Michael A. White

Michael A. White
Springer Nature · Nature

PhD

About

48
Publications
38,478
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,960
Citations
Additional affiliations
June 2008 - present
Nature Publishing Group
Position
  • Senior Editor
Description
  • Handling editor for physical science submissions on atmospheres, oceans, the cryosphere and hydrology – past, present and future, on Earth and other planets
January 2001 - June 2008
Utah State University
Position
  • Assistant/Associate Professor
January 2000 - December 2000
University of Montana
Position
  • PostDoc Position
Education
September 1996 - October 1999
University of Montana
Field of study
  • Remote sensing and ecosystem modeling
June 1994 - August 1996
University of Montana
Field of study
  • Remote sensing and ecosystem modeling

Publications

Publications (48)
Article
Accurate characterization of variability and trends in forest biomass at local to national scales is required for accounting of global carbon sources and sinks and monitoring their dynamics. Here we present a new remote sensing based approach for estimating live forest aboveground biomass (AGB) based on a simple parametric model that combines high-...
Article
Previous studies have highlighted the occurrence and intensity of El Niño-Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r(2) ≈ 0.50) between interannual...
Article
Full-text available
Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP), a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared t...
Article
Aim Eleutherodactylus coqui (commonly known as the coqui) is a frog species native to Puerto Rico and non-native in Hawaii. Despite its ecological and economic impacts, its potential range in Hawaii is unknown, making control and management efforts difficult. Here, we predicted the distribution potential of the coqui on the island of Hawaii. Locati...
Article
Full-text available
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. T...
Article
Full-text available
Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala a...
Chapter
Full-text available
We sought to predict soil classes by applying random forests (RF), a decision tree analysis, to predict 24 soil classes across an arid watershed of western Utah. Environmental covariates were derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and digital elevation models (DEM). Random forests are similar to classification and regression tr...
Article
Full-text available
Shifts in the timing of spring phenology are a central feature of global change research. Long-term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for contin...
Article
We present an approach for monitoring and forecasting landscape level indicators of the condition of protected area (PA) ecosystems including changes in snowcover, vegetation phenology and productivity using the Terrestrial Observation and Prediction System (TOPS). TOPS is a modeling framework that integrates operational satellite data, microclimat...
Article
Full-text available
Competition from the New World, a changing climate and technological advances have threatened the Burgundian notion that the quality of wine depends on regional geography and culture. Only flexibility can keep the concept of terroir alive.
Article
Full-text available
1] The AmeriFlux network of eddy covariance towers has played a critical role in the analysis of terrestrial water and carbon dynamics. It has been used to understand the general principles of ecosystem behaviors and to scale up those principles from sites to regions. To support the generalization from individual sites to large regions, it is essen...
Article
Full-text available
It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirem...
Article
NASA, the U.S. National Science Foundation (NSF), and many other funding agencies are trying to increase student interest in science, technology, engineering, and mathematics careers. While rare experimental efforts have shown that factors such as small class size [ Finn et al. , 2001], community service [ Markus et al. , 1993], and targeted traini...
Article
Full-text available
The urban heat island effect, classically associated with high impervious surface area (ISA), low vegetation fractional cover (Fr), and high land surface temperature (LST), has been linked to changing patterns of vegetation phenology, especially spring growth. In this study, a collaboration with the Global Learning and Observations to Benefit the E...
Article
Snow is important for water management, and an important component of the terrestrial biosphere and climate system. In this study, the snow models included in the Biome-BGC and Terrestrial Observation and Prediction System (TOPS) terrestrial biosphere models are compared against ground and satellite observations over the Columbia River Basin in the...
Article
Vapor Pressure Deficit (VPD) is a principle mediator of global terrestrial CO2 uptake and water vapor loss through plant stomata. As such, methods to estimate VPD accurately and efficiently are critical for ecosystem and climate modeling efforts. Based on prior work relating energy partitioning, remotely sensed land surface temperature (LST), and V...
Article
Remote sensing is a potentially powerful technology with which to extrapolate eddy covariance-based gross primary production (GPP) to continental scales. In support of this concept, we used meteorological and flux data from the AmeriFlux network and Support Vector Machine (SVM), an inductive machine learning technique, to develop and apply a predic...
Article
Regulation of interannual phenological variability is an important component of climate and ecological models. Prior phenological efforts using the advanced very high resolution radiometer (AVHRR) as a proxy of vegetation dynamics have often simulated spring events only or failed to simulate interannual variability. Our aim is to address these shor...
Article
Accurate parameterization of rooting depth is difficult but important for capturing the spatio-temporal dynamics of carbon, water and energy cycles in tropical forests. In this study, we adopted a new approach to constrain rooting depth in terrestrial ecosystem models over the Amazon using satellite data [moderate resolution imaging spectroradiomet...
Article
Full-text available
Application of remote sensing data to extrapolate evapotranspiration (ET) measured at eddy covariance flux towers is a potentially powerful method to estimate continental-scale ET. In support of this concept, we used meteorological and flux data from the AmeriFlux network and an inductive machine learning technique called support vector machine (SV...
Article
Land surface phenology is an important process for real-time monitoring and short-term forecasting in diverse land management, health, and hydrologic modeling applications. Yet current efforts to characterize phenological processes are limited by remote sensing challenges and lack of uncertainty estimates. Here, for a global distribution of phenolo...
Article
Full-text available
Premium wine production is limited to regions climatically conducive to growing grapes with balanced composition and varietal typicity. Three central climatic conditions are required: (i) adequate heat accumulation; (ii) low risk of severe frost damage; and (iii) the absence of extreme heat. Although wine production is possible in an extensive clim...
Article
Full-text available
From 1950 to 1999 the majority of the world's highest quality wine-producing regions experienced growing season warming trends. Vintage quality ratings during this same time period increased significantly while year-to-year variation declined. While improved winemaking knowledge and husbandry practices contributed to the better vintages it was show...
Article
The role of tropical ecosystems in global carbon cycling is uncertain, at least partially due to an incomplete understanding of climatic forcings of carbon fluxes. To reduce this uncertainty, we simulated and analyzed 1982–1999 Amazonian, African, and Asian carbon fluxes using the Biome-BGC prognostic carbon cycle model driven by National Centers f...
Article
Full-text available
An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and w...
Article
Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the C...
Article
Full-text available
Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is dif...
Article
We examined the response of terrestrial carbon fluxes to climate variability induced by the El Niño-Southern Oscillation (ENSO). We estimated global net primary production (NPP) from 1982 to 1999 using a light use efficiency model driven by satellite-derived canopy parameters from the Advanced Very High Resolution Radiometer and climate data from t...
Article
Full-text available
Forecasts of the states and fluxes of terrestrial ecosystems are an increasingly important tool for a large fire, famine, irrigation, energy, recreation, and agriculture community. A detailed understanding of the relative importance of vegetation phenology and meteorology, two of the main forcings of ecosystem forecasts, and the likely impact of er...
Article
Full-text available
We developed a species- and location-specific database of published eco-physiological variables typically used as input parameters for biogeochemical models of coniferous and deciduous forested ecosystems in the Western United States. Parameters are based on the requirements of Biome-BGC, a widely used biogeochemical model that was originally param...
Article
Vegetation phenology, the study of the timing and length of the terrestrial growing season and its connection to climate, is increasingly important in integrated Earth system science. Phenological variability is an excellent barometer of short- and long-term climatic variability, strongly influences surface meteorology, and may influence the carbon...
Chapter
Full-text available
Global change, encompassing natural and anthropogenic changes to the Earth system at sub-annual to geologic time scales, has strong interactions with vegetation phenology. In this chapter we will refer to global change as alterations to the Earth system that are certainly or probably influenced by human activity, primarily since the industrial revo...
Chapter
Remote sensing phenology is able to consistently generate estimates of the start, peak, duration, and end of the growing season over large areas. The elements of phenology that can be estimated from remote sensing are necessarily more coarse than direct observations of individual plant phenology, such as bud burst or first leaf, but are rather summ...
Article
National Oceanic and Atmospheric Administration (NOAA)‐series satellites, carrying advanced very high‐resolution radiometer (AVHRR) sensors, have allowed moderate resolution (1 km) measurements of the normalized difference vegetation index (NDVI) to be collected from the Earth's land surfaces for over 20 years. Across the conterminous USA, a readil...
Conference Paper
Satellite data are widely used in land surface models to compute carbon and water exchange processes. However, much of this work is retrospective in nature. To better represent current land surface conditions in weather/climate models or to provide timely information on ecosystem conditions for natural resource management, one must move from retros...
Article
Climate data show significant increases in precipitation and humidity over the U.S. since 1900, yet the role of these hydro-climatic changes on the reported U.S. carbon sink is incompletely understood. Using a prognostic terrestrial ecosystem model, we simulated 1900–1993 continental U.S. carbon fluxes and found that increased growth by natural veg...
Article
Full-text available
We used a 10-year record (1990–99) of composited and cloud-screened reflectances from the Advanced Very High Resolution Radiometer (AVHRR) to test for phenological differences between urban and rural areas in the eastern United States deciduous broadleaf forest (DBF). We hypothesized that well-documented urban heat island effects would be associate...
Article
Full-text available
Climatic changes over coastal California from 1951 to 1997 may have benefited the premium wine industry, as seen in higher quality wines and larger grape yields. Observed temperature warming trends were asymmetric, with greatest warming at night and during spring. Warming was associated with large increases in eastern Pacific sea surface temperatur...
Article
Field measurement of shrubland ecological properties is important for both site monitoring and validation of remote sensing information. During the May 1997 NASA Earth Observing System Jornada Prototype Validation Exercise, we calculated plot-level plant area index, leaf area index, total fractional cover, and green fractional cover with data from...
Article
Using daily observations of temperature, precipitation, radiation, and humidity from 24 stations spanning a large elevation gradient in Austria, we tested several previously defined algorithms for estimating daily radiation and humidity. The estimation algorithms were first tested independently, and then combined, resulting in a combined algorithm...
Article
Data collected by young students from kindergarten through high school are being combined with satellite data to develop a more consistent understanding of the intimate connection between climate dynamics and the terrestrial biosphere. Comparison of the two sets of data involving the onset of budburst among trees and other vegetation has been extre...
Article
Full-text available
Ecosystem simulation models use descriptive input parame- ters to establish the physiology, biochemistry, structure, and allocation patterns of vegetation functional types, or biomes. For single-stand simulations it is possible to measure required data, but as spatial resolution increases, so too does data unavailability. Generalized biome paramete...
Article
Recent research suggests that increases in growing-season length (GSL) in mid-northern latitudes may be partially responsible for increased forest growth and carbon sequestration. We used the BIOME-BGC ecosystem model to investigate the impacts of including a dynamically regulated GSL on simulated carbon and water balance over a historical 88-year...
Article
BIOME-BGC is a general ecosystem model designed to simulate hydrologic and biogeochemical processes across multiple scales. The objectives of this investigation were to compare BIOME-BGC estimates of hydrologic processes with observed data for different boreal forest stands and investigate factors that control simulated water fluxes. Model results...
Article
Regional phenology is important in ecosystem simulation models and coupled biosphere/atmosphere models. In the continental United States, the timing of the onset of greenness in the spring (leaf expansion, grass green-up) and offset of greenness in the fall (leaf abscission, cessation of height growth, grass brown-off) are strongly influenced by me...
Article
A method for generating daily surfaces of temperature, precipitation, humidity, and radiation over large regions of complex terrain is presented. Required inputs include digital elevation data and observations of maximum temperature, minimum temperature and precipitation from ground-based meteorological stations. Our method is based on the spatial...
Article
A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE =...

Network

Cited By