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ABSTRACT

Structural health monitoring (SHM) is usually focused on
damage detection (e.g., Yes/No) or approximate estimation
of damage size. Any additional details of the damage such
as configuration, shape, networking, geometrical statistics,
etc., are often either ignored or significantly simplified dur-
ing SHM characterization. These details, however, can be ex-
tremely important for understanding of damage severity and
estimations of follow-up damage growth risk. To avoid ex-
pensive human participation and/or over-conservative SHM
decisions, solutions of computational recognition for damage
characterization are needed. Autonomous SHM from visual
data is one of the significant challenges in the field of struc-
tural prognostics and health monitoring (PHM). The main
shortcomings of the image-based PHM algorithms arise from
the lack of robustness and fidelity to handle the variability
of environment and nature of damage types. In recent times,
deep learning has drawn huge amount of traction in the field
of machine learning and visual pattern recognition due to its
superior performance compared to the state-of-the-art tech-
niques. This paper proposes to formulate and apply a deep
learning technique to characterize the damage in the form of
cracks on a composite material. The deep learning architec-
ture is constructed by multi-layer neural network that is based
on the fundamentals of unsupervised representational learn-
ing theory. The robustness and the accuracy of the approach is
validated on an extensive set of real image data collected via
applying variable load conditions on the structure. The paper
has shown a high characterization accuracy over a wide range
of loading conditions with limited number of labeled training
image data.

1. INTRODUCTION

Structural Health Monitoring (SHM) encompasses an um-
brella of multi-disciplinary activities such as damage detec-
tion, damage quantification, damage monitoring and dam-
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age prognostics. Any additional fidelity of the damage such
as configuration, shape, topological networking, geometrical
statistics, etc., are often either ignored or significantly sim-
plified during SHM characterization due to limited resources.
These detailed information can however play a vital role in
damage prognostics and remaining useful life (RUL) calcula-
tion of a material part. Autonomous SHM via computational
recognition for damage from visual data is a necessity to
avoid expensive human intervention and/or over-conservative
SHM decisions.

Image processing has been an important tool in material/
structural characterization for over three decades (Krakow,
1982; Duval et al., 2014; Robertson et al., 2011; Leach,
2013). Texture analysis (Comer & Delp, 2000)and segmen-
tation (Ruggiero, Ross, & Porter, 2015; Park, Huang, Ji, &
Ding, 2013) are few image processing techniques that have
been used to address some of the challenges in material
characterization. Pre-processing steps like filtering and en-
hancement techniques (Tomasi & Manduchi, 1998; Angulo
& Velasco-Forero, 2013; Buades, Coll, & Morel, 2005) have
been used to denoise the image and perform alignment and
artifact correction.

Deep learning is one of most recent major breakthroughs in
the area of image processing. The recent success of the deep
learning architecture can be largely attributed to the strong
emphasis on modeling multiple levels of abstractions (from
low-level features to higher-order representations, i.e., fea-
tures of features) from the visual data (Erhan, Courville, &
Bengio, 2010; Bengio, Courville, & Vincent, 2013). Neural
network and deep learning based image clustering and seg-
mentation approaches have been extensively used in multi-
modal medical images (Hall et al., 1992; Özkan, Dawant,
& Maciunas, 1993; Cagnoni, Coppini, Rucci, Caramella, &
Valli, 1993; Liao, Gao, Oto, & Shen, 2013; Prasoon et al.,
2013), which has a similarity to the structural characteriza-
tion problems from an image processing perspective. To the
best of the authors’ knowledge, there are not many significant
literatures which deal with the application of deep learning
on structural characterization. In 2015, Sarkar et al. (Sarkar,
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Lore, Sarkar, Ramanan, et al., 2015; Sarkar, Lore, & Sarkar,
2015) adopted deep learning for vision-based PHM.

This paper proposes to formulate and apply a deep learning
technique to characterize the damage in the form of cracks on
a composite material. The main challenges that the authors
address are: (i) extensive heuristics for parameter tuning in
existing vision-based crack detection tools (Chambon, Gour-
raud, Moliard, & Nicolle, 2010; Oliveira & Correia, 2009),
(ii) limited availability of annotation causing small training
data size, and (iii) robustness issue in computer vision (seg-
mentation) techniques. The proposed deep learning architec-
ture, more specifically a deep autoencoder (DAE) (Bengio,
Lamblin, Popovici, Larochelle, et al., 2007) is constructed
by multi-layer neural network based on the fundamentals of
unsupervised representational learning theory. A guided seg-
mentation algorithm, introduced by one of the authors (Reddy
et al., 2012), is applied on the transformed output of DAE to
build a robust framework for damage caracterization. The
performance of the approach is tested in terms of relevant
metrics on an extensive set of real images collected via ap-
plying variable load on composite structure.

The paper is organized in five sections, including the present
one. Section 2 describes the experimental setup and data col-
lection method, which serves as a test apparatus for exper-
imental validation of the proposed architecture for damage
characterization. Section 3 describes the proposed framework
along with its building blocks via explaining the concepts of
DAE. Section 4 presents the capability and advantages of the
proposed approach. Finally, the paper is summarized and
concluded in Section 5 with selected recommendations for
future research.

2. EXPERIMENTAL SETUP

Demonstration of the developed capabilities was performed
on an example of thick multi-layer composite sub-elements
used in numerous rotorcraft and aircraft applications. Such
structural elements are usually under conditions of multi-
axial loading with dominant influence of bending, generat-
ing complex patterns of internal damages. For demonstration
purposes, simplified coupons were considered under condi-
tions of five-point bending (Gurvich, Clavette, & Robeson,
2016). The coupons were fabricated using commercially
available carbon fiber polymer-matric composite IM7/977-3
materials with lay-up [+454/−454/03]2S [03/−454/+454]
representing quite significant thickness (0.290 in) and number
of layers (55). Test implementation is illustrated in figure 1a
(Gurvich et al., 2016). It indicates (1b) the complex nature of
the damage network consisting of numerous, predominantly
interlaminar cracks of different length, shapes, locations and
mutual arrangement. The experiment was recorded as a video
with moderate frame rate. The video starts with a straight
coupon and slowly it is bent under monotonically increasing

Figure 1. (a) Scheme of coupon testing and (b) representative
damage pattern

displacement-controlled load till full fracture happens. Image
frames with different extent of cracks from the video are stud-
ied for damage characterization. Their purely manual char-
acterization would require significant efforts and would be
potentially associated with limited accuracy. Although man-
ual differentiation of individual interlaminar cracks seems to
be an obvious task, their automatic assessment may require
computational implementations where deep learning solu-
tions can be especially beneficial.

3. FRAMEWORK FOR DAMAGE CHARACTERIZATION

This section describes the proposed architecture and methods,
as shown in figure 2, for monitoring structural health from
image data. The framework, which is built upon the concepts
of machine learning, is explained in the context of a realistic
problem described in the previous section with experimental
data. The main objective is to automatically detect and an-
otate the cracks on images in real-time, which originates on
the surface dynamically. The final output is the damage char-
acterization in the form of distribution of crack lengths.

In the proposed framework, a deep autoencoder (DAE) is first
trained on initial (nominal) frames of the experiment without
any cracks on the surface of the coupon. The architecture and
patch-wise training procedure of the DAE is described in the
following subsection. Once the parameters (weights and bi-
ases) of the DAE are optimized based on the nominal surface
of the material, the frame with cracks are fed into the DAE
in a patch-wise fashion. The reconstruction error is obtained
by subtracting the real image from the reconstructed image
at the output neural layer of the DAE. The reconstruction er-
ror shows high value (visualized by whitened pixels on the
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Figure 2. Framework for damage characterization

reconstruction error map at figure 2) at the background, and
more importantly at the cracks. This happens because the
DAE is trained only on the nominal surface image. After the
background subtraction and dynamic edge straightening, re-
construction error map denotes the zones of cracks with high
intensity pixels located at initial co-ordinates. Eventually, the
reconstruction error map goes through a guided segmentation
algorithm as a confidence map for annotating the cracks on a
raw image. The region-growing guided segmentation proce-
dure is explained later in this section. DAE offers the required
robustness to crack detection via providing a confidence map
to the guided segmentation tool. Without a confidence map,
the annotated cracks will be fragmented leading to an erro-
neous crack-length distribution and small cracks will mostly
be undetected at variable load conditions.

3.1. Deep Autoencoder (DAE)

DAE is one of the pillars of deep Learning, which puts a
strong emphasis on modeling multiple levels of visual ab-
straction (from low-level features to higher-order represen-
tations, i.e., features of features) from data (Deng & Dong,
2014; Bengio et al., 2013). For example, in a typical image

processing application while low-level features can be partial
edges and corners, high-level features may be combination
of edges and corners to form parts of an image. In typical
image reconstruction applications, an image frame is usually
represented as a matrix containing color information or in-
tensity values of all pixels. The matrix can be reshaped into
a row vector as a form of low-level (e.g., pixel level) repre-
sentation. The vectors are transformed as they go deeper into
the model, consequently resulting in a different vector that
may represent higher-level features (e.g., edges) instead. In
this paper, a whole image frame is greyscale and dimension
is of the order of 855× 603 pixels. That’s why, instead of the
whole image, a patch of size 3×7 pixels is traversed over the
full frame (figure 3) with ∼ 80% overlap to generate a series
(∼ 10, 000) of training image vectors of dimension 21 (3×7).
This skewed patch dimension (3 × 7 pixels) is chosen to fa-
cilitate longitudinal smoothing as the cracks propagate hori-
zontally in the experiments. The order of patch dimension is
decided based on the average transverse width of the cracks,
which is ∼ 2− 5 pixels. These image vectors at nominal (no
crack) conditions, collected from the coupon surface sections
of the frames, act as a training data to DAE.
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Figure 3. Application of deep autoencoder (DAE) via patch-
ing frame-by-frame

A DAE is constructed by a multi-layer neural network, where
there is an input layer, single or multiple hidden layers and
an output layer. Each layer can have different number of neu-
ral units as shown in the figure 3. A DAE (Bengio et al.,
2007) takes an input vector x ∈ Rd and first maps it to the
latent representation h ∈ Rd′ using a deterministic sigmoid
function of the type h = fθ = σ(Wx + b) with parameters
θ = {W, b}, where W is the weight and b is the bias. This
”code” is then used to reconstruct the input by a reverse map-
ping of f : y = fθ′(h) = σ(W ′h+ b′) with θ′ = {(W ′), b′}.
The two parameter sets are constrained to be of the form
W ′ = WT , using the same weights for encoding the input
and decoding the latent representation. Each training pattern
xi is then mapped onto its code hi and its reconstruction yi.
The parameters are optimized via stochastic gradient descent
method (Bengio et al., 2007), minimizing an appropriate cost
function over the training set Dn = {(x0, t0), ..., (xn, tn)}.
In this paper, the cost function L(xy) is assumed to be the
root mean square error between the input vector and recon-
structed vector.

L(xy) = ||x− y||2 (1)

A DAE with three layers containing an input layer, one bot-
tleneck layer and an output layer is considered here. The bot-
tleneck layer consists of 10 neural nodes whereas the input
and output layers contain 21 neural nodes each. The contrac-
tion in dimension at the bottleneck layer helps in reducing the
over-fitting (Bengio et al., 2007) on the training data.

3.2. Region-growing Guided segmentation

The reconstruction error map of the test image acts as a ro-
bust confidence map to the guided segmentation process. Re-
gion growing (Reddy et al., 2012) is a pixel-based image seg-
mentation method, which checks the neighbor pixels of the
initially provided seed region and iteratively adds the neigh-
bor pixels to the region to be grown if a measure of simi-
larity S(x, y) is smaller than a threshold. After adding a
pixel, the mean intensity of the grown region is updated. In
this algorithm, the similarity S(x, y) is weighted by the con-
fidence of that pixel being a crack, according to the confi-

dence map. This helps the region to grow to the pixels with
similar intensities and also with high confidence of being a
crack. More specifically, the similarity measure is defined as
S(x, y) = |I(x, y) − c|(1 − p(x, y)), where p(x, y) is the
probability (intensity of the confidence map) of a pixel being
a crack, I(x, y) is the raw image intensity of pixel (x, y), and
c is the mean intensity of the current region. The pixels in the
neighborhood of a current boundary pixel with the minimal
S(x; y) is included into the region. Background subtraction
is also performed using this algorithm based on the recon-
struction error map.

4. RESULTS AND DISCUSSIONS

This section describes the damage characterization perfor-
mance results that are obtained when the proposed framework
is applied on experimental images. In general image process-
ing tasks, an important metric for good detector is formulated
by how many pixels are correctly detected. But for crack de-
tection from a damage characterization perspective, the im-
portant metrics are the number of correct cracks detected and
the normalized distance between original and estimated dis-
tribution of crack lengths (say d)

After training the DAE on a nominal frame in the method ex-
plained in section 3, it is tested on frames containing cracks
at variable loading level. As the load increases, the number
and length of cracks also increase non-linearly. Another chal-
lenge is associated with the fact that the whole coupon also
bends according to a non-linear topological deformation cri-
teria with the increment of load. That’s why, a dynamic edge
straightening is required. To reduce the complexity of the
whole framework, a threshold is assigned on the reconstruc-
tion error map or confidence map intensity level. If a pixel
intensity is more than the threshold, it is 1 and if the intensity
is lesser than the threshold, that pixel value is converted to
0. The best threshold is found to be ∼ 0.55 for the medium
load level crack detection,i.e., at 0.55 the framework detects
most number of correct cracks with least d. First to third
image from top of the figure 4 show the gradual progression
of the framework functionality. The last two images are the
frames with detected cracks (marked by white pixels) and the
annotated ground truth respectively. Despite the cracks being
only few pixels wide in the raw textured image, the validation
shows that the detected crack areas cover majority (∼ 90%)
of the original annotated cracks.

Varying crack width (∼ 1− 7pixels) and noisy textured sur-
face image pose another significant challenge in image pro-
cessing task with respect to maintaining the longitudinal con-
tinuity of a single crack. If the longitudinal continuity is not
preserved in the testing frame, the estimated number of crack
will be largely different from the actual number of cracks
due to lengthwise fragmentation. The proposed framework
performs well in detecting the number of cracks. Figure 5
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Figure 4. Validation on a frame for medium load condition. The last two images are the ones with detected crack (white pixels)
and the annotated ground truth respectively
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Figure 5. Comparison of estimated histogram over crack
lengths and the ground truth histogram

demonstrates the estimated histogram over crack lengths and
the ground truth histogram. They are satisfactorily similar
with d = 0.1 while capturing the probabilities of larger cracks
with more precision compared to that of the small ones.

The table 1 describes a range of damage characterization per-

Table 1. Comparison of damage characterization perfor-
mances at variable load condition

Number of correct
Loading level

cracks detected
d

low 4 out of 4 0.18
medium 16 out of 17 0.1

high 19 out of 20 0.15

formances for varying load condition in terms of the two ma-
jor metrics mentioned earlier. It is observed that the frame-
work exhibits consistancy in characterizing cracks at different
level of loads. The DAE and the confidence map threshold of
0.55 are robust to changing load levels.

5. CONCLUSION AND FUTURE WORK

In this paper, the authors formulate and implement a novel
framework containing deep learning to characterize the dam-
age in the form of cracks on a composite material. The pro-
posed framework addresses the shortcomings of existing im-
age processing tools in relation to damage characterization,
which are about lack of robustness and sensitivity to param-
eter heuristics. The deep autoencoder (DAE) is constructed
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by multi-layer neural network and optimized by stochastic
backpropagation. The reconstruction error map acts as a con-
fidence map for the guided segmentation tool to obtain the
number of cracks and crack-length distribution. The charac-
terization performance of the framework is validated in terms
of relevant metrics (number of correct cracks detected and
the normalized distance between original and estimated dis-
tribution of crack lengths) on an extensive set of real image
frames. The image frames are parts of multiple videos col-
lected during experiments that apply variable load on com-
posite structures. The paper has shown a high characteriza-
tion accuracy and satisfactory robustness over a wide range
of loading conditions with limited number labeled training
image data. Some of the near-term future tasks are:

• formulate and implement an end-to-end (from image
frame to damage characterization) deep learning archi-
tecture by eliminating the separate guided segmentation
module.

• Parametric tracking of non-linear topological deforma-
tion instead of heuristic edge straightening.

• Applying 3-dimensional convolutional DAE for 3-
dimensional damage characterization.

A more strategic vision for the long-term future steps is to ap-
ply developed capabilities for objectives of advanced main-
tenance or service-related decision making, where progres-
sive damage process is expected to be a function of time or
load or both. This vision is planned to be implemented into
two mutually inter-connected directions. The first one is fo-
cused on more accurate and cost-efficient characterization of
damage or deformation states. Indeed, quantification of sizes,
shapes, location and networking of observed damage can be
performed with much higher quality by deep-learning capa-
bilities than, for example, by manual or semi-manual mea-
surements. Another direction of improved damage monitor-
ing is envisioned to take into account a significantly larger
population of individual parameters, including numerous de-
tails of the damage state as illustrated, for example, in the
present paper. Larger population of such parameters can pro-
vide high probability of down-selection of the most informa-
tive metrics with higher sensitivity to the damage process.
Therefore, robustness of damage monitoring can be signigif-
icantly enhanced with follow-up opportunities to reduce con-
servatism of service and/or maintenance requirements. More
systematic results in this area will be presented in a coming
separate publication.
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