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Abstract 
 
Quantifying expression levels of proteins with 
subcellular resolution is critical to many applications 
ranging from biomarker discovery to treatment 
planning. In this paper, we present a fully automated 
method and a new metric that quantifies the 
expression of target proteins in immunohisto-
chemically stained tissue microarray (TMA) samples. 
The proposed metric is superior to existing intensity or 
ratio-based methods. We compared performance with 
the majority decision of a group of 19 observers 
scoring estrogen receptor (ER) status, achieving a 
detection rate of 96% with 90% specificity. The 
presented methods will accelerate the processes of 
biomarker discovery and transitioning of biomarkers 
from research bench to clinical utility.  
 
1. Introduction 
 
Quantification of target proteins at subcellular 
resolution enables direct association of the expression 
levels with the localization of specific biochemical 
activities. Frequently, the subcellular localization of a 
protein, namely in the membrane, cytoplasm, or 
nucleus, dictates the protein's function.  Large-scale 
prediction and correlation studies can be designed 
based on automatically quantifying protein expression 
patterns in tissue microarrays (TMA) with known 
clinical outcomes [1]. In this paper, we present a new 
metric to quantify subcellular protein expression 
levels. Pathologists manually determine the expression 
levels in immuno-histochemically stained tissues to 
diagnose and grade cancer. For example, the 
expression level and percentage of Estrogen Receptor 
(ER) protein localized in the nuclei is visually 
evaluated to determine ER protein status in breast 
cancer patients [2-4]. The score assigned by the 
pathologist is based on a minimum percentage of 
epithelial nuclei having the marker present.  
Frequently, this score is expanded to also include the 
percentage of positive cells and the strength of the 
signal.  Determination of ER protein expression is 
critical to ascertain the response of patients to drugs 
(Tamoxifen or other anti-estrogens); to predict 
survival time (ER+ is a favorable indicator); and to 
differentiate endocervical (ER-) from endometrial 

(ER+) adenocarcinomas. Different scoring methods 
are presented in the literature based on the percentage 
of tumor cells with positive expression with a range of 
1-20% of cells with expression being considered ER+, 
or based on mixed percentage and strength expression 
levels [3, 5].  

Chromogenic detection of antibodies bound to the 
target proteins, which is widely used in traditional 
pathology, relies on enzymatic amplification and can 
suffer from diffusion of the signal. On the other hand, 
fluorescence based detection is both linear and highly 
sensitive.  A sample of fluorescence ER staining with 
a distinct nuclear localization pattern is illustrated in 
Figs. 1(a, c). The segmentation result is presented in 
Figs. 1(b, d).  

We present a two-step automated subcellular 
quantification system. In the first step, the subcellular 
regions are segmented from a set of fluorescent 
images of compartmental markers.  DAPI, a 
fluorescent dye that binds to DNA, is used to detect 
the nuclei and to generate the nuclear segmentation 
map.  Fluorescently labeled antibodies conjugated to 
keratin protein are used to define the epithelia and 
cytoplasmic regions, while antibodies conjugated to 
pan-cadherin are used for defining epithelial 
extracellular membranes. In the second step, the 
distributions of a target protein (for example ER) in 
each of the epithelial compartments are calculated. In 
this paper we present a new quantification metric 
based on Kolmogorov Smirnov distance defined on 
these distributions. Our metric is robust to tissue auto-
fluorescence, and non-specific background binding, 
and it is different from existing intensity or ratio based 
techniques [6-8]. Our fully automated quantification 
system can be used to score commonly used target 
markers ER, androgen receptor (AR), progesterone 
receptor (PR), tumor protein 53 (TP53) and human 
epidermal growth factor receptor 2 (Her2). 

2. Segmentation of sub-cellular regions 
The first step of our automated quantification system 
is to use a set of compartmental markers to segment 
the subcellular regions. We utilized a general 
likelihood function estimator to calculate the 
probability maps of membrane and nuclei-like 
structures in single channel images of membrane (pan-
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cadherin) and nuclei (DAPI) markers. The probability 
maps encode the segmentation information of different 
shapes in images using probability values between 
zero and one. The algorithm iteratively estimates 
empirical likelihood functions of curvature and 
intensity based features. Geometric constraints are 
imposed on the curvature feature to detect nuclei or 
membrane structures in fluorescent images of tissues. 
Our method is non-parametric and can learn the 
distribution from the data. This is different from 
existing parametric approaches, because it can handle 
arbitrary mixtures of blob and ridge like structures. 
This is essential in applications such as in tissue 
imaging where a nuclei image in an epithelial tissue 
comprises both ridge-like and blob-like structures. The 
network of membrane structures in tissue images is 
another example where the intersection of ridges can 
form structures that are partially blobs. Further details 
can be found in [9]. 

3. Protein expression quantification 
The second step of our automated quantification is to 
quantify the relative distribution of target markers 
(such as ER, AR, PR, TP53, Her2) in the subcellular 
compartments. The intensity distribution of target 
protein in any compartment, C, is estimated using a 
Parzen window approach [10] with Gaussian kernels,  

{ }∑ −−=
ij
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ijijC IskwkP 22 2σ/)(exp)( , ( 1 ) 

where weights, )( CIPw ijij ∈= , are the probability 

of a pixel belonging to compartment C, T
ijI  is the 

intensity of the target protein at pixel location ij. The 
scaling factor, s, is set to the ratio of the dynamic 
range of the image to the number of bins, N; and index 
k varies from 0 to N. The density function is 
normalized to give a sum of 1. The probability density 
function (PDF) of a target protein (Fig. 1(a)) on each 
of the epithelial regions (Fig. 1(b)) are illustrated in 
Fig. 1(e), where nuclear, membrane, and cytoplasmic 
distributions are plotted in blue, red and green 
respectively. The subcellular region of the target 
protein comprises of expressed and non-expressed (or 
non-specific, background) regions.  

Signed Kolomogorov-Smirnov Distance:  A well-
known method to test if two distributions are different 
is to calculate the Kolmogorov-Smirnov (KS) distance 
[11] between the distributions. The associated test to 
measure statistical significance is commonly used in 
statistics and known as the Kolmogorov Significance 
test. We define a modified version of the KS distance 

and keep the sign of the distance to indicate which of 
the compartments is expressed more.   

Given the PDF, the cumulative distribution function 
(CDF) is calculated as 
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Figure 1(f) illustrates the CDF of the target 
distribution in Fig. 1(e), on each of the subcellular 
regions. The CDF clearly indicates over expression of 
the nuclear region (blue) where approximately 10% of 
the nuclear pixels express intensity values more than 
50 on a [0,255] scale, as opposed to a very small 
percentage for the other compartments.  

We introduce a signed version of the KS distance and 
call it signed KS (sKS) distance to determine which 
compartment is expressed. The positive one-sided KS 
test statistic between two distributions X andY is 
given as 

( ))()(max kFkFD YXkXY −=+ . ( 3 ) 

The expression level where the maximum positive 
cumulative differentiation is achieved is denoted by 

( ))()(maxarg kFkFk YX
k

XY −=+ . ( 4 ) 

Similarly, the negative one-sided KS test and the 
associated expression level is calculated as, 

   ( ) +− =−= YXXYkXY DkFkFD )()(max ,     ( 5 ) 

  ( ) +− =−= YXXY
k

XY kkFkFk )()(maxarg .    ( 6 ) 

Note that the negative one-sided KS test is identical to 
positive one-sided KS test except that the order of the 
distributions is swapped. Since we are searching for 
the differences in the higher expression levels, we 
define a new signed- KS (sKS) distance as follows, 
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where the threshold, Τ , was set to 10 in our 
experiments. Note that this is identical to the 
commonly used KS distance when the threshold is set 
to one. This new sKS distance is intentionally set to 
bias the distance that occurs at the high expression 
levels (the conditions in the lower two expressions in 
Eq. (7)). For example, if the CDF difference between 
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the membrane and the nuclei is a non-negative 
function, the smaller of the two one-sided KS 
distances is always zero and Eq. (7) gives the same 
results as the conventional KS distance. However, if 
the difference between the CDFs is not strictly non-
negative or non-positive, the peak that is expressed at 
the higher values is taken as the true expression level. 
The metric XYD  is defined as a signed metric, where 
the positive values indicate the higher expression of 
the Y  distribution, and the negative values indicate 
the higher expression of the X  distribution. This is 
particularly important to identify which distribution is 
expressed higher in addition to the level of expression. 

4. Results 

We demonstrated the effectiveness of the sKS metric 
on 123 TMA images from 55 patients (some patients 
are represented as multiple tissue cores) stained with 
DAPI (nuclei), pan-cadherin (membrane), Keratin 
(tumor/epithelial mask), and ER markers. DAPI and 
pan-cadherin were used to segment the subcellular 
compartments, and keratin to segment the epithelial 
mask. The computed PDF and CDF distributions of 
ER in each of the subcellular compartments are 
presented in Figs. 1(e, f). The sKS metric computed 
between the membrane and nuclei for the ER pattern 
in Fig. 1(a) is -0.24, where the negative sign is an 
indication of nuclear staining. 

The distribution of the ER protein was calculated on 
each of the epithelial subcellular regions. Biologically, 
the ER protein is partially or fully localized only in the 
nuclear regions. The nuclear ER distribution 
comprises a mixture of partial expression, non-specific 
expression, and autofluorescence (AF). Using the sKS 
distance, the nuclear ER distribution is compared to 
the membrane ER distribution comprising only non-
specific binding and AF. Therefore, the membrane 
compartment serves as a normalization factor. 

The sKS distance for each image in the TMA was 
automatically calculated and compared to the 
independent assessment of 19 observers. The 
observers (non-pathologist) were trained to score the 
collected data set of images as ER positive if they 
visually identified more than 10% of the nuclei with 
ER expression. Then the majority of the votes 
determined the most likely score for each image. In 
addition to the majority score, we also recorded the 
percentage of observers voting positive. The observer 
cutoff was set to 50% to determine the ER positive 
with the majority rule, while the sKS cutoff is set to -
3%. The negative sign represents that this is a nuclear 
expression relative to the membrane. The estimated 

expressed percentages represent the percentage of 
nuclear area expressed rather than the percentage of 
number of nuclei. The automated score was very well 
correlated with the manual score, yielding only 8 false 
positives, and 2 false negatives compared to the 
majority of observers. Fig. 2(a) illustrates the ROC 
curve of the sKS score when the majority of the 
human observers is considered as the ground truth. At 
–3% cutoff, 96% sensitivity and 90% specificity was 
achieved. 

To further validate the new sKS metric, two serial 
sections for the same patients acquired at different 
times were used to assess the robustness of the 
quantification to staining and tissue variations. Figure 
2(b) illustrates the scores from the two serial sections. 
The slope of the orthogonal regression is close to 1 

(a)   (b)

(c) (d) 
 

 
 
 
 
 
 

(e)

 
 
 
 
 
 
 

(f) 
Figure 1: Fluorescent image of breast cancer tissue 
samples that are immunofluorescently stained. a&c) 
Immunofluorescent staining of ER (green) with partial 
expression; pan-cadherin stains membrane (red), DAPI 
stains nuclei (blue). b&d) Automatically segmented 
subcellular regions; membrane (red), nuclei (blue), 
cytoplasm (green). e) PDF of the ER on each of the 
subcellular compartments; membrane (red), nuclei 
(blue), cytoplasm (green). f) CDF of the ER 
distribution. The yellow box in (a) shows the region 
that is zoomed in the middle panels (c&d). 
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(0.926), and the intercept is close to 0. The mean 
orthogonal distance (0.078) to the fitted line is an 
indication of the robustness of the segmentation and 
quantification methods over time. We also compared 
the performance of the sKS metric with normalized 
mean difference (NMD), percentage and log ratio of 
expressions in the two compartments tested against the 
nuclei. As summarized in Table 1, sKS performs as 
good as or better than other metrics using Area Under 
the Curve (AUC), and Kappa Statistics as performance 
measures.   

5. Discussion and Further Research 
We have shown a new fully automated method to 
determine the subcellular localization and relative 
abundance of partially expressed molecules in 
immunofluorescently labeled TMAs. Our methods are 
fully automated and designed to eliminate observer 
bias from the scoring. Using the intrinsic 
compartments as a normalization factor, our methods 
simplify the quality control process. In addition to 
clinical use, it can be used as a quality control tool to 
evaluate specimen preparation conditions as well. 
Extensive TMA analysis with clinical outcome data 
(survival times, drug resistance, recurrence, etc.) is 
needed to evaluate systems level performance.  

Table 1: Comparison of performance 
 Nuclei/Membrane Nuclei/Cytoplasm 
  AUC(%) Kappa AUC(%) Kappa 
sKS 98.14 0.84 93.51 0.71 
NMD 98.01 0.84 91.51 0.69 
Percent 97.77 0.82 90.91 0.71 
LogRatio 97.72 0.85 93.04 0.73 
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Figure 2: a) ROC curve of the sKS score when the 
majority of the human observers are considered as the 
ground truth. b) Comparison of the automated scores 
between serial tissue sections stained and imaged six 
months apart.  
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