
The Suitability of Java for Satellite Applications
Michael Dorin

Information Technology For Aerospace
Universitt Wrzburg
Wrzburg, Germany

mike.dorin@stthomas.edu

Dr. Sergio Montenegro
Information Technology For Aerospace

Universitt Wrzburg
Wrzburg, Germany

sergio.montenegro@uni-wuerzburg.de

Juan Manuel Machuca
Facultad de Ingeniera y Arquitectura

Universidad de Lima
Lima, Peru

jmachuca@ulima.edu.pe

Abstract—The Java programming language has become widely
accepted and popular in many application areas. It is likely that
features Java provides allow for the quick and efficient develop-
ment of applications for use in CubeSats. Java also has many
independently designed scientific and data processing libraries
available making it worth consideration in the aerospace industry.
However, software used for controlling satellite applications
should meet established coding standards such as those published
by the Jet Propulsion Laboratory (JPL) of NASA. Since Java is
an interpreted language, if an application written in Java is to be
considered acceptable, both the application and the Java Virtual
Machine (JVM) which runs it must be evaluated. Knowing the
level of compliance of a Java Virtual Machine is essential. This
paper presents a method of establishing the suitability of software
for space applications. This process was created using a coding
survey directed to software engineers as well as a thorough
review of the JPL coding standard documentation. Multiple
existing open source Java virtual machines are evaluated, and the
suitability of each JVM is presented. This research determined
it is possible to use current JVM technology in CubeSats, but
not without accepting a certain amount of risk. Understanding
how to evaluate a Java Virtual Machine correctly allows creators
of satellite applications to make informed decisions on using the
Java programming language in their next mission.

Index Terms—Java, JVM, Complicated Software, CubeSat
Application in Java, Programming, Java Virtual Machine, Open
Source, Metric, Level of compliance, java and risk

I. INTRODUCTION

There are many examples of Java use in CubeSat applica-
tions. For example, the Ham Radio community has telemetry
software written in Java [1]. There are programs and libraries
written in Java to create simulations of orbit and orbital decay
[2]. Though there are many examples of Java used in ground
software, there are few examples of Java used in orbital
applications. As of August 2018, GitHub hosts more than sixty
Java Virtual Machine (JVM) projects [3]. Wikipedia shows a
similar count of active and inactive open source JVM projects.
Based on the popularity of Java in aerospace applications and
the number of JVMs available, it makes sense to consider
using Java in embedded, mission-critical applications. This
paper endeavors to answer the question of whether any JVM
is suitable for use in space flight. The first step is to define
criteria to evaluate the suitability of source code for use in
mission-critical applications. Then, various open source Java

©2019 Michael Dorin. Presented at IC2T 2018, the International Confer-
ence on CubeSat Technology, Arequipa, Peru. This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License.

virtual machines are evaluated for suitability. Finally, a report
of findings is presented.

II. JUSTIFICATION FOR JAVA

The C programming language has long been accepted as the
programming language of choice for aerospace and mission
critical applications. Java is now more than 23 years old and
should not simply be dismissed for this type of work. In ad-
dition to hosting many JVM projects, GitHub also hosts more
than four hundred math and science libraries written in Java
[3]. Many universities teach Java as the introductory program-
ming language meaning large numbers of Java programmers
are available in an academic setting [4]. Professionally, Java
is just as popular with programmers as C [5].

III. CRITERIA FOR JAVA VIRTUAL MACHINE SELECTION

Many Java Virtual Machines exist so criteria were defined
to select which JVMs would be evaluated in this project.
First and foremost, the source code needed to be readily
available. For this study, the source code must had to available
on GitHub [3] or SourceForge [6]. If the source code was
too challenging to acquire, it would be of no use to those
interested in the project. The next criteria are that the JVM
source code must be written in C or C++ and must be simple to
build. This is because complicated builds are harder to port to
embedded applications. As such complicated builds and builds
that required special tools were dropped from consideration.
There are also example Java Virtual Machines written in Java,
Python, and other interpreted languages. At this point, having
a layered JVM is not practical for satellites, so none of these
were selected. Ideally, the selected JVMs have some sort of
open source license, but many projects have not established
any license. However, any project that specifically limited type
of use was dropped from consideration.

IV. CRITERIA FOR SATELLITE SOFTWARE

Care is essential when selecting software that for inclusion
in a satellite mission as a failure of the software can mean
failure of the mission. This section defines essential char-
acteristics for software used in satellite and other mission-
critical applications. The criteria presented here are based on
two foundations. The first and most important foundation in
determining if a piece of software is space-worthy is whether

the source code is too complicated for humans to understand
when reviewing it.

If project code is too complicated for a proper review, it is
likely to contain faults that go unnoticed. Recommendations
included here are based on a recent study demonstrating that
software engineers can very quickly visually spot code that is
too complicated for review. In this study, programmers were
asked to visually scan C and C++ source code and immediately
indicate if they felt the code would be pleasant to review or
unpleasant to review [7]. Upon completion of the survey, the
most important stylistic failures were identified and listed in
Table I [7].

TABLE I
MOST UNPLEASANT TO REVIEW STYLES

Style Name

There should be space around operators
Do not write over 120 columns per line
Average length of functions should be short
Indent blocks inside of a function
Put matching braces in same column
Use less than 5 parameters in function
Do not use the question keyword
Avoid deeply nested blocks
Use braces for even one statement

The complexity study also discovered that programs with a
high cyclomatic complexity value were considered unpleasant
to review [7]. Cyclomatic complexity measures the number of
independent paths through a portion of code [8].

The second foundation is based on coding recommendations
from NASAs Jet Propulsion Laboratory (JPL) [9]. These stan-
dards were summarized through recommendations compiled
by Gerald Holzmann from his paper, the Power of Ten-Rules
for Developing Safety Critical Code. These are listed in Table
II [10].

TABLE II
POWER OF TEN-RULES

Rule Name

Use simple control structures including avoiding goto
Know how long control will remain in a loop
Do not use dynamic memory
Keep function length short
Use assertions to check for conditions that should never happen
Use smallest scope possible for variables and methods
Check return codes from function calls
Do not use preprocessor directives
Limit pointers to only one level of dereferencing
Do not ignore compilation warnings

Since uncomplicated code is an essential aspect of this
study, in this section we are going to map how these recom-
mendations are connected to uncomplicated code. For example
simple control structures are recommended for use when
programming. Though it is superficially easy to search for
C goto statements, to be utterly confident that software has
simple enough control structures, the code must be easy to
understand and review.

Likewise with the upper bounds of loops. It is possible to
do running time analysis on loops to determine upper bounds,
but understanding the code is indeed the best way to be sure.
Limiting pointers to only one level of dereferencing makes
understandability to a human reviewer easier as well.

Assertions are essential for checking conditions that should
never happen. Uncomplicated to understand source code is
also very important in this matter. If a human is unable
to understand code, they likely cannot wholly understand
conditions that should never happen to place assertions.

An often overlooked recommendation is when calling a
function, the return code should be checked rather than as-
suming success. Intuition tells us that it is easier to determine
proper error handling when working with less complicated
code. Straightforward things to verify are the absence of pre-
processor directives such as #ifdef, the absence of compilation
warnings, the inclusion of asserts, and a small total number of
lines in a function or method.

From knowing the characteristics of complicated code and
the ideal characteristics of software for space applications, a
methodology can be created to identify JVMs that are far from
compliance.

No dynamic memory is recommended, and in C program-
ming this means that malloc system calls are not allowed.
An important feature of Java is garbage collection, which
implies dynamic memory. However, it is theoretically possible
to eliminate garbage collection and require developers to
understand how much memory they need.

V. METHODOLOGY

More than sixty virtual machines are available and man-
ually reviewing each machine was impractical. Built on the
understanding of what characteristics are important in satellite
software, a mostly automatic process was created with the goal
of eliminating JVMs which were very far from meeting the
recommendations. The process of evaluation was carried out
over several steps.

A. Step 1

As mentioned, only JVMs with readily available source
code were used for this study. JVMs were downloaded from
GitHub.com [3] and SourceForge [6]. License files for each
of the JVMs were reviewed, and those that explicitly forbade
certain usage were eliminated. JVMs without a license were
not eliminated, but the lack of license is an important consid-
eration from a legal perspective.

B. Step 2

In this step, an attempt was made to build the virtual
machine in a Unix environment. A complicated build process
is likely too risky, so if it too much effort was required to
make the build or if the build could not be completed, the
JVM was dropped from the study.

C. Step 3

In this step, the surviving machines were evaluated for
software quality. Using a tool called nsiqcppstyle, a review
quality report based on the unpleasant to review styles shown
Table 1 was generated for each machine [11]. The review
quality report calculated a quality percent based on the number
of lines in a project and the number of style infractions found
in the source code. No machines were eliminated from the
study based on this report, but having the value is an important
consideration.

D. Step 4

Remaining JVMs were then checked for C constructs such
as #if, #ifdef, and malloc. They were also checked for usage
of assert and the absence of C goto statements. The results of
these actions was logged.

E. Step 5

A small test program was compiled using the OpenJDK
[12] environment and run. The rationale for this step is that
if we were unable to get a small application running a more
complicated application would be impossible. The application
is shown in Listing 1. Note the test here is not meant to be
an exhaustive test of all of Java’s capabilities, only to exercise
very basic Java capabilities.

Listing 1. Simple Math Test Program

p u b l i c c l a s s HelloJVM {
p u b l i c s t a t i c i n t math (i n t a , i n t b)
{

i n t r e t u r n V a l ;
r e t u r n V a l = a * b ;
re turn r e t u r n V a l ;

}
p u b l i c s t a t i c vo id main (S t r i n g a r g s [])
{

i n t a =2;
i n t b =6;
i n t answer ;
answer =math (b , a) ;
System . o u t . p r i n t l n (” H e l l o ”+ answer) ;

}
}

VI. RESULTS

None of the virtual machines were able met all of the re-
quirements perfectly. This does not necessarily mean that Java
should not be considered for satellite applications. However
it does preset difficulties that may require extra work to get
Java ready for such applications. The results presented are
broken up into three sections. First, the standard GNU JVM
for Linux and the standard Oracle JVM are discussed. Then the
results from analyzing the open source embeddable machines
are presented. Finally, two machines which did not make the
final selection but were regarded as interesting are shown.

A. Standard Linux JVMs

1) Oracle: The intent of this paper was to discuss open
source JVMs due to their review-ability. During the inves-
tigation, it became apparent that many of the open-source
JVMs are not ready for mission-critical applications and it
seemed wise to consider the Oracle JVM. Except for the
absence of source code to review, it cannot automatically be
considered a bad choice. It is well maintained and is available
for different target platforms. Oracle provides good support for
their product, and it is easy to install in Linux environments.
The Oracle JVM had no trouble executing the code from
Listing 1. Oracle presently provides an embedded version of
the software which can run in even in Arm environments [13].
If a CubeSat has the resources to support the Oracle JVM and
the need exists for Java, it may be the proper choice.

2) OpenJDK and HotSpot: Open JDK is generally thought
of as the standard set of Java tools for Unix. Open JDK
uses HotSpot JVM, which is the self-proclaimed best JVM
on the planet [14]. This is likely the most complete and
the most stable of the open source JVMs evaluated in this
project. Installing Open JDK on various Linux distributions is
easy. HotSpot makes regular use of assert, as recommended
by the JPL summary. However, it is not an easy JVM to
independently review, based on its size and having a review
quality report of only 30.53 percent. HotSpot source also
has an average cyclomatic complexity of 2.7, which is very
good, but it has some functions which go higher. Hotspot
does use the C goto statement various places and there are
thousands of preprocessor directives. HotSpot may not easily
run on small target platforms or specialized real-time operating
systems. HotSpot did properly run the test program in Listing
1. However, on systems that run Linux and have sufficient
resources, this could also be a good choice.

B. Embeddable Java Virtual Machines

None of the finalist JVM candidates for embedded systems
met the requirements for mission-critical applications. None
of these machines properly used asserts to identify conditions
which should never happen. However, the JVMs included in
this section built and ran Java class files, meaning they may
be good candidates for future updating.

1) sJVM by Jakub Veverka [15]: This seems to be a student
project, and no license is provided on GitHub. The project has
an excellent review quality report of 71.79 percent and it has
a cyclomatic complexity of 3.7, though some of the functions
included go significantly higher. At present it only has twenty
preprocessor directives and it uses no C goto statements. sJVM
also is somewhat functional and does operate. sJVM is also
very easy to build on Linux and even Macintosh environments
and the build generates no warnings. However, it is not a
complete Java implementation as it will not properly run all
class files created with current Java build tools and did not
properly run the code shown in Listing 1.

2) JVM by Arthur Emidio [16]: This also seems to be a
student project with no license provided, but the complete
source code is available on GitHub. The virtual machine put
forth by Arthur Emidio has a good review quality report of
55.56 percent and it has a cyclomatic complexity of 2.6. It
does have a considerable number of preprocessor directives
but it does not use C goto statements. It also calls malloc
twenty-seven times in the code. Though an incomplete JVM,
it is somewhat functional. This JVM was very easy to build
on Linux but required cmake and had only 2 build warnings.
sJVM could run its own test classes but unfortunately was not
successfully able to run the test program (Listing 1).

3) Simple Java Virtual Machine by ntu-android [17]: The
virtual machine put forth by ntuAndroid has a low review
quality report of only 20 percent but it has some features
that make it attractive. Reviewing at the code, one can see
many obvious stylistic violations which are easily correctable.
This JVM also is somewhat functional and operates better
than most when tested with compiled Java code. It has an
average cyclomatic complexity of 3.1. It uses more than 50
preprocessor directives but uses no C goto statements. It also
calls malloc 36 times. The JVM was very easy to build on both
Linux and on Macintosh environments, but does generate 62
warnings at this time. It was able to run a very simple hello
world program, but not the code from Listing 1. It is packaged
with the GNU Public License which makes its use unrestricted.

C. Honorable Mentions

1) Tiny JVM by Julian Offenhuser [18]: During the JVM
evaluation period, it was not possible get this virtual machine
running correctly, but it is mentioned here because of its size
and simplicity. It will build on Linux, but a license has yet
to be defined. Executing the included automatic test did not
work on the Ubuntu system. That said, it would be very
straightforward to port this JVM to different processors and
operating systems. Based on a single file, the build process
cannot be simpler. It has an relatively high average cyclomatic
complexity of 11.2. The parseClass function has a large
cyclomatic complexity and is comprised of 190 lines of code.
It uses very few preprocessor directives and it has no goto
statements. At this time, it uses malloc in nine locations. The
size and scope of this one file JVM is very interesting and
compelling as a candidate for updating and porting.

2) Nano VM by Tharbaum [18]: This virtual machine
was not tested on Linux as it has been made for the Atmel
AVR family. It is a good implementation and was actively
maintained for years. It has a reasonable review quality report
of 45 percent and it cyclomatic complexity of 3.3, though
some of the functions go considerably higher. There are 141
preprocessor directives and it has no C goto statements. It does
use malloc, but in only one place making it ideal for handling
dynamic memory concerns. Many of the complaints in the
quality report are very easy to fix, such as adding braces even
for one statement and adding spaces around operators. It was
released under the GNU public license so has flexibility for
use.

VII. CONCLUSION

As part of the preparation for this paper, more than 60 Java
Virtual Machines were reviewed for suitability for satellite
and mission-critical applications. The results show that it is
possible to use Java for a satellite application, but presently,
it is not a perfect choice. There is no single Java Virtual
Machine that can meet all the requirements for an ideal
application. The recommendation from this review is, for now,
use a standard JVM from Oracle or one provided by the
OpenJDK project. Unless a CubeSat software team has the
background and the time to do extra work, an embeddable
JVM should not be considered. Many of the embedded JVMs
do not properly build or are simply too complicated to adapt
to an embedded target smoothly. It is unfortunate that a JVM
suitable for satellite embedded systems was not identified
during this study. Future work should be done taking an
existing embeddable JVM such as Nano VM and bringing
it up to a mission-critical software coding standard. During
this process, an abstraction layer should be created allowing
the adapted JVM to be ported to different real-time operating
systems and processors.

REFERENCES

[1] “Foxtelem software for windows, mac, and linux,” August
2018. [Online]. Available: https://www.amsat.org/foxtelem-software-
for-windows-mac-linux/

[2] A. Platzer, “Orbital library,” February 2017. [Online]. Available:
http://symbolaris.com/orbital/

[3] “Github,” August 2018. [Online]. Available: https://www.github.com
[4] P. Guo, “10 most popular programming languages in 2018: Learn to

code,” July 2014. [Online]. Available: https://cacm.acm.org/blogs/blog-
cacm/176450-python-is-now-the-most-popular-introductory-teaching-
language-at-top-u-s-universities/fulltext

[5] M. Priyadarshini, “10 most popular programming languages
in 2018: Learn to code,” June 2018. [Online]. Available:
https://fossbytes.com/most-popular-programming-languages

[6] “Sourceforge,” August 2018. [Online]. Available:
https://www.sourceforge.com

[7] M. A. Dorin, “Coding for inspections and reviews,” in XP ’18 Compan-
ion, May 2125, 2018, Porto, Portugal, ACM. New York, NY, USA:
Association for Computing Machinery, 2018.

[8] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw.
Eng., vol. 2, no. 4, pp. 308–320, Jul. 1976. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1976.233837

[9] J. P. Laboratory, JPL Institutional Coding Standard for the C Pro-
gramming Language. 800 Oak Grove Dr, Pasadena, CA 91109: Jet
Propulsion Laboratory, 2009.

[10] G. J. Holzmann, “The power of ten–rules for developing safety critical
code1,” Software Technology: 10 Years of Innovation in IEEE Computer,
2018.

[11] J. Yoon and K. Tyagi, “Nsiqcppstyle,” November 2017. [Online].
Available: https://github.com/kunaltyagi/nsiqcppstyle

[12] “Openjdk,” August 2018. [Online]. Available: http://openjdk.java.net/
[13] Oracle, “Oracle java embedded,” July 2018. [Online]. Available:

http://www.oracle.com/technetwork/java/embedded/overview/index.html
[14] T. H. Group, “Hotspot,” 2018. [Online]. Available:

http://openjdk.java.net/groups/hotspot/
[15] J. Veverka, “Jakubveverka sjvm,” December 2015. [Online]. Available:

https://github.com/jakubveverka/sJVM
[16] A. Emidio, “Arthur emidio jvm,” March 2016. [Online]. Available:

https://github.com/ArthurEmidio/jvm
[17] ntuAndroid, “Simple vm,” March 2014. [Online]. Available:

https://github.com/ntu-android/simple vm
[18] J. Offenhuser, “Tiny jvm,” July 2018. [Online]. Available:

https://github.com/metalvoidzz/TinyJVM

