of F- 
logic. 

2 Syntax and Semantics of F- 
logic 

In this section we describe the proposed logic by means 
of an example, followed by a formal account of the syn- 
tax and semantics. 

2.1 F-logic by Example 

In developing F-logic we were motivated by the desire 
to capture in a logically clean way a number of scenar- 
ios whose most salient common features are depicted 
by way of an example in Figures 1 and 2. Figure 1 
shows part of the IS-A hierarchy. All classes and indi- 
vidual objects are taken from the same domain and are 
organized in a lattice. It asserts that a faculty and an 
assistant are employees, student and empl are persons, 
“Mary” and “CS” are strings, mary is a f acuity, while 
sally is a student. Notice that the lattice is ordered 
with respect to the “definedness” ordering of denota- 
tional semantics, or, equivalently, with respect to the 
relative “knowledge content” [17]. For instance, a state- 
ment assistant : john (john is an assistant) is more in- 
formative than empl : john because every assistant is 
an employee, but not vice versa. Therefore, assistant 
has more knowledge content and is located above empl. 
In general, a class is always located below each of its 
instances. Furthermore, note that classes are reified by 
being placed in the same domain with their instances. 
Thus the same object (e.g. empl) can be viewed as 
an instance of its superclass (person) and, at the same 
time, as a class of all objects located above it in the 
lattice. 

Figure 2 presents facts about employees, students, 
etc. The first clause says that object bob is a faculty 
whose name is “Bob” (notice: bob is an id of the ob- 
ject, while “Bob” is a string representing bob’s name). 

Additionally, this clause states that bob works in the 
department csl, the department name is “CS” and 
the manager is an employee denoted by the constant 
Phil. Clauses (2) through (4) present similar infor- 
mation about mazy, john, and sally. Note that the 
f Tiends attribute in mary’s record is set-valued, which 
is syntactically expressed by means of the set construc- 
tor { }. Our syntax is that from [27,20] with some em- 
bellishments from [l3]. 

Clauses (5), (6), and (7) provide general information 
about classes faculty, students, and empl, such as that 
faculty are normally supervised by faculty and are mid- 
dle aged, students are normally young, etc. Clause (8) 
is a rule stating that employee’s supervisor is the man- 
ager of the department the employee works in. 

Clause (9) is a rule defining a method: for each per- 
son, X, the method children is a function which for a 
given argument, Y, returns a set of persons containing 
all the children common to X and Y. Notice that the 
term children(Y) appears in the same clause (9) in two 
different roles: in the head of (9) it is in the “attribute” 
position, where it denotes the aforesaid method, and it 
is in the “object” position in the body of (9), where it 
denotes the id of the object whose content is the set 
of children of Y. Thus, any ground instance of this 
term, say chiIdren(mury), has two different roles: it 
denotes the object representing all mary’s children and 
also a function which, for each person, returns a (possi- 
bly empty) set of all children mary has with that per- 
son. Thus, in F-logic, the same syntactic term may 
denote different things, depending on the context it ap- 
pears in. This feature allows one to pose meta-queries 
about the objects, such as “retrieve a set of all objects 
which represent the labels defined for a certain object”. 

Two applications of method children are demon- 
strated by queries (10) and (11). Query (10) asks for 
the father of mary’s child sally, and (11) requests all 
children mary has with Phil. Query (12) is requesting 
information about all middle aged employees working 
for the “CS” departments. Particularly, for each such 
employee, it is requesting the supervisor, age, and the 
department. The expected answer to this query is 
(13) bob[euperuisor + T, age ---) 40, works -+ CLQ] 

(14) mary[superuisor 3 f acuity, age -t 30, 
works + ~821 

To see that bob is an answer, first observe that, by (l), 
bob is working for the “C‘S” department and that bob 
has age 40, which is a value belonging to class midaged 
(see Figure 1). The value for SUpeTUiSOT is partly in- 
ferred from the rule (8) and partly inherited from the 
general description (5) of class f acuity. Indeed, the rule 
suggests that bob’s supervisor should be Phil, while on 
the other hand, being a faculty, bob’s supervisor has 

135 



ehi&n(john) 

I 

Figure 1: Part of the IS-A hierarchy 

Facts: 

(1) facUZQ/ : bob[ name --) “Bob”, age + 40, works + dept : csl [dname + “C’S”, mngr + empl : Phil] ] 

(2) f acuZty : mary[name + “Mary”, age + 30, f Tiends + {bob, sally), woTk8 + dept : caz[dname + ‘C’S”] ] 

(3) assistant : john[name + “John”, works t csl[dname ---) “CS”]] 

(4) student : saZZy[age + midaged] 

General Class Information: 

(5) faalty[ au pe Tvisor -+ f acuZt y, age -P midaged] 

(6) student[uge + young] 

(7) empZ[eupervis~ + empl] 

Rules: 

(8) E[SU~~ZTV~SOT -+ M] ti empZ : E[wmks + dept : D[mngr + empl : M]] 

(9) X[chiZdren(Y) -+ {Z}] *person : Y [chiZdTen_obj -+ chiZdren(Y)[membere -+ {pereon : Z}] 1, 

Queries: 

person : X[chiZdTen-obj ---) chiZdren(X)[members --) (person : Z}] ] 

(10) mary[chiZd?en(Y) --) {sally}]? 

(11) mary[chiZdTen(phiZ) -+ {Z}]? 

(12) empl: X[ su pe rvieor + Y, age -+ midaged : 2, works + D[dname + “CS”] ]? 

Figure 2: A Sample Database 
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to be in the class faculty. However, looking at Fig- 
ure 1, we observe that phi1 is not an instance of faculty. 
The semantics of F-logic then suggests that the value of 
SU~TV~SOT for bob should be Zub(phi1, faculty) which is 
T (see Figure 1). That is, the information about Phil’s 
supervisor is inconsistent. 

Clause (14) is retrieved because mar y is in the yuppie 
age, and thus is also a middle aged person. On the 
other hand, the object denoted by constant john is 
not retrieved because john, being a student, inherits 
young from (6), and according to Figure 1, young is 
not an instance of midaged. However, if the restric- 
tion midaged : Z in query (10) were dropped, then the 
following clause will be retrieved as well: 

(15) john[eupervisor -+ phil, age + young, 
works + CLQ] 

The supervisor of john is inferred by rule (8), since 
john is working in csi, and, due to clause (l), depart- 
ment csi is managed by Phil. An interesting point here 
is that, unlike bob, john is not a f acuity and therefore 
is not subject to the restriction imposed by clause (5) 
that his supervisor must be a faculty. Therefore, no 
contradiction with john’s supervisor being phi1 arises! 

One additional important observation is that dis- 
agreements in attribute values need not always result 
in inconsistency as in the bob’s case. For instance, sally 
is midaged according to (4), but, being a student, she 
inherits young from (6). In F-logic this logically en- 
tails saZZy[uge + Zub( young, midaged)], which is yuppie 
according to Figure 1. 

The example of Figures 1 and 2 alludes to the point 
that in F-logic we are dealing with higher-order con- 
cepts. For instance, in Figure 2, attribute friends is 
essentially a set-valued function which for each person 
returns a set of persons. Similarly, the user can think 
of objects of the lattice displayed in Figure 1 as sets 
ordered by subset relation, and use higher-order intu- 
itions to develop programs and models. However, the 
underlying semantics formally remains first-order (see 
[12] for details), h h 11 w ic a ows us to overcome the diffi- 
culties normally associated with truly higher-order the- 
ories. 

The first-order behaviour with respect to sets is 
achieved by introducing typing so that single-valued 
and set-valued functions do not mix. Furthermore, for- 
mally, F-logic has only flat sets, but we can model arbi- 
trarily deeply nested sets in a very natural way. F-logic 
shares this behaviour with respect to sets with other 
two related formalisms [13,20] and more discussion on 
that can be found in [20]. The first-order behaviour 
with respect to the class/subclass hierarchy is achieved 
by defining a lattice structure on the set of objects and 
classes which allows us to model sets in quite an au- 

thentic, yet inexpensive, way. 

2.2 Syntax 

The alphabet of F-logic consists of (1) a set 0 of basic 
objects, (2) a set of object constructors 7, (3) an infinite 
set of variabZes, V, and (4) usual logic connectives and 
quantifiers V, A, V, 3, 7, e, etc. 

The “objects” in F-logic are either complex objects 
in the usual sense, or classes of objects. Unlike other 
approaches which treat classes and instances as inher- 
ently different entities, we do not emphasize the distinc- 
tion. For instance the object student can be viewed 
as representing the class of students (each individual 
student being its instance) and at the same time as 
an instance of its superclass represented by the object 
person. Thus, in F-logic classes have the same meaning 
as in frame-based formalisms (e.g. [16,33]) in the sense 
that a class is viewed as an instance (rather than a sub- 
set) of a superclass. This feature is largely responsible 
for the fact that inheritance is naturally built into the 
semantics of F-logic, contrasting it to algorithmically 
defined inheritance in other approaches. 

Basic objects (elements of 0) are the constants of F- 
logic. Object constructors (elements of 7) are logically 
function symbols over 0 of arity >_ 1; they are used to 
construct new objects. Although members of 0 can be 
viewed as 0-ary object constructors, it is convenient to 
consider them separately, and we assume that 0 and 3 
are disjoint. An id-term is a term composed of function 
symbols (i.e. object constructors), constants (i.e. basic 
objects), and variables in the usual way. The set of all 
ground (i.e. variable-free) id-terms is denoted by O*. In 
the following we will show that 0’ essentially plays the 
role of Herbrand universe of F-logic. Conceptually id- 
terms should be viewed as objects themselves or as ob- 
ject abstractions which are commonly referred to as ob- 
ject identity [19]. Objects represented by id-terms other 
than constants (non-basic objects) are best perceived as 
being constructed from simpler objects. For instance, 
the object university(state) can be taken as a class rep- 
resenting universities, while the object university(nys) 
is the class of universities in New York State (assuming 
nys is an instance of class state). 

In O-logic [27,20], which is a predecessor of F-logic, 
there was a distinction between objects and Za5eZs and 
the latter were viewed exclusively as binary relations 
among objects. This distinction made it difficult to rea- 
son about entities and relationships in a uniform frame- 
work; it can be traced to the Entity-Relationship model 
where entities (objects) and relationships (labels) con- 
stitute two disjoint categories. 

In F-logic, every object can be viewed as an entity 
or a relationship depending on the situation (namely, 
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on its syntactic position in a formula). In its role as 
a label, each object has a type: a label can be either 
single-valued (sometimes also called functional) or set- 
valued. Accordingly, we partition 0’ into a pair of 
disjoint sets t# (for objects typed as functional labels) 
and C, (for objects typed as set-valued labels). 

We require the aforesaid partition to be congruent: 
ifti,si, . . . . t,, 8, E U*, where for each i, ti and 4 are 
in the same partition, and f E 3 is an n-ary object 
constructor, then f(ti,. . . , t,) and f(zi, . . . , an) belong 
to the same element of the partition (C, or C,). 

This restriction is needed to be able to specify types 
on CY* effectively and check them efficiently. Indeed, 
under the congruence assumption, assigning types to 
elements of UC involves the following: (1) assigning a 
type to each element of 0; (2) specifying the type of 
f(Cl, ***, Ln) for every n-ary function symbol f E 3 
and each n-tuple < Cl, . . . , L, >, where each Lj is 
either L# or L,. Since the cardinality of 0 and 3 is 
finite in practical cases, this procedure is effective. To 
check the type of a term t E U*, one needs to “evaluate” 
this term by substituting types for subterms, starting 
with constants. This procedure is linear in the size of 
the term. Furthermore, we suspect that, in practice, 
one needs to assign only a single type to the range 
of each function symbol (regardless of the argument 
types), which then makes type definition linear in the 
sizes of 0 and 3, and type checking can be done in con- 
stant time by checking the range type of the outermost 
function symbol. 

The language of F-logic consists of a set of formulae 
constructed out of the alphabet symbols. Formulae are 
built from atomic formulae by means of the usual con- 
nectives 7, V, and A, and quantifiers 3 and V. Atomic 
formulae are, so called, F-terms (F-logic terms). Later 
we will see that the id-terms introduced earlier can be 
viewed as a special case of F-terms. 

For convenience, we will use names starting with 
lower-case letters to denote ground terms, and names 
starting with capital letters to denote possibly non- 
ground terms. An F-term (cf. [27,20]) is 

(1) 

(2) 

a simple F-term, P : Q, where P and Q are id- 
terms, or 

a complez F-term, P : Q [Flabl + Tl, . . . , 
Flab,,, * Tin, Slab1 --) {&,I, . . . , %,I), . . . , 
Slab1 -+ {&,I, . . . , Sk,,r}]. Here P, Q are id-terms; 
Flabi and Slabj are also id-terms, but we chose to 
name them differently to indicate that their syn- 
tactic position within the F-term emphasizes their 
role as labels. Furthermore, the appearance of the 
set construct, { }, indicates that the respective id- 
terms SlabI, . . . . Slab, are supposed to be typed as 
set-valued labels; the rest of the labels, FlabI, . . . . 

Flab,, are functional. The order of labels in an 
F-term is immaterial. Finally, in the above, Ti and 
Sri,,, denote F-terms. 

It is worth noting here that, since we chose a sort- 
less setting for F-logic, typing of nonground labels is 
virtually impossible. Consequently, say, t = a[X -+ b] 
is considered to be a syntactically correct term, even 
though X may be bound to ground id-terms typed as 
functional as well as set-valued labels. However, the 
semantics is set up in such a way that, since the syn- 
tax of t calls for a functional label, t will be always 
false whenever X is universally quantified. Further- 
more, even the constructs such as a[Zab+ c, lab -+ {d}] 
are syntactically correct F-terms, despite the fact that 
lab must be a functional label due to one part of the 
term, and a set-valued label due to the other. How- 
ever, according to the F-logic semantics, this term is 
unaatiafiable. 

Intuitively, the F-term (2) above is a statement about 
an object, Q, asserting that it is an instance of the class 
P and haz properties specified by the labels. Thus, 
when no labels are specified we can omit the brackets, 
thereby reducing a complex F-term, P : Q[ 1, to the 
simple F-term P : Q. 

To account for the higher-order features of frame- 
based and object-oriented formalisms without incurring 
the overhead of the higher-order predicate calculus, we 
reify classes and model class membership by means of a 
lattice ordering instead of the true set-theoretic mem- 
bership. Formally, we assume that the elements of 0’ 
are organized in a lattice1 by means of the ordering 
40 . As usual, -& stands for 40 or =. We distin- 
guish in 0’ the maximal element, T, and the minimal 
element, 1. The maximal element, T, can be viewed as 
a “meaningless” object which represents a class with no 
instances; I can be perceived as the object representing 
the biggest class (or as the “unknown” object). 

The lattice on U* is a static part of the language2, 
and can be viewed as part of schema specifica- 
tion: the lattice represents the transitive closure of 
the “subclass-of” and the “instance-of” relationships 
among classes, so that p 40 q (e.g. person 40 student 
or student 40 john) means that q is a (possibly indi- 
rect) subclass or instance of p. As mentioned earlier, 
we do not distinguish between individual objects and 
classes: any object, d, is treated as a class whose exten- 
sion contains all objects/classes found above d in the 
lattice. Therefore, any element p E U* may appear in 
an F-term in the “instance position”, q : p[...], and in 

1 When objects are considered in their role as labels, the lattice 
structure on labels is ignored. 

ll’his assumption is needed for F-logic unification to be 

decidable. 

138 



the “class position”, p : T [...I. This gives F-logic a “feel” 
of a higher-order language, although its semantics is es- 
sentially first-order [12]. Accordingly, we will use the 
terms “instance” and “class” to refer to the same ob- 
ject, p, depending on whether we want to emphasize 
p in its role as a class or as an instance in its respec- 
tive superclass. Part of a sample lattice structure on 
0’ is depicted in Figure 1. We impose the following 
monotonicity restriction on the lattice U*: 

if tl 30 al, . . . . t, 50 8, then 
fbl ,-&a) Ib f(81r .a-, 4; 

This simply means that object constructors are 
monotonic functions on the lattice: for instance, 
if pereon+ john, i.e., John is a person, then 
car(person) 40 car(john) meaning that John’s cars be- 
long to the class of cars owned by persons. 

Monotonicity is necessary for the resolution proce- 
dure to be complete, which will be discussed in the 
full paper. Apart from that, this ensures that the lat- 
tice structure on U* can be given effectively as part 
of schema specifications and that the “instance-of” re- 
lationship can be verified efficiently. Indeed, in prac- 
tical cases, 0 and 3 are finite and 40 can be first 
specified on 0. To complete the specification of the 
lattice order, one only needs to provide typing informa- 
tion for each of the finite number of object construc- 
tors by specifying the classes for the range and the 
arguments. For instance, con8 : edge x path-path 
(meaning path 40 cons(edge,path)) is an example of 
such typing information. Additional typing for func- 
tion symbols can be automatically inferred using the 
well known type inference techniques (e.g. see [lo]). 
Verification of whether t 30 8 holds for a pair of ground 
id-terms t, 8 E U* can be done in a way resembling the 
usual unification algorithm and will be discussed in the 
full paper. 

Every F-term is also an (atomic) F-formula. F- 
formulae are constructed from other (simpler) F- 
formulae by means of logical connectives and quanti- 
fiers. 

To simplify the notation we assume the follow- 
ing convention: if a single-valued label, Lab, in an 
F-term is omitted then the intention is Lab-t I : 
I; similarly, if a set-valued label, Lab’ is omit- 
ted then we assume Lab’-+ { }. Furthermore, if 
a class specification is omitted then I is assumed. 
Thus, for instance, john[name --tat&g : “john”] 
and I : john[name + string : “john”, pay+ -L : 
I, children + { }] are considered to be the same term. 
This convention allows us to view id-terms as a special 
case of F-terms by identifying P and I : P[ 1. 

2.3 Semantics 

Before presenting the semantics, we will need to intro- 
duce an ordering on the powerdomain of a lattice. This 
ordering was also used in [5] and is sometimes called 
Hoare’s ordering [8]. Given a lattice U with the order- 
ing 5~ and maximal and minimal elements TV and Iv, 
the preorder & on the powerset 2’ is defined as fol- 
lows: for any pair of sets X, Y E U, we write X & Y 
iff for every element z E X there is y E Y such that 
X3UY. 

The preorder & on 2 IJ is not an order, since it 
is cyclic. For instance {u} & {a, Iv} !& {u} and 
{Tu} Eu U Cu {Tu}. II owever, 2” can be considered 
a lattice modulo the equivalence relation MU, where 
X R:LI Y if and only if X &I Y and Y & X. The 
maximal and minimal elements in this lattice are the 
equivalence classes of { } (the empty set) and {Tu}, 

respectively. To simplify the language, we will often 
talk about the lattice structure on the powerset of U 
disregarding the aforesaid subtlety. 

Similarly, given a pair of lattices, U and V, we 
can define a lattice structure on the set of mappings 
U + V, denoted Mup(U, V), as follows: f +ap(U,V) g 
if for every u E U, f(u) 5~ g(u). Two kinds of lat- 
tice mappings, monotonic (denoted Mon(U, V)) and 
homomorphic3 (denoted Hom( U, V)) are of particular 
importance. Clearly, Hom(U, V) C ikfon(U, V). 

Semantics of F-logic can now be defined as follows. 
Given a language of F-logic, its interpretation, I, is a 
tuple < U, go, gz, I#, J* >. Here U is a universe of all 
objects which is required to have a lattice structure with 
Iv and TV being the smallest and the largest elements, 
respectively, and with the lattice ordering 5~; U is par- 
titioned into a pair of subsets U# and U, to account for 
the types of elements of 0’. It is useful to think of the 
elements of U* as the names of objects, while the ele- 
ments of U are best thought of as the object8 themselves 
in the possible world I. 

The homomorphism go : 0’ + U is interpreting ob- 
jects of U* by elements of U, so that g,,(t#) c U# 
and gO(L,) c U,. The mapping gP : 3+Mon(Uk, U) 
interprets each k-ary object constructor, f E 3, by a 
monotonic mapping Uk + U. Additionally, go and gr 
are related as follows: if t = f(.q, . . ..a.) E U* then 
So(t) = 97(f)(90(81),...rSo(8n)). 

The reader may notice that constants and function 
symbols are interpreted essentially the same way as in 
predicate calculus. The only difference is that the set of 
ground terms, U’, and the domain, U, now have lattice 
structures which must be accounted for. 

In their role as labels, objects are interpreted 

3i.e. the ones preserving lub and glb. 
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by associating appropriate mappings to each ele- 
ment of U using functions J# and 3,. More specif- 
ically, J# : U# + Mon( U, U) associates a mono- 
tonic mapping U -+ U with each element of U# and 
3* : U, -+ Mon(U, 2”) associates monotonic mappings 
U + 2’ with elements of U,. Notice that J# and J+ 
ignore the ordering +J induced on Us and U, by U. 

Thus, set-valued labels are interpreted by monotonic 
set-valued functions, while functional labels become 
monotonic single-valued functions. Notice that these 
functions are associated with the elements of U, not 
U’, because, as noted earlier, 0’ is, strictly speaking, 
only a set of object names; these are interpreted by the 
“real” objects in a possible world, I, and it should be 
the objects, not their names, who can assume roles (of 
labels) 4. 

A variuble assignment, V, is a mapping from vari- 
ables, V, to the domain U. We extend it to id-terms 
in the usual way: y(d) = go(d) if d E 0 and, recur- 
sively, v( f (..., T, . ..)) = gF( f )( . . . . v(T), . ..). To simplify 
the notation, we will also extend variable assignments 
to F-terms as follows: V( P : Q[. . .]) = V(Q). 

Let I be an interpretation and Y a variable assign- 
ment. The meaning in I under Y of an F-term T, 
denoted MI,“(T), is a statement about the existence 
(true) or nonexistence (false) in I of an object v(T) 
with the properties specified in v(T). Consider an F- 
term, T = P : Q[. . . , Flabi --tTi, . . . . Slabi -+ {Sl, . . . . 
S,}, . . .], where P, Q are id-terms in their role as ob- 
jects, Flab{, Slabj are id-terms in their role as func- 
tional and set-valued labels, respectively, and T{, Sk 
are F-terms. Then 
conditions hold: 

J%v m = true iff the following 

(1) 

(2) 

(3) 

v(P) dcr y(Q); 

for each id-term 
3, 

Flabi (intended as a functional la- 

Y(FZabi) E U#, 
: v(Z) -+I 3#( u(FM))(y(Q)), and 
- MI,,&) = tT’UE; 

for each id-term Slabj (intended as a set-valued la- 
bel), 

u(Slabj) E U*, 
4 (S) v I J~~~J~(sm)~ Eu J*( v(Slabj) )(dQ)h and 
- MI,,,(Sk) = true for k = 1, . . . . m. 

Here (1) simply says that the object V(Q) must be in the 
class V(P) in the possible world I. In (2) and (3), the 
first condition says that id-terms representing the la- 
bels must be appropriately typed; the second condition 

‘There is also a tecbnicd reason for that, which becomes ap- 
parent when one tries to define formula satisfaction w.r.t. a vari- 
able assignment. 

says that for an F-term, T, to be satisfied by a possi- 
ble world, I, w.r.t. Y, that world must have at least 
as much information about the object denoted by u(T) 
as the amount of information asserted by T. Finally, 
the third condition in (2) and (3) simply says that the 
properties of Q asserted by T (i.e., Ti, Sj, etc.) must 
also be true in I w.r.t. V. 

Notice that according to these defi- 
nitions, MrlY(T) = MI,“(~) = MIIY(d) = true and 
MI,~(~ : d) = MI,,(d : T) = true for every d E 0’. 
Similarly, if I -+J d 40 T then MI,,(d : I) = Ml,,(T : 
d) = false. 

Meaning of the formulae 4 V 4, 4 A 4, and -$ is de- 
fined in the standard way: MI,,(# V ~6) = true (resp., 
Mr,Jd A $1, r-p. MI,~(%)) iff MzJd) = tTw V 
MI,,,($) = true (resp. MI,,(+) = true A MI,,($) = 
twe, resp. MllY(+) # true). The meaning of quan- 
tifiers is also quite standard: MI,“($) = true, where 
$ = (VX)q5 (resp. II, = (3X)$) if for every (resp. some) 
p which agrees with u everywhere, except possibly on 
X, MI,,($) = true. 

Clearly, for a closed formula, $, its meaning is inde- 
pendent of a variable assignment, and we can simply 
write MI($). A n interpretation I is a model of II, if 
M&b) = t+ue. 

As an aside, other orderings on powersets over lattices 
are possible. For instance, according to the Smyth ‘a or- 
dering [8], X CZu Smyth Y iff for every element y E Y 
there exists z E X such that 2 5~ y. Presumably, we 
could use this ordering instead of Hoare’s in our seman- 
tics. This would allow us to enforce typing constraints 
on elements of sets the same way as we do it for func- 
tional labels (see Section 4.2). However, switching to 
Smyth’s ordering would permit certain unnatural infer- 
ences, such as: from a[lab + {b)] infer a[Zab -+ {b, c}] for 
any c. Ideally, we would like to use the so called Egli- 
Milner’s order, which is Hoare’s and Smyth’s orderings 
combined. We could then benefit both from the right 
semantics of sets achieved through Hoare’s ordering, 
and from type enforcement which Smyth’s order has 
to offer. Unfortunately, in order to be able to group el- 
ements into sets under Egli-Milner’s ordering, we would 
have to change F-logic syntax by introducing variables 
over sets. Particularly, instead of being first-order, as in 
O-logic [20], set grouping will become second-order, as 
in LDL [6], which makes handling of sets an expensive 
proposition. 

2.4 Databases and Queries 

A database is a set of formulae. We distinguish be- 
tween the extensional part of a database (the set of 
F-terms) and its intentional part (the set of formulae 
“more complex” than F-terms). If S is a set of formulae 
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and 4 a formula, we write S + 4 (4 is logically implied 
or entailed by S) iff 4 is true in every model of S. 

Given a language L with a set of variables V and a 
set of basic objects 0, a substitution is a mapping u : 
V -+ {id-terms of L} which is identity everywhere out- 
side some finite set &m(u) E V, called the domain of u. 
It is extended to id-terms by letting u to commute with 
object constructors and, recursively, to F-terms so that 
Q(P : Q[ . . . . FZab+T, . . . . Slab-+{ . . . . S, . ..}I = 
Q(P) : 4QK.. , a(FZab)+u(T), . . ..u(SZab)-. 
1 . ..) u(S), . . .)]. Finally, substitutions are extended 
to F-formulae by letting them commute with logical 
connectives. A substitution is ground if u(X) E U* for 
each X E dam(u). Given a substitution u and a for- 
mula 4, u(b) is called an inrtance of 4. It is a ground 
instance if it contains no variables. 

A query is a statement of the form Q?, where Q is an 
F-term. The set of un8wer8 to Q? w.r.t. a database D is 
the smallest set of ground F-terms which is (1) closed 
under + and (2) contains all instances of Q logically 
entailed (b) by D. 

3 Skolemization and 
brand Theorem 

Skolemization procedure in F-logic is 

the Her- 

not any different 
from that of predicate calculus. As in predicate calcu- 
lus, we have the following result. 

Theorem 1 (cf. the Skolem Theorem) Let D be a 
set of F-formulue and 4 an F-formulu. Let D’, 4’ 
denote dome akolemi%otion of D and 4, respectively. 
Then D U {T$) is unsati8fiable (ho8 no model) ifl 80 

is D’ u {+‘}. 

Given a language L of F-logic, its Herbrand universe is 
0’. A Herbrund interpretction, H, is an interpretation 
whose domain is U’ together with the lattice ordering 
40 originally supplied with 0’ (in L). Herbrand in- 
terpretations interpret objects and object constructors 
in the usual way: for d E 0 and f E 3, go(d) = d and 
9F(fPl> . . . . tk) = f(tl, . . . . tk). 

We can compare interpretations (Herbrand, in par- 
ticular) as follows: For&a pair of interpretations I = 
(u,go,gF,3#,3+) and I = (u,go,gF,&,j+) differ- 
ing only in the way they interpret objects as la- 
bels, we write I 5 f iff for every object d E 0’ 
typed as a functional label and every set-valued la- 
bel, e E a’, s#(go)(d) ~M=~~(u,u) &(g,)(d) and 
3*(g0)(e) ~M~~(u,P) Ah)(e). The ordering on lat- 
tice mappings was introduced at the beginning of Sec- 
tion 2.3. To spell it out for this particular case, it means 
that for ~JI u E u, 3#(go)(d)(u) 5~ &(g,)(d)(u) ad 

fr(90)(e)(u) Eu Lt(90)(e)(u). 

Because &U is, strictly speaking, only a preorder (see 
Section 2.3), 3 is too a preorder, but not an order. 
However, as &, it is an order modulo the equivalence 
relation %, whereI~~iffI~~andi~1. 

Having defined 5, we can now talk about minimal 
models: I is minimal if there is no J s.t. J 3 I but 
not I 5 J. The reader can notice that our definitions 
of minimality and order are in the spirit of the corre- 
sponding classic notions for Herbrand interpretations, 
where “smaller” means “less defined”. 

In classic logic programming [26], Herbrand interpre- 
tations are defined as subsets of the Herbrand base, 
where the latter is just the set of all ground atomic 
formulae. In F-logic, the analogue of Herbrand base is 
the set of all ground F-terms with the class information 
stripped off 5. The class information is superfluous here 
since the validity of the “‘instance-of’ statement of the 
form p : q, where p, q E U*, is a consequence of the 
lattice structure (which is part of the language), and is 
therefore independent of the program. Let us call such 
F-terms base. 

As in classic logic, in F-logic every subset of the Her- 
brand base can be associated with a unique Herbrand 
interpretation. 

Proposition 1 For any subeet S of Herbrund base 
there is a Herbrand interpretation H such that: 

a H sutiafies every F-term in S; 

l H is u minimal interpretation w.r.t. the preorder 
4. -t 

Furthermore, such interpret&ion H ia unique module 
the equivalence relation M defined earlier. 

However, this relationship between sets of bare F-terms 
and the corresponding Herbrand interpretations is less 
obvious than in the classic case. For instance, the 
set S = {d[l a b + a, lab’ + Cc}], d[Zab-, b, lab’ + {e}] } 
corresponds to the interpretation in which lab maps d 
into Zub(a, b) and lab’ maps it into the set {c, e}. The 
rest of the labels map everything to I or { }, depending 
on the type. 

Theorem 2 (cf. the Herbrand Theorem) A finite 
aet of form&e, S, is incondistent i# 80 i8 dome finite 
subset of its ground instances. 
Herbrand Theorem is a basis for the resolution based 
semi-decision procedure in predicate calculus [ll]. In 
the full paper we will show that, extending the result 
of [20], a sound and complete resolution-based proof 
procedure can be defined for F-logic. This, in turn, 
provides a firm basis for the theory of logic program- 
ming. Particularly, model-theoretic semantics of logic 

6Recall that according to Section 2.2, a term without the class 
information, e.g. d[lab-+c], is an abbreviation of the term I : 
d[lob 4 I : c]. 
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programs (e.g. perfect model semantics [36]) can be ex- 
tended to F-logic. This will be discussed in a companion 
paper. 

4 Inheritance, Methods, and 
Higher-Order Queries 

In this section we discuss some salient features of the 
proposed semantics and illustrate them by a number of 
examples. 

4.1 Inherit ante 

The notion of inheritance is fundamental in AI and 
object-oriented programming, and a number of re- 
searchers have worked on incorporating it into program- 
ming languages. Cardelli [lo] considered inheritance 
in the framework of functional programming. He de- 
scribed a type inference procedure which is sound with 
respect to the denotational semantics of his system. In 
contrast, we have devised a logic in which inheritance 
is built into the semantics and the proof procedure (in 
the full paper) is sound and complete. 

Ait-Kaci and Nasr [3] incorporate inheritance into 
logic programs by means of a unification algorithm. 
Although intuitively appealing, this algorithm was not 
given any semantically sound justification. In addition, 
Maier [27] has pointed out that their algorithm may 
be correct for type inferencing, but not for querying 
databases. Later, Smolka and Ait-Kaci [38] presented 
a semantics to the unification algorithm of [3] using 
equational logic. However, it is not clear how to extend 
this semantics to a full-fledged logic in such a way that 
the resolution procedure based on the proposed unifica- 
tion algorithm will be sound and complete. Even if it is 
possible, this still does not make this system applicable 
to database querying. 

There is also ample literature on, so called, nonmono- 
tonic inheritance (e.g. [40,41,15]), which is different 
from the monotonic inheritance of F-logic (see later). 
Furthermore, in these works inheritance is defined al- 
gorithmically and is not built into the semantics, which 
we consider to be inappropriate for a logic for object- 
oriented programming. In contrast, F-logic inheritance 
is built into the semantics, as follows from the next the- 
orem: 

Theorem 3 Let D be a database, T = p[Lab+ Q, 
Lab’4 {R}] be an F-term and D b T. (Since Q, R 
and Lab, Lab’ can be nonground F-terms and id-terms, 
respectiveZy, T should be viewed as a universally quanti- 
fied F-term.) Suppose v E 0’ is an id-term s.t. ~30 v, 

i.e. v is an instance of class p. Then 

D b v[Lab+Q, Lab’-+(R)]. 

Thus, whenever p 30 v, properties of p also hold for 
v. In other words, v inherits properties ofp. Theorem 3 
justifies our intuitions about the example of Section 2.1. 
For instance, since faculty30 mary (Figure l), mary 
inherits supervisor --+ fact&y from clause (5) of Figure 
n 

Sally (clause (4)) p rovides a more sophisticated 
example. Since student -& saZZy, saZZy inherits 
age --) young from clause (6) of Figure 2. However, 
since clause (4) states that sally is midaged, in ev- 
ery interpretation in which both saZZy[age --) young] 
and saZZy(age -+midaged] are true, necessarily it is 
the case that saZZy[age --+ Zub(young, midaged)] (G 
saZZy[age - yuppie]) is also true, i.e. clauses (4) 
and (6) logically entail saZZy[age + yuppie]. Indeed, 
in every interpretation I =< U,g,, g7, J#,J, > 
the label age, being interpreted as a monotonic 
single-valued function J#(age), has to map g,(saZZy) 
into something which is above both go(young) and 
go (midaged). Since go : 0 --) U is a lattice homo- 
morphism, we have Zub( g,, (young), g,(midaged) ) = 
gO( Zub(young, midaged) ) = gO(yuppie). Since I 
is an arbitrarily chosen interpretation, we derive 
saZZy[age + yuppie]. Thus, although the inherited 
property age +young is still true, in fact, we have 
more: age + yuppie. This effect can be called mono- 
tonic overwriting of inheritance. 

It is arguable whether monotonic overwriting suffices 
for all the needs of real world modeling. It is not diffi- 
cult to think of a situations when, in the above example, 
one would want sally to be midaged, completely disre- 
garding the inherited age young. Furthermore, in some 
cases (recall the paragraph discussing bob’s supervisor 
in Section 2.1) inheritance contradicts the other infor- 
mation to such an extent that we have to declare local 
inconsistency (cf. bob[supervisor ---) T]). Although in 
some cases this indeed may be the intention, in other 
situations it may be not, and one needs a formal ac- 
count for the latter case. Such complete overwriting of 
inheritance is a (rather simple) instance of nonmono- 
tonic inheritance mentioned earlier, and it is desirable 
to have it built into the logic the same way as its mono- 
tonic counterpart. However, this raises a host of diffi- 
cult problems and is an issue for future research. 

4.2 Browsing Database Schema 

As explained earlier, although F-logic formally has a 
first-order semantics, it is capable of modeling certain 
higher-order features such as sets, class/subclass hierar- 
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thy, and scheme quite naturally. The first two are mod- 
eled by means of set-valued functions and the lattice 
structure on CY, while schema can be reasoned about 
because labels (which correspond to attributes of the re- 
lational model) are represented by id-terms which are 
virtually indistinguishable from objects. 

In this section we discuss the browsing capabilities of 
F-logic. Some of the higher-order capabilities described 
in this section were also discussed in [21] in the context 
of deductive databases. However, the treatment in [21] 
is not as general and integrated as in the present paper. 

Typically, queries in database systems are specified 
with respect to an existing scheme, which is assumed 
to be known to the user. The practice shows, however, 
that this assumption is unrealistic and some kind of 
browsing of the database is necessary. This means that 
the user has to apply intuitive or exploratory search 
through the structure of the scheme and the database 
at the same time and even in the same query (cf. [34]). 
Many user interfaces to commercial databases support 
browsing to different extents. The purpose of the fol- 
lowing examples is to demonstrate that F-logic pro- 
vides a unifying framework both for data and schema 
exploration. We again refer to the example of Sec- 
tion 2.1. 

The following pair of rules collects for each instance 
of class faculty all labels which are “more defined” than 
person or (person} (including the inherited labels): 

definedlabels [labels + {L}] G= 
faculty : X[L + person : Z] 

defineddabeZs(X) [labels -+ {L}] e 
faculty : X[L + Cperson : Z)] 

For the example of Figures 1 and 2, we have: 
de f inedJabeZs(mary) = {f&ends, supervisor}. Re- 
placing person by I and adding Z # I in the bodies 
of the above rules yields the set of all labels which are 
strictly more defined than 1. 

Another example of browsing is retrieval of all ob- 
jects which mention, say, “CS” directly or indirectly 
(through other objects). This can be specified as fol- 
lows: 

fina!er( “CP) [content + {X}] e X[Y + “CS”] 
finu?er( “CS’) [content + {X}] e X[Y * { “CS”}] 
finder(“CSn)[content --, {X}] * X[Y 3 21, 

fincZer( “CS”)[content ---) (Z}] 
finder(“CSn)[content --) {X}] * X[Y + {Z}], 

finder( “CS”)[content --f {Z}] 
For our running example, the query fincZer(“CS”) 

[content + (X}] ? will return the set {csr, ~82, bob, 
mary, john}. 

The inheritance mechanism discussed in the previous 
section can be also used to enforce the domains of la- 
bels. For instance, specifying person[name + string] 

will cause every instance of person to inherit the do- 
main string for the label name. Now, if an F-term 
specifies a value for name, e.g. john[name + “John”], 
and this value is an instance of string, then everything 
goes well and, as explained in Section 4.1, “John” over- 
writes string. However, if the specified value is incom- 
parable with string, e.g. john[name + 201, then, since 
Zub(20, string) = T, john[name ---) T] is derived. 

In relational model, relation schema is usually fixed 
(e.g., suppZieT(sno, sname)) so that the tuples in a re- 
lation are defined over the schema attributes only. In 
contrast, in object-oriented languages (F-logic in par- 
ticular), attribute set may vary from object to object. 
In fact, the general class information (cf. clauses (5) 
to (7) in Figure 2) limits the schema “from below” by 
specifying what is generally true about the class, while 
relational model limits schemes “from above” by spec- 
ifying the only set of meaningful attributes for a rela- 
tion. We do not take a stand on whether the notion of 
schema in relational databases is a modeling necessity 
or merely an implementational convenience. The fol- 
lowing example shows that, if desired, schema restric- 
tion in the relational sense can be imposed in F-logic: 

suppZier[X + T] +== suppZier[X + 11, 
X # 87x0, X # sname 

suppZier[X --) (T}] (= suppZier[X --) { }] 

The first clause states that every label other than sno 
and sname maps supplier to T; the second clause says 
that every set-valued label maps supplier to the top 
set. Now, every individual supplier s will inherit these 
restrictions and therefore every label outside the sup 
plier’s scheme will yield meaningless information re- 
garding 8. 

4.3 Met hods 

Methods are the means of incorporating data abstrac- 
tion into object-oriented programming. Since they 
embody the procedural aspect of the object-oriented 
paradigm, many researchers believed that methods can- 
not be cast into a declarative setting. For instance, 
[24,25] propose a formal data model intended to sup- 
port a procedural object-oriented language. Similarly, 
in [7] methods written in a procedural language are in- 
tegrated into a declarative setting. 

We believe that the infamous impedance mismatch 
between programs and data should be overcome in a 
declarative fashion, which requires methods to be de- 
fined declaratively. This is not to say that procedural 
languages are of no use. However, our contention is 
that the procedural component should be integrated in 
a declarative framework in a clean way, e.g. the one 
alluded to at the end of this section. 
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In F-logic, declarative definitions of methods are pos- 
sible because nonground id-terms are allowed to appear 
in label positions in F-terms. One example to this ef- 
fect was given in Figure 2. For another one, consider 
the rule 
person : X[graduation-date(I) -‘Y] * 

univ : I[aZumni ---) {aZumn-ret : G[stud --) 
person : X, date -+ year : Y]}] 

For each person, the graduation-date method is a func- 
tion from universities to years, and one can ask queries 
such as 

X[graduation-date(I) + 1987]? 
john[graduation-date(I) --$ Y]? 

to find all persons who graduated from anywhere in 
1987, or to find dates and universities john graduated 
from. 

By modifying the browsing example of the previous 
section, we can define a method which returns the set 
of all objects directly or indirectly referring to the ob- 
ject passed to the method as an argument (the Stuff 
variable): 

finder[find(Stuf f) -b {X}] G= X[Y + Stuff] 
finder[find(Stuff)+{X}] += X[Y -{Stuff}] 
finder[find(Stuf f) -t {X}] += X[Y + 21, 

finder[find(Stuff)+(Z}] 
finder[find(Stuf f) --$ {X}] k= X[Y ---* {Z}], 

finder[find(Stuff)--,{Z}] 
In object-oriented languages, the ability to inherit 

methods and build them incrementally is responsible for 
much of the success of this approach in human interfaces 
and graphics. The following example illustrates how 
these phenomena can be accounted for in F-logic. 

Suppose that person -& male, female, w+iter. We 
can define the method legal-name as follows. Normally, 
the legal name is the last name of a person. However, 
maiden name of a married female as well as a pen-name 
of a writer is also considered to be a legal name. We 
can first define this method for each person: 

X[ZegaZ-names(Y) + {IV}] -+= year : Y, 
person : X[Zast-name(Y) + string : N] 

and then refine it for females and writers: 
X[ZegaZ-names(Y) + {IV}] += year : Y, 

female : X[maiden-name(Y) + string : N] 

X[ZegaZ-names(Y) -+ {IV}] += year : Y, 
writer : X[pen-name(Y) + string : N] 

Thus, if in 1988 mary was a married female, a writer, 
and uses her husband’s last name, she will have three 
different legal names in that year. On the other hand, 
for a ioe who is a male and not a writer, this method 
will return only one legal name. 

This example is also an instance of operator overload- 
ing - another feature attributed to object-oriented pro- 

gramming. This means that the same method name can 
be used to denote quite different procedures, depending 
on the class where this name is used. Another instance 
of overloading can be obtained by modifying the pre- 
vious example to include the class company which is 
incomparable to person. Since companies have a com- 
pletely different set of rules regulating their legal names, 
the definition of legal-name for class company may 
have little resemblance of the definition of this method 
for classes person, female, and writer, yet syntacti- 
cally the name is the same. 

Note that, in F-logic, methods are essentially “la- 
bels with parameters” and therefore plain labels can 
be viewed as parameterless methods. This uniformity 
is rather pleasing and corresponds to the situation in 
abstract data types. The technique described above al- 
lows one to define arbitrarily complex methods, since 
the full power of logic programming is at our disposal. 
Alternatively, we could incorporate procedures written 
in a nonlogic language, such as C or SmallTalk, by con- 
sidering nonground labels as “computed functions” and 
adapting the ideas from [30,31]. 

5 Conclusions 

Unlike the relational approach to databases which was 
initiated by Codd [14] and was based on firm theo- 
retical grounds, object-oriented databases were dom- 
inated by “grass-roots” activity where several imple- 
mentations have been done [44,42,29] without the ac- 
companying theoretical progress. As a result, many re- 
searchers had a feeling that the whole area of object- 
oriented databases is misguided, lacking direction and 
needing a spokesman, like Codd, who could “coerce the 
researchers in this area into using common set of terms 
and defining a common goal that they are hoping to 
achieve [35]“. 

Our contention is that the problem lies much deeper. 
When Codd made his influential proposal, he relied on 
a large body of knowledge in Mathematical Logic con- 
cerning predicate calculus. Essentially, he merely ap- 
plied (in different terms) what logicians had already 
known for several decades. Logical foundations for 
object-oriented databases that are parallel to those that 
underly the relational theory were lacking and, in our 
opinion, this was a major factor for the uneasy feeling. 
In his pioneering work [27], Maier proposed a frame- 
work for defining model-theoretic semantics for object- 
oriented logics. However, he encountered certain se- 
mantic difficulties with his approach and subsequently 
abandoned this direction. As it turned out, the diffi- 
culties were not fatal, and the theory was repaired and 
significantly extended in [13,20]. 

144 



In the present paper, we presented a novel logic which 
takes the C- and 0-logics of [13,20] into a new dimen- 
sion: F-logic is capable of representing most of what is 
known as the object-oriented paradigm. We provided a 
formal semantics for that logic and showed that it em- 
bodies in a natural way the notions of complex object, 
object identity, inheritance, methods, and schema. Al- 
though not presented in this paper, we note that F-logic 
has a sound and complete resolution-based proof pro- 
cedure which makes it also computationally attractive 
and renders it a suitable basis for developing a theory 
of object-oriented logic programming. This issue will 
be discussed in a companion paper. 
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