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Abstract: Since the development of personal computers, the modeling of groundwater systems shifted from analytical
equations to numerical models. Given the ill-posed nature and non-uniqueness of numerical groundwater models, the use of
alternate data fusion and knowledge extraction paradigms is being explored to reduce uncertainty through improvements in
the conceptualization and parameterization processes and boundary conditions. This presentation demonstrates the use of
data fusion using joint-inverse, artificial adaptive system, and hybrid modeling techniques to assist with these challenges.
Examples include using joint-inversion for coupled unsaturated zone and geothermal studies, using artificial adaptive systems
in water-quality and groundwater recharge studies including subset selection, using hybrid solutions for remote mapping of

surficial aquifers and landscape characteristics, and forecasting climate change.

Goal: Find big-data solutions to hydrogeologic challenges using next-generation computational methods

Motivation: “We’re drowning in data and starving for knowledge” Rutherford D. Rogers

Objective: Use data-fusion to enhance mutual information for improved models

Objective: Quantify benefits of crossover effects to reduce recharge uncertainty Data: Pressure head, temperature, concentration

Modeling: Coupled set of PDEs; multi-criteria objective function
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A. JOINT-INVERSION (Top Down)
1. Explicit Inversion of Coupled Partial Differential Equations (Single Model)

2. Implicit Inversion of Disparate Models

Objective: Quantify improvements in gro

undwater basin stratigraphy

Data: Receiver function, surface wave dispersion, electric/magnetic fields

Modeling: Cross-gradient constraint, multi-criteria objective function,

seismic and magnetotelluric models
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3. Implicit Inversion of Explicitly Coupled Models

Goal: Understand interaction of geothermal and groundwater systems

Data: spontaneous potential (SP), temperature, hydraulic head

Modeling: Cross-gradient constraint, multi-criteria objective, electrokinetic models

B. ARTIFICIAL ADAPTI

VE SYSTEMS (Bottom Up)

1. Intelligent Scaling of Groundwater Recharge

Goal Develop equations for estimating groundwater recharge from scale-dependent measurements
Data: Local (1s-10s m?): unsaturated-zone water balance; Intermediate (10s-100s m?): water-table

fluctuations, age dating; Regional (100s-1000s m?): streamflow recession
Modeling: Machine learning, cross-validation, and genetic programming
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Electrokinetic model 1

Scaling Equations

[0 Local: unsaturated-zone water balance
O Ruz = f(Rrise, Rrora), others ...

Y + 0.3147 + X — 0.789 [0 Streamflow recession-curve-displacement
O Rrora = f(Ruz, Rrise), others ...

Electrokinetic model 2

Explicitly coupled
equations describing
spontaneous potential
response to heat flow

.' Output

Electrical conductivity, Hydraulic conductivity,
Thermal conductivity, Coupling coefficients

Implicitly Coupled Explicitly coupled
Cross-gradient equations describing
Constraint spontaneous potential
response to water flow

2. Climate Change: 1650-1977, 0-90N

Friedel, unpublished
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Objective Quantify persistence of El Nino Southern Oscillation Data: Modern and
paleoclimate temperatures Modeling: Machine learning, cross-validation

La Nina events > El Nino events
Neutral events > El Nina events

ino
a Nina
McGreggor, 2010
El Niflo event
1990-1995 )
B El Nino
I I ﬂ La Nina

3. Intelligent Input Selection for Water Quality Modeling of River Delta Aquifer

Objective: Quantify improvements to classifier of hydrochemical facies fiollowing variable reduction Data: Dissolved ions, field parameters,

isotopes Modeling: machine-learning, genetic algorithm-supervised artificial neural network, statistics

Variable reduction

TWIST parameters

Evolution Genera tions 200

Neural network
Algorithm kNN

Hidden layers 4
Epochs 100

k 3
Combined

Fitness type Average
Constraints  Variables 13

Targets™ 3

Patterns** 27

0 Ca-Calcium

1 Cl-Chloride

2 HCOS3 - Bicarbonate
3 K-Potassium

NO3 - Nitrate

7 S04 -Sulfate

8 di180 - Oxygen isotope
9 d2H —Hydrogen isotope

10 3H —Heliumisotope
pH — Hydrogen ions

*Targets refer to water sources

** Patterns refer to synoptic sample locations

Dependent variables

Network model

* 3 hydrochemical facies
(same as proposed)

Independent variables

* 5 dissolved ions
(reduced from 8)

* 1 field parameter
(reduced from 2)

Water Sample

Independent
groundwater

Mixing lake, river,
groundwater

Mixing lake, river,
groundwater

Hydrochemical Facies

4. Remote Classification of Soil and Vegetation Components from Satellite Hyperspectral Data

Objective: Test training with independent spectral libraries (7 soil and 5 vegetation components)
Data: 200 hyperspectral reflectance bands Modeling: Machine-learning, boosting (ensamble)

Minas Gerais

Study area
%////% Urban area

Roads

Vegetation Spectral Features

Soil Spectral Features
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C. HYBRID MODELING (Combined)
1. Estimating Hydrostratigraphy from Hydrogeophysical Data
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Objective: Inform groundwater model construction Data: Borehole hydrogeologic and geophysical, airborne electromagnetic
Modeling: numerical, machine-learning, multivariate statistics

small-intermediate volumes
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Summary: The data-fusion paradigms presented are useful for
extracting knowledge for solutions to current challenges in hydrogeology.

Hydrostratigraphic Unit

Mudstone (%)

0 0 0 0 0 0 0 8 0 75

0.00145 0.00121 0.00167 0.00024 0.00066 0.00051 0.00083 0.00057 0.00090 0.00059

Water-quality

. 1206.3 995.3 666.7 968.4 716.6  631.7 1011.0 1015.2 1041.5 766.3

RESind (ohm-m 46.8
RES16N (ohm-r
RES64N (ohm-r  156.7
Gamma (cps)

102.9 41.1 54.3 11.8 13.1 5.5 9.8 115 17.1 20.7
313.7 129.8 67.8 227.5 21.6 12.3 16.4 58.1 56.2 335
758.4 278.8 104.6 766.8 30.7 16.3 244 150.5 136.7 41.7

99.5 765 1204 1028 125.0 1655 1148 116.8 1421 125.7

110.6 246.2 218.4 57.6 72.5 15.9 59.1 -2.0 100.4 56.4
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