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One of the main bottlenecks to deploying large-scale carbon dioxide capture and 

storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. 

For example, near-term CCS technology applied to coal-fired power plants is projected 

to reduce the net output of the plant by some 30% and to increase the cost of electricity 

by 60-80%. Developing capture materials and processes that reduce the parasitic 

energy imposed by CCS is therefore an important area of research. We have developed 

a computational approach to rank adsorbents for their performance in CCS. Using this 

analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate 

framework (ZIF) structures and identified many different structures that have the 

potential to reduce the parasitic energy of CCS by 30-40% compared to near-term 

technologies.  

Reducing anthropogenic global CO2 emissions is a complex issue. The scale of the 

problem, the costs, its interdependence with energy production, and the intrinsic uncertainties 

in making long-term predictions about something as complex as the climate are a few of the 

factors contributing to one of the biggest challenges of our time.1 Despite advances in 

alternative energy, most, if not all, future energy scenarios include continuing growth in the 

absolute use of fossil energy.2 CCS, deployed at an industrial scale, is one of the few viable 

technologies that mitigate anthropogenic CO2 emissions.3 For power plants, post combustion 

CCS involves the separation of CO2 from flue gas, followed by its compression and then 

sequestration in geological formations. CCS is very energy intensive, and capture dominates 

both the energy consumption and the cost.3,4   

One can use simple thermodynamics to estimate the minimum energy required to 

separate CO2 from flue gases (typically, 70-75% N2, 13% CO2, 5-7% H2O, 3% O2 at 40ºC 

and 1 atm). If we capture 90% of the CO2 from a coal-fired power plant with the separation 

performed at 40ºC, the minimum energy required is of the order of 4-5% of the energy 
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produced by the power plant.5 Near-term capture technologies are projected to use five times 

the thermodynamic limit.5  This suggests that capture processes that use less energy may be 

feasible. The technology for CO2 capture considered near-term for power plants was 

developed as far back as the 1930s.6,7 This technology uses aqueous solutions of amines that 

react with CO2 to form carbamates and are therefore highly selective in capturing CO2. One 

drawback of these amine solutions is that they contain 70% water by weight, and the 

regeneration cycle involves heating and evaporating large volumes of water, making the 

process energy intensive. Alternative separation processes that use other solvents, solid 

adsorbents, or membranes have the potential to require less energy.5 One of the main 

challenges here is that many properties of CO2 and N2 are relatively similar, and hence 

success of such approaches relies on the development of novel materials sensitive to these 

small differences. 

For adsorbent-based gas separations, it is important to have adsorbents with a large 

internal surface;8 examples of such material include zeolites, metal-organic frameworks 

(MOFs), and zeolitic imidazolate frameworks (ZIFs).9-12 The number of possible structures 

of these materials is very large: hundreds of thousands of possible zeolites with different pore 

topologies exist in the zeolite database,13 and a nearly infinite number of different types of 

MOFs can be created by changing the type of the metal and the organic linker. In practical 

terms, synthesizing and testing all these structures for CO2 separation would be an impossible 

task. Therefore, we have developed a viable computational strategy to characterize large 

databases of carbon capture materials and identify optimal materials for CO2 separation.  

Several articles on screening for optimal separation materials have been published.14-16 

These articles consider a limited set of 10-20 different materials, which is insufficient to 

characterize the hundreds of thousands of different possible topologies.13 In addition, these 

studies often focus on a single material property, such as selectivity or residence time, at a 
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specific condition. However, optimizing the residence time15 or uptake16 in the adsorption 

step, for example, ignores that a material effective at adsorbing CO2 might be difficult to 

regenerate. More importantly, these studies do not consider that different materials perform 

optimally at different conditions. In this work, we take another approach. For each material 

we determine the optimal process conditions by minimizing the electric load that a 

temperature-pressure swing capture process using that material followed by compression 

would impose on a power plant. This minimum load, which we call parasitic energy, is 

introduced as a metric to compare different materials.  

Separation of gases using nanoporous materials exploits the fact that at flue gas 

conditions CO2 selectively adsorbs in the pores of these materials. By increasing the 

temperature, decreasing the pressure, or a combination of both, nearly pure CO2 can be 

recovered. Figure 1 illustrates such a temperature-pressure swing separation process. 

Regardless of the regeneration method, the parasitic energy of a CCS process can be readily 

modeled if equilibrium adsorption and desorption are assumed. While there are many 

possible process configurations, they all rely on the difference between adsorption and 

desorption conditions to capture CO2. The processes vary primarily in their method of gas-

solid contacting and heat transfer, though neither of those factors affects performance under 

equilibrium assumptions. The energy required for this process has three main components: (1) 

energy to heat the material, (2) energy to supply the heat of desorption (equal to the heat of 

adsorption), and (3) energy required to pressurize CO2 to 150 bar, which is a standard 

requirement for transport and storage.4 For a specific material and a fixed adsorption 

condition, we vary the desorption conditions and calculate the CO2 and N2 loading 

differential between the adsorption and desorption conditions to compute the quantity and 

purity of CO2 produced. The thermal energy requirement (Q) of the process per unit mass of 

CO2 captured (ΔqCO2) is the sum of the sensible energy needed to heat the bed to the 

desorption temperature and the energy needed to supply the heat of adsorption. 
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 Q =
Cpmsorbent Tfinal −Tflue( )+ ΔqCO2ΔhCO2 + ΔqN2ΔhN2( )

ΔqCO2
  

where Cp is the specific heat capacity of the adsorbent, msorbent is the mass of the adsorbent, 

Tfinal-Tflue is the temperature differential between the adsorption and desorption conditions, 

Δqi  is the difference in loading for each species, and Δhi is the heat of adsorption for each 

species. The loading at specific conditions is calculated using competitive adsorption 

isotherms, and the heats of adsorption are obtained directly from the molecular simulations. 

In a power plant, this thermal energy is supplied by diverting steam from the power cycle. 

Diverting steam effectively imposes a parasitic load on the power plant, which we compute 

as the product of the thermal energy requirement, the Carnot efficiency (η) of the extracted 

steam, and the typical efficiency of a turbine (75%).17 The compressor work, Wcomp, is 

obtained from a multi-stage intercooled compressor model with real gas properties using 

NIST REFPROP18 for fluid property data. We assume a staged compression, intercooled to 

40ºC, with a maximum pressure ratio of 2.5 and an isentropic efficiency of 85% below the 

supercritical point and 90% above it. Finally, the parasitic energy, Eeq, imposed on the power 

plant of the CCS process, is given by: 

 Eeq = 0.75ηTfinal
Q +Wcomp  

By calculating the parasitic energy for a given adsorbent over a wide range of possible 

desorption temperatures and pressures, we find the optimal process conditions for each 

adsorbent that minimizes the parasitic energy. Using a similar analysis, a state of the art 

amine capture process would have a parasitic energy of 1060 kJ/kg CO2. A more rigorous 

engineering analysis of an amine process retrofitted to a coal-fired power plant which 

includes pressure drop through equipment, losses in heat exchangers, and other energy 

losses, shows a parasitic load of 1327 kJ/kg CO2, about 25% higher.4 Therefore, we seek 

materials that exhibit a parasitic energy significantly lower than 1060 kJ/kg CO2 with the 
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expectation that, similar to the amine process, a more detailed analysis of a process attached 

to a power plant will increase this number. We also emphasize that for the present analysis 

we treat the flue gas as a binary gas mixture of 14% CO2 and 86% N2. This assumption 

allows us to focus first on the energy consumption of these materials. Only if the energy 

consumption looks sufficiently attractive relative to other processes, additional criteria such 

as sensitivity to other flue gas components (e.g., H2O, SOx, NOx), as well as cost, attrition, 

stability, and availability can be examined. 

As we have sought to determine the minimum parasitic energy of a material, the most 

important data are the (mixture) adsorption isotherms. As the experimental adsorption 

isotherms are known for only very few materials, we rely on molecular simulation to predict 

these isotherms for the different materials. Conventional grand canonical Monte Carlo 

(GCMC) simulations allow us to predict a complete isotherm on the basis of the crystal 

structure of the material.19,20 These simulations, however, require on the order of days of 

CPU time, which is prohibitively slow to screen hundreds of thousands of materials. To 

obtain adsorption isotherms in a high-throughput manner, we have developed an efficient 

algorithm that allows us to obtain a complete isotherm in a few seconds on a graphical 

processing unit (GPU). Our method relies on the observation that pure component adsorption 

isotherms in these materials can be accurately described using dual- or single-site Langmuir 

isotherms:21  

 qi =
Ki, jPi

1+
Ki, j

qsat ,i, j
Pij=1

N

∑   

In the equations above, qi is the loading at the partial pressure Pi of the components i, Ki,j is 

the Henry coefficient, and qsat,i,j  is the saturation loading of the component i at identified 

adsorption site j. In our model, only the single-site (N equal to 1) isotherm was adopted for 
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N2 while either single- or dual-site (N equal to 2) isotherms were applied for CO2. The 

temperature dependence of the Henry coefficients follows directly from the heats of 

adsorption, both of which were obtained from molecular simulations. The total saturation 

loading of pure component gas was calculated using a correlation of guest molecule density 

in the framework to pore diameter. For CO2 adsorption, the use of dual-site isotherms is 

required for structures that contain particularly strong adsorption sites; this behavior arises 

because CO2 first adsorbs at these sites, and only once all these positions are saturated does 

CO2 adsorb in the rest of the material. Figures 2a and 2d illustrate the difference between 

materials best described by single site and dual site isotherms, respectively. The long tail of 

the histogram in the lowest energy region is the signature of the presence of these strong 

adsorption sites. If such a signature exists, we use a dual-site description; otherwise, the 

isotherms are described using a single site. Figure 2e shows a typical case of such a dual site 

isotherm for pure CO2. One observes a plateau in the isotherm at low pressure, which results 

from the saturation of the strong adsorption sites by CO2. Each strong adsorption site can 

generally accommodate only one CO2 molecule, so the saturation loading for these sites is 

just the sum of the number of unique sites. We have developed an automated algorithm to 

identify the presence of these sites during molecular simulation and accordingly divide the 

structure into two regions, computing their own associated adsorption Henry coefficients, 

heats of adsorption, and saturation loadings. Figures 2b and 2e demonstrate that our model is 

able to predict the correct temperature dependence of the pure component isotherms.  

The most commonly used method to predict mixture adsorption isotherms is ideal 

adsorbed solution theory (IAST).22 However, as carbon capture of flue gases occurs at 

relatively low pressure, competitive Langmuir isotherms give an equally good description. It 

is important for dual-site Langmuir isotherms to take the saturation value for N2 to be the 

same as CO2 outside of the strong adsorption region, which is required for consistency with 

the assumptions of the competitive adsorption isotherm.23 To test the reliability of the 
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competitive Langmuir model to predict the mixture isotherms on the basis of the pure 

components, we used the GCMC simulated mixture adsorption isotherms as “experimental 

data” to test whether the Langmuir model correctly predicts these mixture isotherms given 

the predicted pure component isotherms.  We have tested over 50 different structures and for 

all systems, the competitive model accurately reproduces the mixture isotherms over a large 

range of pressures, including the partial pressures relevant for flue gas separations. Figures 

2c and 2f demonstrate the performance of the competitive isotherm model with the 

corresponding GCMC simulations (see SI for the other structures). 

Figure 3a shows the optimized parasitic energy as a function of the CO2 Henry 

coefficient for all known zeolite structures. For these materials we observe a monotonically 

decreasing parasitic energy as a function of the Henry coefficient. To investigate the lowest 

parasitic energy that can be obtained using these materials, we perform calculations on a 

database of over one hundred and thirty-five thousand predicted zeolite structures.13 These 

calculations identify predicted structures with parasitic energy that are lower than can be 

obtained for the known structures. Figure 3b shows some of the structures that have near-

optimal parasitic energy. 

The parasitic energy as a function of the Henry coefficient shows three regimes. The 

mixture isotherms in these regimes are shown schematically in Figure 4. Adsorption of CO2 

takes place at flue gas conditions (1 atm and 40ºC). The subsequent desorption is achieved by 

decreasing the (partial) pressure and/or increasing the temperature. The difference in CO2 

concentration between adsorption and desorption defines the working capacity of a material 

and gives the amount of CO2 that is removed in an adsorption cycle. For materials with a 

small Henry coefficient (see Figure 4a), the performance is poor because the working 

capacity is small, yet the entire system needs to be heated to the desorption conditions, giving 

a high parasitic energy. In addition, the adsorption of CO2 is of the same order of magnitude 
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as N2 in these materials and hence the selectivity of such a material is unusably low. 

Materials with a larger Henry coefficient have a significantly larger working capacity and 

correspondingly lower parasitic energy. This trend continues until the Henry coefficient of 

the material is so large that at flue gas conditions the pressure is too high for the CO2 

adsorption to be in the linear regime.  Figure 4b shows that at these conditions the CO2 

loading at the adsorbed state is not fully determined by the Henry coefficient anymore, and 

that materials with the same Henry coefficient have different working capacities depending 

on the pore volume. Figure 4c illustrates that at even larger Henry coefficients the adsorption 

of CO2 becomes so strong that it becomes increasingly difficult to regenerate the material. 

Another important observation is that we have a broad optimum. The reason for this broad 

minimum is that the Henry coefficient shows a strong correlation with the heat of adsorption, 

and the heat of adsorption has two opposing contributions to the parasitic energy. As the 

temperature dependence of the Henry coefficient is proportional to the heat of adsorption, a 

higher heat of adsorption increases the working capacity. While this reduces the parasitic 

energy, it is offset by the requirement to supply more energy to desorb CO2, which again 

increases the parasitic energy.   

Our screening shows a large set of zeolite structures that have a parasitic energy well 

below the current technology (1060 kJ/kg CO2). Inspection of these optimal structures 

highlights their diversity: we find one-, two-, or three-dimensional channel structures, cage-

like topologies, and more complex geometries. To illustrate this point we show in Figure 3b a 

diverse sample of structures24 contained in the optimal zeolites. It is interesting to compare 

these with the optimal known zeolite structures in Figure 3a. Several of the known zeolite 

structures have a sufficiently low parasitic energy, however, most of these known structures 

are one-dimensional channels, which may suffer from severe diffusion limitations.14 By 

contrast, many of the predicted zeolite structures have side pockets where CO2 strongly 

adsorbs, along channels with larger diameters. Transport of CO2 to and from the sites of 
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adsorption occurs via the larger channels, so diffusion is not expected to be a limiting factor 

here. Interestingly, none of the known zeolites has this characteristic feature, and we consider 

this observation to be a significant finding.  

A common feature of most optimal materials is a set of local regions of the structure 

that bind CO2 preferentially, leading to dual-site adsorption behavior. Figure 5 shows the 

parasitic energy as a function of the binding energy of a CO2 molecule at each of those local 

regions. To this figure we added those materials that have (near) optimal Henry coefficients, 

but without such dual-site behavior, which includes some of the known zeolite structures. We 

observe a similar correlation as for the Henry coefficient, since the binding energy dominates 

the Henry coefficient for structures with these preferential sites. The binding energy needs to 

be optimal: too low and the material adsorbs too little CO2, too high and the material 

becomes too difficult to regenerate. Figure 5 further shows that the parasitic energy is 

influenced by the density of strong adsorption sites in the material; the optimal materials 

exhibiting the largest number of strong adsorption sites per unit volume. This observation is 

important as it rationalizes why these materials exhibit a lower limit for the parasitic energy.  

The existence of a strong adsorption site requires a minimum amount of zeolite material, 

which, combined with the size of a CO2 molecule, gives an upper limit to the total number of 

such local regions that can exist per unit volume. 

An important practical question is whether we can synthesize these optimal materials. 

As the synthesis conditions of the known zeolites favor the formation of low-density 

structures,25 one expects that among the predicted structures these low-density structures are 

the most likely ones to be synthesized. As highlighted in Figure 3a, this subset has many 

structures with optimal performance indeed. Recent developments26 in novel structure 

directing agents may make it possible to synthesize some of these predicted optimal low-

density structures.  
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An alternative strategy to create optimal Henry coefficients is to synthesize zeolites 

with different Al:Si ratios. In aluminosilicate zeolites, cations are present in the pores to 

compensate for the charge imbalance introduced by the Al3+ that replaces a Si4+. Figure 6 

shows the effect of cations on the parasitic energy for the known zeolites for different Al:Si 

ratio. Cations create adsorption sites for CO2 but also reduce the pore volume. The net result 

on the parasitic energy of these two effects depends on the particular structure. The addition 

of cations to low Henry coefficient structures causes a decrease in the parasitic energy due to 

the increased number of adsorption sites; however, continued addition of cations eventually 

increases the parasitic energy as the pore volume decreases. By contrast, addition of cations 

to near-optimal Henry coefficient structures increases the parasitic energy since the decrease 

in pore volume dominates. It is important to stress that every structure has its own optimal 

Al:Si ratio.  Comparison with the parasitic energy for the all-silica structures shows that the 

addition of cations does not yield a material that has a lower parasitic energy for the same 

Henry coefficient. This observation is consistent with the notion that one has to create an 

adsorption site with exactly the right adsorption strength and that there is a limit to the 

maximum number of adsorption sites per unit volume.  

Figure 7a shows the parasitic energy for ZIFs. For these materials, the overall parasitic 

energy is higher than for zeolites. As we have focused on the simplest linker (imidazole), the 

selectivity towards CO2 is rather low: linkers with higher selectivity will increase the Henry 

coefficient to a more optimal value and reduce the parasitic energy. Figure 7b gives a set of 

optimal ZIF structures. These structures look very different from the optimal zeolite 

structures; optimal ZIFs are those in which there are channels where CO2 can access the non-

hydrogen atoms of the structure.  

There are important experimental consequences to our results. Our metric provides a 

direct insight into the overall performance of a material in an actual carbon capture process. 
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In this context, it is instructive to compare our metric with the recently proposed alternative 

metric based on the adsorption breakthrough time.15 Materials with the higher Henry 

coefficient, for a given saturation loading, will give the longer breakthrough time. However, 

as this study shows, materials with extremely high Henry coefficients perform poorly 

because the regeneration step cannot be ignored in a carbon capture process. This illustrates 

the limitation of focussing on a single material property rather than the entire process. In this 

respect our all-silica zeolite curve can be used as a benchmark for other materials.  

Our screening establishes a theoretical limit for the minimal parasitic energy that can 

be achieved for this class of materials. Such a target will be useful to focus experimental 

efforts to synthesize such materials. To facilitate this synthesis effort, all of these structures, 

together with all physical properties that lead to the increase in performance, are available 

online.27  
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Methods 

Since for most of the materials experimental data do not exist, we use molecular simulations to 

predict the adsorption isotherms. As input, these simulations require the crystal structure of the 

materials and a force field describing the interactions. In addition, by accelerating computationally 

expensive steps in molecular simulation using GPUs, we enable screening of materials in a high-

throughput manner. 

Crystal Structures: For the all-silica zeolite structures, we used the experimental zeolite crystal 

structures28 and the database with predicted, fully optimized zeolite crystal structures.13,25 This 

database was constructed by searching the chemical space of possible SiO2 structures that are zeolite-

like. This was done by examining all 230 space groups and a wide range of unit cell dimensions and 

silicon densities.  Symmetry operations acting upon crystalographically unique atoms were used to 

generate the full unit cell structure. A Monte Carlo procedure was used to sample this vast space of 

possibilities giving 2.6 million topologically distinct zeolite-like structures. The structures identified 

by the Monte Carlo sampling procedure were optimized by detailed interatomic potentials.29,30 

Depending on the force field 330,000-590,000 of these structures are within this thermodynamically 

accessible band of energies +30kJ/mol-Si above α–quartz. The structures in this database have 

topological, geometrical, and diffraction characteristics that are similar to those of known zeolites.25  

In most zeolites the Si can be exchanged with Al, which creates a charge deficit that is 

compensated by cations (e.g., Na+, H+, Ca2+). Only for a limited number of structures location of these 

Al sites are known.20,31 A reasonable starting point20 is to assume a random distribution of Al over the 

T-sites such that Loewenstein’s rule32 is obeyed, which implies a maximum Al/Si ratio of one. For 

this ratio and for Al/Si equal to zero we have one unique structure. For the other Al/Si ratios there are 

many different possible distributions of the Al atoms over the T sites. For these ratios we generated at 

least ten different distributions and the cations were subsequently added at the minimum energy 

positions.33 Each distribution can have a slightly different adsorption isotherm and we averaged the 

parasitic energy.31 In addition, we compared the results for systems in which the cations were fixed at 

the minimum energy configurations, with simulations in which the cations were free to move. For 

structures with a low Henry coefficient, we found a lower parasitic energy if the cations were allowed 

to move. However, for those structures with optimal Henry coefficients, the differences between these 

two systems were very small.   



14 

Zeolitic imidazolate frameworks (ZIFs) are a class of metal-organic frameworks that have a 

pore topology that is isomorphic with the zeolite structures.12,34 In ZIFs the transition metal atoms (M) 

replace the Si atoms and imidazolates (IM) replace bridging oxides in zeolites. Given that the M–IM–

M angle is similar to the Si–O–Si angle, ZIFs form 3D networks with topologies that are very similar 

to zeolites. In our screening study we applied this analogy to the zeolite database to generate ZIFs. In 

the reported zinc and IM-based ZIFs with IZA zeolite topologies34 the distance between zinc atoms 

and the center of IM rings is about 1.95 times larger than the Si-O distance in zeolites. A ZIF 

structure was generated by scaling the unit cell of the corresponding zeolite structure by the same 

factor and exchanging each oxygen atom with an IM group and each Si atom with a Zn atom. We 

have validated the resulting ZIF geometries by comparing geometries of two structures for which the 

experimental geometries are known: ZIF-3 (DFT) and ZIF-10 (MER). The observed differences in 

the geometries do not translate into significant differences in the parasitic energy. 

Model and Simulation details: Calero and co-workers35,36 have developed a force field that 

accurately reproduces the experimental isotherms in zeolites. For ZIFs, parameters for the framework 

atoms were taken from the DREIDING force field37 and parameters for CO2 and N2 were taken from 

the TraPPE force field.38 Framework-molecule interaction parameters were calculated using the 

Lorentz-Berthelot mixing rules. Partial charges for ZIF framework atoms were computed using the 

connectivity based approach of Zhong and Xu.39Adsorption isotherms were calculated using grand 

canonical Monte Carlo simulations (GCMC).19 The experimental equations of state are used to 

convert the chemical potentials into (partial) pressures.  

 

GPU Calculations: To screen a large number of zeolite and ZIF structures we developed a graphics 

processing unit (GPU) code to accelerate the molecular simulations. We focus on computing the 

Henry coefficients and the heats of adsorption. The algorithm is divided into three different routines: 

(1) energy grid construction, (2) pocket blocking, and (3) Widom test particle insertion. 

(1) Energy grid construction: To save computational time we construct a grid, giving the energies of 

the atoms at the grid positions in the unit cell of a framework.20 The energy grid has a mesh size 

of 0.1 Å and the interaction between the gas molecule and all of the framework atoms is modeled 

by the Lennard-Jones potential and the Coulomb potential, with Ewald summations used to 

approximate the latter. Each of the grid points maps to a single CUDA (Compute Unified Device 

Architecture) thread and the pairwise potentials are computed in parallel across different CUDA 

blocks.40 The positions of the framework atoms are put inside the fast constant memory in the 
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GPU to expedite calculations. At the end of the routine, the array that contains the energy values 

is transferred from the GPU to the CPU as an input to the pocket blocking routine.  

(2) Pocket blocking: In a GCMC simulation, one can insert molecules in pockets that are inaccessible 

from the outside.41 The void space analysis algorithm42 is used to detect and block these 

inaccessible pockets.43 We use the values from the energy grid to determine the accessibility of a 

particular configuration/point in the unit cell using the (multicore) CPU, as this routine does not 

map well to the GPU architecture. The discrete energy grid is mapped to a binary grid of 

accessible/ inaccessible points based on a certain threshold value that is chosen to be large 

enough such that on an experimental time scale, the pocket is considered inaccessible. Finally, we 

utilize a parallel flood fill algorithm to segment the grid into connected, accessible regions. These 

regions are then classified as either channels or inaccessible pockets, and we set all grid points 

inside pockets to a very high-energy value.  

(3) Widom test particle insertion: utilizing this revised energy grid, we can calculate both the Henry 

coefficients and the heats of adsorption using Widom insertion moves.19 We randomly insert a 

guest molecule inside the simulation box and calculate both the Boltzmann factor and the energy 

values for the particular guest molecule configuration. We can use interpolating functions to 

estimate the energy values at points that are not directly on the grid. In the GPU architecture, each 

CUDA thread can conduct independent Widom insertion.  

Overall, most of the computational wall time is spent in the GPU energy grid construction routine. In 

this routine, there is roughly a factor of 50 in performance improvement going to the GPU (Tesla 

C2050 Fermi) from the CPU (single core of a 2.4 GHz Intel 5530 Xeon).  
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Figure 1: Hybrid pressure and temperature swing adsorption. In the adsorption 

step (1) the flue gas is brought into contact with the solid adsorbent. The material 

selectively adsorbs CO2 and (nearly) pure N2 leaves the adsorber. When the 

adsorber is saturated, it is regenerated (2) by heating the system and/or applying a 

vacuum. The purge (3) and cooling or repressurization step (4) brings the system in 

its original state (1). The amount of CO2 that is removed from the flue gas in a single 

cycle defines the working capacity of a material. The regenerated CO2 is 

subsequently pressurized to 150 bar for geological storage. 

Figure 2: (Mixture) adsorption isotherms. Probability distribution of the energies 

of a particle inserted in the pores (top), pure component isotherms for CO2 and N2 

and pure CO2 isotherms at different temperatures (middle) and mixture isotherms 

(bottom) for two materials: the zeolite SIV ((a), (b), (c)) and the predicted zeolite 

h8286959 ((d), (e), (f)). The symbols are the results from the GCMC simulations and 

the lines are the results of our methodology utilizing the GPU calculations. 

Figure 3: Parasitic Energy as a function of the Henry coefficient of CO2 for all 

silica zeolite structures. The Henry coefficient can be obtained from the adsorption 

isotherm; at sufficiently low pressure the Henry coefficient times the pressure gives 

the number of adsorbed molecules. In figure (a) we compare the International 

Zeolite Association (IZA) zeolite structures (red squares) with the predicted 

structures (blue circles). For the predicted zeolite structures, we only plot the set of 

most dissimilar structures and those materials that have a sufficiently large Henry 

coefficient (> 5·10-5 [mol/(kg Pa)]). The open blue circles are computationally 

predicted structures near the low-density feasibility line, which are most likely to be 

synthesizable. The green lines give the parasitic energy of the current MEA 

technology, and the black line is the minimal parasitic energy observed for a given 

value of the Henry coefficient in the all-silica structures. In the SI we show the 
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sensitivity of the parasitic energy on uncertainties in our parameters. All data points 

can be linked to a structure by accessing www.carboncapturematerials.org 

Figure (b) gives some examples of the optimal all-silica structures; out of the 50 top 

performing materials we selected the six most diverse. The figures show the atoms 

of materials as ball and stick (O, red ; Si, tan). The surface gives the local free 

energies in the pores of the material, where warmer colors indicate the dominant 

CO2 adsorption sites. 

Figure 4: Adsorption isotherms. The loading in the zeolite is plotted as a function 

of the partial pressure of CO2 (green or purple) or N2 (orange). Adsorption is set by 

the flue gas conditions (40ºC, 1 atm and 14% CO2 and 86% N2). The working 

capacity follows from the difference in the amount of adsorbed CO2 at adsorption 

and desorption conditions. In most of these materials the N2 adsorption is so small 

that N2 adsorption does not contribute much to the parasitic energy, and only for 

materials where the adsorption of CO2 is equally small do we consider the 

contribution of N2. At sufficiently low pressure, these adsorption isotherms are 

linearly related to the pressure, with the proportionality constant defined as the 

Henry coefficient. (a) A material for which the Henry coefficient is sufficiently low that 

both the adsorption and desorption are in the Henry regime. A low Henry coefficient 

(green) gives a relatively small working capacity and purity of the product stream. 

Increasing the Henry coefficient (purple) gives a significant increase of the working 

capacity. (b) If the Henry coefficient becomes much larger, the number of adsorbed 

CO2 molecules is so large that CO2-CO2 interactions in the materials are important 

at the partial pressure of CO2 corresponding with flue gas conditions. Hence, the 

adsorption cannot be characterized with a Henry coefficient only. (c) For those 

materials with a very high Henry coefficient, a further increase of the Henry 

coefficient will have little effect on the uptake value at adsorption as this is now 
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dominated by the pore volume. For desorption, however, increasing the Henry 

coefficient will further decrease the working capacity. For (b) and (c), as desorption 

occurs at higher temperatures, the desorption pressure is still in the Henry regime. 

Figure 5: Optimal materials. The parasitic energy as a function of the binding 

energy for a CO2 molecule. The binding energy is defined as the lowest energy that 

can be observed in a given structure. If this binding is sufficiently strong , dual-site 

adsorption behavior will arise. The fraction of each material’s volume which is 

occupied by low-energy strong adsorption sites is displayed as colored solid circles. 

Structures without these specific features (i.e., single site adsorption behavior) are 

displayed as open blue circles.  

Figure 6: Parasitic energy for zeolites with cations. The parasitic energy as a 

function of the CO2 Henry coefficient for known zeolite structures with different Al/Si 

ratios is shown. The all-silica IZA structures are shown as red squares and the 

corresponding structures with different cation concentrations are labelled as follows: 

Si:Al=9 (blue circles), Si:Al =3 (green triangles up), and Si:Al =2.3 (orange triangles 

down)).  

Figure 7: Parasitic energy for ZIFs. (a) The parasitic energy as a function of the 

CO2 Henry coefficient for ZIFs is shown. The green lines give the parasitic energy of 

the current MEA technology, and the black line is the minimal parasitic energy 

calculated for a given value of the Henry coefficient in the all-silica structures. (b) 

Out of the 50 top performing ZIFs, we selected the six most diverse. The figures 

show the atoms of materials as ball and stick (Zn blue-grey, O blue, H white, and C 

grey). The surface gives the local free energies in the pores of the material, where 

zinc (blue) is the dominant CO2 adsorption site. 
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