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Abstract—In urban areas freight transport imposes many
social and environmental issues. Solid waste collection accounts
for a considerable amount of freight transportation in municipal
areas. We propose a simulation-based approach to evaluate
different scenarios where electric trucks replace conventional
trucks for the collection of municipal glass-waste. Under special
consideration of the characteristics of electric trucks, the simu-
lation of real-time fill level information is used and coupled with
an optimization component to evolve adapted waste collection
strategies. We illustrate our approach on two test-scenarios based
on real-world data. We use the simulation model to evaluate
several scenarios in terms of costs and environmental impact and
the optimization environment to generate collection strategies
that minimize those performance figures while maintaining a
given service quality.

Index Terms—Simulation-based optimization, waste manage-
ment, electric trucks, inventory routing

I. INTRODUCTION

According to data provided by the European Commission

[1], 19.5% of all greenhouse gas emissions in the EU were

caused by transport in the year 2007. Also, road freight

transport grew by 2.9% annually between 1995 and 2008.

Especially in urban areas, increasing freight transport (and

traffic in general) imposes social, environmental and logistical

issues. Rodrigue and his colleagues [2] point out several chal-

lenges facing urban transportation such as traffic congestion,

air pollution, greenhouse gas emissions and safety.

Previous studies have shown that solid waste collection

accounts for a considerable amount of freight transportation

in municipal areas. One example is the case study conducted

by Johannson [3] who identified, that solid waste collection

are estimated to account for 10-15% of the total freight

transportation in the city of Malmoe in Sweden.

Municipal waste generation increased in almost all Euro-

pean countries since 1995 and in most countries the increase

is at least greater than 10% according to the European Com-

mission and Eurostat [4].

Pollution is an increasingly important issue, especially in

city centers. Some early case studies using zero-emission

electric garbage trucks have been carried out in Europe, for

example in Huddersfield (UK) or in Courbevoie (France).

In this work, we focus on scenarios where glass-waste is

collected using electric trucks in an urban environment. The

collection process is optimized in terms of costs, resource

usage, service quality and greenhouse gas emissions.

The optimization is done considering properties of electric

trucks, such as comparatively low capacity, slow speed and

limited range. Furthermore, real-time fill-level information of

the glass-waste containers is modeled to account for fluctua-

tions in the waste generation and allow a dynamic planning

and optimization process. Johannson [3] points out the advan-

tages of a dynamic model for waste-collection scenarios.

The scenario consists of several containers and a fleet

of electric trucks. The goal is to collect the glass-waste in

such a way, that the costs and distance are minimized while

preventing the containers to be overfilled.

To account for the stochastic and dynamic nature, the

scenarios are modeled and optimized using a simulation-

based optimization approach. The waste-generation process

is modeled using appropriate statistical distributions to cre-

ate virtual sensors for the waste-collection containers. We

autonomously evolve collection strategies in the simulation

environment to adapt them to different scenarios especially

considering the characteristics of electric trucks. The evolved

collection strategies can then be applied in the continuous



planning process.

Due to an infinite planning horizon long term effects have to

be considered when making short-term decisions. Considering

the complexity of the problem, we model the routing and

collection process as a stochastic inventory routing problem

(SIRP) that is solved each day considering the current fill-

level information.

In the literature, there are many different solution strate-

gies for the SIRP. For instance, Hemmelmayr and colleagues

[5] use a combination of integer programming and variable

neighborhood search to solve a stochastic inventory routing

problem. Adelmann [6] and Berman [7] examine stochastic

inventory routing problems without inventory holding costs.

Adelman [6] uses a price-directed approach, whereas Berman

and colleagues [7] apply stochastic dynamic programming. On

the contrary, Kleywegt and colleagues [8] consider problems

with inventory holding costs and use Markov Decisions Pro-

cess models for their solution approach.

The rest of this paper is organized as following: In Section

II we provide the problem formulation, in III we outline our

methodology, in IV we introduce our test scenario, in V we

present the results and in VI we summarize our findings and

give an outlook.

II. PROBLEM FORMULATION

In this work, we model the glass-waste collection process

as a stochastic inventory routing problem. Inventory routing

can be applied to glass-waste collection by ”‘reversing”’ the

original problem formulation. Instead of delivering products

to customers, the different types of glass are instead collected

from the containers in such a way that the containers are never

overfilled. However, the structure and nature of the original

problem formulation stays the same.

Many different variants of the SIRP are examined in the

literature that differ in non-trivial details. Recent literature

reviews are given for instance by Cordeau [9] or Bertazzi [10].

In our problem formulation, there are several locations N
at which multiple containers P can be located. Each container

p has a certain glass type t associated (white or stained glass)

and has a given capacity Cp. The glass waste is collected

by a homogeneous fleet of vehicles (M ), each with a known

capacity Cv . The total capacity Cv of a vehicle is split up into

several sections Cvt where
∑

Cvt = CV since the different

glass types cannot be transported mixed in one section.

The planning process is performed on discrete time steps

t = 0, 1, ... which in our case are days. For each combination

of day t and container p there is a probability distribution P t
p

given for the glass-waste production which does not change

over time. For each container the fill level Xt
p can be measured

on a daily basis.

For each day, the decision has to be made what locations

to visit and what containers to empty (dtp ∈ 0, 1). The visited

locations are combined into vehicle routes R, where each route

r has a certain length Lr. A container always has to be fully

emptied.
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Fig. 1. System architecture.

The set of feasible solutions is determined by the vehicle

capacity constraints Cv , such that

∑

dt
p∈r

Xt
p ≤ Cv

for all routes.

The goal is to minimize the required vehicle fleet | N | and

the driven distance d =
∑

Lr while maintaining a certain

service level s, where s is determined by the number of

containers over time that are overfilled (where Xtnp = Cnp).

III. METHODOLOGY

To account for the dynamic and continuous nature of the

planning process, we autonomously derive collection policies

that can be adapted to diverse scenarios (e.g. to account

for the situation in different urban areas). The basic system

architecture to achieve that is illustrated in Figure 1.

The simulation environment receives a certain scenario as

an input. A scenario consists of master data like customer

locations or storage capacities and simulation parameters like

demand distributions. A simulation run generates key figures

like the total driven distance or the routes driven by the

vehicle fleet. These figures can be used to evaluate different

dispatching rules which control the waste collection strategy

used in the simulation run. The dispatching rules are evolved

by a learning strategy, which in turn can use the generated key

figures as feedback. The learning strategy adapts the delivery

rules to a certain scenario by tuning pre-defined parameters of

the rules. The approach is detailed in the following.

A. Simulation environment

Core of the simulation environment is an agent-based sim-

ulation model that can be used to simulate and optimize

practical transport logistic scenarios. The details on the generic

model can be found in [11]. For the implementation the

Repast.NET framework was used which is described by [12].

During a simulation run key figures are gathered and written

to a database. Basically the model consists of three types

of agents: customers, vehicles and vendors. This generic

model has been adapted to the glass-waste collection problem

environment.

In our model, glass-waste containers have fixed locations

given in GPS coordinates. The distance matrix was created



using the open route service1 which was developed by [13].

The scenario consists of several containers and a fleet of

electric trucks.

The simulation environment can be used to simulate diverse

scenarios and model the characteristics e.g. of different cities

across Europe. Furthermore, real-time fill-level information

of the glass-waste containers is simulated to account for

fluctuations in the waste generation and allow a dynamic

planning and optimization process. That way virtual sensors

are created that simulate the glass-waste production and can

be polled every day.

B. Dispatching rules

Basically, the dispatching rules are the core of our approach

and determine what containers to empty at what locations. The

main objective is a constant and efficient resource utilization

(e.g. vehicles, drivers) which is achieved on the one hand by

minimizing the driven distance and on the other hand by max-

imizing the resource utilization over time while maintaining a

satisfying service quality.

On the one hand, this is achieved by trying to use a constant

capacity over the time and thus minimizing the required fleet

by absorbing fluctuations which could be caused for example

by different daily demands. This is done while preserving the

service quality and satisfying the other constraints.

On the other hand, even though constant resource utilization

is the main goal of our approach, in some cases it might be

feasible not to perform any collection at all. That could be

the case if a location is far away from the depot and the

container is empty. Therefore a threshold is specified to avoid

unnecessary deliveries.

As stated earlier, the dispatching rules can be parameterized

to adapt them to different scenarios. There are two general

parameters:

• CapacityUtilization The constant capacity that should be

used over time is specified by this parameter.

• PriorityThreshold The priority threshold to be applied.

If the priority of a location is lower than this level, it is

not visited.

The basic algorithmic approach is outlined in pseudocode in

Figure 2. First, the constructed routes (R) are initialized with

the empty set. The buffer (b) is the planned capacity to be used

and is initialized as a fraction of the total available capacity

of all vehicles (
∑

Cv). Then, the containers of the different

locations (N ) are managed by creating a set of collections

(D) using two priority rules. The first priority rule (P1) is

responsible for selecting a location (n) that should be visited,

the second priority rule (P2) chooses the containers for each

location (dp) that should be emptied at that location. The

new locations are inserted into existing routes (R) using a

savings heuristic, which inserts the customer into the route r
with the least detour (also considering creating a new route).

After a stopping criterion has been met, the final routes are

1http://www.openroutservice.org

Require: N , Cv , CapacityUtilization, PriorityThreshold

1: R← ∅
2: b← (

∑
Cv) ∗ CapacityUtilization

3: repeat

4: select n ∈ N according to P1 with priority p
5: N ← N \ n
6: if p >= PriorityThreshold then

7: r ← SavingsHeuristic(n,R)
8: R← R ∪ r
9: select deliveries D for n according to P2

10: b← b−
∑

∀dp∈D dp ∗X
t
p

11: end if

12: until N == ∅ OR b == 0
13: R← PushForwardInsertionHeuristic(R)

Fig. 2. Delivery rule

reoptimized using the push-forward insertion heuristic (PFIH)

which was proposed by [14].

The two priority rules (P1, P2) are detailed in the following.

1) Priority Rule 1: The first priority rule is responsible for

choosing a location n out of a set of locations that yet have

to be visited (N ).

The main goal is ensuring a desired service quality and thus

prioritizing locations where the containers are full soon while

minimizing the effort to integrate the locations into existing

routes.

The location with the highest priority is chosen, the priority

is calculated using the following formula:

pn = (
∑

fni ∗ ai)/i

The parameter fni represents a certain value which should

be considered in the priority calculation. All parameters are

normalized in the interval [0, 1]. Each parameter is weighted

with a factor ai ∈ [−1, 1]. Thus, the resulting priority is in the

range [−1, 1]. The factors ai are part of the dispatching rule

and can be tuned by the learning strategy.

The following parameters are considered in the priority

calculation:

• fn1 - MinFullPrediction Prediction of the number of

days when the first container will be full at a customer

location n.

• fn2 - AvgFullPrediction Average number of days for the

prediction for different types of glass at location n.

• fn3 - LastDelivery Last visit of customer n in days.

• fn4 - ContainerSize Total container size (Cn).

• fn5 - Detour The minimum required detour to integrate

customer n into the existing routes.

• fn6 - Isolation The isolation of location n, which is

specified by the average distance to all other locations

on the map.

The factors a1, a2, a3 and a4 are used primarily to weight

the importance of the service quality, while the parameters a5
and a6 are used to ensure an efficient route planning.



Require: t, r, n, RefillThreshold, RefillBarrier

1: b← AvailableCapacity(r)
2: while P 6= ∅ AND b > 0 do

3: select p ∈ P where minFullPrediction(p, n, t)
4: P ← P \ p
5: if FullPrediction(p, n, t) < RefillThreshold OR

Xnpt < RefillBarrier then

6: dp ← 1
7: b← b− dp ∗X

t
p

8: end if

9: end while

Fig. 3. Second priority rule

The normalization for the parameters fn1, fn2, and fn3 is

achieved according to the desired planning period (in that case

one week), while fn4, fn5 and fn6 are normalized according

to static properties of the scenario.

2) Priority Rule 2: The second priority rule is used to

determine the delivered amount dp for each product in the

inventory of the chosen customer n. The main objective is to

maintain a certain service quality.

The parameters of the second priority rule are the following:

• RefillThreshold If a container is expected to be filled

shorter than the specified threshold (in percent of the

planning period) it is emptied, otherwise not.

• RefillBarrier If the free space in a container falls below

a certain barrier (in percent) it is emptied, otherwise not.

The pseudocode of the second priority rule is illustrated

in Figure 3. First the available capacity b is determined by

analyzing the free capacity of the route which serves the

customer considering the capacity constraints of the assigned

vehicle (Cv). Then, iteratively the product with the minimum

predicted days it will run out of stock is chosen. The prediction

is calculated by the OOSP function, which takes into account

the current stock of the product (Xnpt) and the probability

distribution Pdnp. If the stock of the product falls below the

refill barrier or the predicted days the customer will run out of

the product falls below the refill threshold, the stock is refilled

to a certain level (refill factor).

C. Learning strategy

As stated in the previous section, there are ten parameters

to be tuned for each scenario by the learning strategy:

• CapacityUtilization

• PriorityThreshold

• ai, 1 ≤ i ≤ 6
• RefillThreshold

• RefillBarrier

The first two parameters influence the general delivery

strategy, the next six parameters the first and the last three

parameters the second priority rule. The goal is to find appro-

priate weights that generate good results for a certain scenario.

The tuning of the parameters is a continuous evolutionary

process, where different parameter combinations are tried and

TABLE I
PARAMETER SETTINGS OF THE σ-SELF-ADAPTIVE ES

Parents (µ) 1

Children (λ) 3

Maximum Generations 100

Replacement Plus

Learning parameters (τ / τ0) 0.4 / 0.4

Mutation Normal (µ = 0, σ = σi)

then evaluated over a certain period of time (e.g. one month).

For the learning component an evolution strategy (ES) [15]

was chosen which was designed for optimizing real-valued

vectors.

Therefore, as a representation an eleven-dimensional real

vector is used. Each component of the vector is mapped to a

corresponding parameter and can take values in the interval

[−1, 1] since all parameters are normalized. By adjusting the

weights the delivery strategy can be tuned. The parameters of

the ES are shown in Table I.

As an evaluation of the individuals, simulation runs were

performed using the components of the individual as param-

eters for the delivery strategy. To evaluate the individuals the

following fitness function was used:

min f = α ∗ d+ β ∗ |N |+ γ ∗ s

The total driven distance (d), the required fleet size (|N |)
and the number of situations where the containers are full (s)

are minimized subject to the capacity constraints. To account

for the stochastic nature of the simulation, multiple simulation

runs are performed to evaluate a single individual and an

average value of those runs is calculated.

The problem was modeled in the flexible and extensible

HeuristicLab optimization environment [16] and coupled with

the simulation component.

IV. TEST SCENARIO

To validate our approach, we created a hypothetical test

scenario that consists of 44 container locations and 131 waste

glass containers, 65 of them are white-glass containers and

66 are for stained glass. The locations have been retrieved

from the website of the city of Lenoding 2. The geographical

properties of the test scenario are illustrated in figure 4. The

dots represent the container locations, the rectangle is the

factory where the waste-glass is processed and the triangle

is a possible interim storage location.

For the simulation of the waste-glass generation we use a

normal distribution at each container location. Each container

has a capacity of 1500 liters. We assumed a daily fluctuation

of the waste-glass generation to test the adaptivity of our

approach. On Sunday no waste-glass can be thrown into the

containers and also no collections are made because of noise

constraints. The daily parameters of the normal distribution

are listed in Table II. Basically we assumed an average daily

2http://www.leonding.at/index.php?id=537



Fig. 4. Test scenario.

TABLE II
GLASS PRODUCTION DISTRIBUTION OVER THE WEEK (IN LITERS)

Avg Stdev

Monday 87,4015104 4,85563947

Tuesday 61,1349279 3,39638489

Wednesday 126,204416 7,01135646

Thursday 116,137369 6,45207604

Friday 124,883851 6,93799173

Saturday 114,237926 6,34655143

Sunday 0 0

waste-glass generation of 90 liters per container. The current

fill level of each container can be measured using the virtual

sensors of our simulation environment.

V. RESULTS

For the scenario described in the previous section we

evolved a collection strategy which is listed in Table III. This

parameterization has been found by the evolution strategy after

multiple optimization runs and is tuned specifically for this

particular scenario.

When analyzing the resulting rule, the general strategy is

that containers are frequently emptied to ensure a constant re-

source usage. The PriorityThreshold parameter is rather high,

which means that containers are emptied at a high rate. The

high weighting of the MinFullPrediction and ContainerSize

parameters prioritizes containers with critical fill levels and

TABLE III
COLLECTION STRATEGY.

CapacityUtilization 0.03

PriorityThreshold 0.68

a1 (MinFullPrediction) -0.50

a2 (AvgFullPrediction) 0.00

a3 (LastDelivery) 0.00

a4 (ContainerSize) 0.59

a5 (Detour) -0.11

a6 (Isolation) 0,05

RefillThreshold 0.41

RefillBarrier 0.80

small containers.

We performed extensive simulation runs using the evolved

collection strategies and tested our approach using two dif-

ferent strategies. For the first strategy (electric) transport

the waste-glass directly to the factory using only electric

vehicles and we do not use an interim storage. For the second

strategy (hybrid) we additionally use an interim storage that

is co-located to the containers and a conventional truck that

transports the waste-glass to the factory.

The electric truck (E) has a capacity of only 2 tons and a

range of a maximum of 150 km. The results show that one

electric truck is sufficient in our scenario. The conventional

truck (C) has a capacity of 22 tons. The simulation runs are

detailed in Table IV. The results show, that the utilization of

the electric truck is rather high (72,51% on average) and the

waste-glass is collected constantly. This ensures a high level

of service quality. When introducing an interim storage, a

conventional truck picks up the waste glass every 14 days and

transports it to the factory where it is processed. The driven

distance of the electric truck can be reduced dramatically.

The results show that waste-glass collection using only

one small electric truck is possible in our scenario. Thus

conventional waste-collection trucks can be banned from city

centers and replaced by small electric trucks. Of course, on the

downside, the costs of that approach are expected to be higher

compared when using larger trucks because the containers are

emptied much more frequently and thus the traveled distance

and resource usage is much higher. To mitigate that fact, larger

electric trucks could be used that are expected to become

available and affordable in the future.

VI. CONCLUSION AND OUTLOOK

Concluding, we have shown that it is possible to ban con-

ventional waste-collection trucks that use combustion engines

from the city center and replace them with small electric trucks

that have a limited range. We have illustrated our approach

on an example test scenario and presented a simulation and

optimization environment to automatically derive efficient

glass-waste collection strategies.

Our approach was able to produce an efficient strategy

even when using a very small electric truck that is efficiently

utilized. When larger electric trucks become available and



TABLE IV
SIMULATION RUNS FOR THE DIFFERENT STRATEGIES.

Electric Hybrid

Run Distance Utilization ServiceQuality Distance (E) Utilization (E) Distance (C) Utilization (C) ServiceQuality

R1 7231.78 72.55% 100.00% 2276.63 72.94% 480.00 6.05% 100.00%

R2 7234.73 71.69% 100.00% 2285.50 71.97% 480.00 6.06% 100.00%

R3 7302.00 72.61% 100.00% 2309.00 72.28% 480.00 6.05% 100.00%

R4 7224.83 73.01% 100.00% 2293.00 73.23% 480.00 6.06% 100.00%

R5 7318.85 72.65% 100.00% 2332.83 72.84% 480.00 6.05% 100.00%

R6 7300.28 72.73% 100.00% 2367.88 73.61% 480.00 6.06% 100.00%

R7 7315.43 72.76% 100.00% 2369.33 71.72% 480.00 6.06% 100.00%

R8 7228.25 72.94% 100.00% 2294.93 71.79% 480.00 6.06% 100.00%

R9 7311.75 72.09% 100.00% 2298.00 72.35% 480.00 6.06% 100.00%

R10 7269.53 72.06% 100.00% 2346.78 72.35% 480.00 6.05% 100.00%

Avg 7273.74 72.51% 100.00% 2317.39 72.51% 480.00 6.06% 100.00%

Stdev 38.06 0.40% 0.00% 32.52 0.60% 0.00 0.00 0.00%

affordable they have potential to replace conventional trucks

for tasks like waste-collection that require short-haul distances.

Additionally they can be combined with conventional trucks

when longer distances are required.

In the future it would be interesting to consider different

scenarios that utilize electric trucks and perform case-studies

where it is possibly to utilize them efficiently. For more

complex environments sophisticated collection, distribution

and routing rules could be evolved using genetic programming

where not only parameters are tuned but also the structure is

optimized. Also it would be relevant to consider the environ-

mental impact in the optimization process and to minimize

emissions by evaluating different scenarios in the simulation

environment.
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