
Michael E Webber- University of Texas at Austin
Michael E Webber
- University of Texas at Austin
About
317
Publications
117,303
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,603
Citations
Current institution
Publications
Publications (317)
Hydrogen is of interest for decarbonizing hard-to-abate sectors because it does not produce carbon dioxide when combusted. However, hydrogen has indirect warming effects. Here we conducted a life cycle assessment of electrolysis and steam methane reforming to assess their emissions while considering hydrogen’s indirect warming effects. We find that...
This paper examines the emissions tradeoffs of additive manufacturing (i.e., 3D printing) using plastic waste in fused granular fabrication (FGF) versus traditional fused filament fabrication (FFF) and injection molding (IM). A ‘cradle-to-gate’ life cycle assessment (LCA) was utilized to compare these methods, built in OpenLCA v1.11.0 with the Ecoi...
Hydrogen is of interest for decarbonizing hard-to-abate sectors because it does not produce carbon dioxide when combusted. However, hydrogen has indirect warming effects. In this work, we conducted a life cycle assessment of electrolysis and steam methane reforming to assess their emissions while considering hydrogen’s indirect warming effects. We...
Reducing methane emissions from solid waste is already technically possible
This analysis quantitatively compares the evolution in summer and winter peak demands in the Electric Reliability Council of Texas (ERCOT) service area from 1997 through 2021. Weather data for the days in which peak demand occurred were also compiled to investigate the relationship between peak heating and cooling loads and ambient temperature. Thi...
In this study, we analyzed data for the Electricity Reliability Council of Texas (ERCOT) to assess shoulder seasons -- that is, the 30 days of lowest total energy use and peak demand in the spring and fall -- and whether their occurrence has changed over time. We found that, over the period 1996--2022, the shoulder seasons for total energy use neve...
A severe winter storm in February 2021 impacted multiple infrastructure systems in Texas, leaving over 13 million people without electricity and/or water, potentially $100 billion in economic damages, and almost 250 lives lost. While the entire state was impacted by temperatures up to 10 °C colder than expected for this time of year, as well as lev...
The European Union’s plan to phase out Russian natural gas imports by 2027 rests partly on increasing near-term imports of US liquefied natural gas. This will require a coordinated policy response that includes securing supplies from major exporters, global diplomacy, expanding import capacity, and alignment with Europe’s climate goals.
We synthesize the interconnected impacts of Texas’ water and energy resources and infrastructure including the cascading effects due to Winter Storm Uri. The government’s preparedness, communication, policies, and response as well as storm impacts on vulnerable communities are evaluated using available information and data. Where knowledge gaps exi...
In this technical analysis, we studied the effects of complete electrification of space heating in the Texas residential sector on the energy consumption, peak power demand, and grid capacity utilization in the Electric Reliability Council of Texas (ERCOT) electricity grid. We utilized the National Renewable Energy Laboratory’s (NREL) ResStock tool...
The Texas freeze of February 2021 left more than 4.5 million customers (more than 10 million people) without electricity at its peak, some for several days. The freeze had cascading effects on other services reliant upon electricity including drinking water treatment and medical services. Economic losses from lost output and damage are estimated to...
As variable renewable energy generation in Texas increases over the next decade, flexibility and system inertia needs are likely to increase. Although natural gas peakers and combined cycle plants have met these demands in the past, grid-scale energy storage might be able to provide similar benefits. We compare the capacity for different energy sto...
Rising peak demand is a major cause for high emissions from the electricity sector. In this study, we investigate how different combinations of distributed energy technologies affect peak grid load, energy consumption from the grid, and emissions in the residential sector under time-varying prices. To do so, we develop an optimization framework in...
This work explores the dependability tradeoffs provided by the most common types of central power plants in the United States. Historically, the electricity sector has lacked consensus on how reliability, resilience, and vulnerability differ and how those metrics change depending on the power plant fleet composition. We propose distinct definitions...
Our food system is experiencing dramatic changes as the expansion of e-commerce, introduction of new products, and innovations in supply chain structures all pose to transform how we buy, sell, and distribute food. However, the environmental impacts of these transformations remain unclear. This feature reviews existing literature on environmental i...
This study uses a linear optimization framework to evaluate the effect of different demand response (DR)/load control mechanisms on reduction in peak load and energy consumption from the electricity grid in a home with four major controllable appliances — HVAC (heating, ventilation, and air-conditioning) systems, electric water heaters (EWHs), elec...
In this study, we analyze the potential for time-varying electricity rate structures to reduce and/or shift peak demand in the residential sector. To do so, we develop a convex optimization model in which a household with four major appliances minimizes electricity costs, with marginally increasing penalties for deviating from temperature set-point...
High penetrations of non-synchronous renewable energy generation can decrease overall grid stability because these units do not provide rotational inertia in the same way as traditional synchronously-connected generators. Many recent studies have investigated 100% renewable energy generation scenarios, but few have explored the trade-offs associate...
This study details a novel procedure for analyzing water demands in the nonresidential sector (i.e., commercial, industrial, and institutional users). Nonresidential customers are classified into “subsectors” based on economic, land-use, and property appraisal data sets and analyzed using a linear mixed-effects regression modeling framework, which...
This study builds a decision support tool to evaluate when it is a good economic decision (least cost with minimum discomfort) for the residential customer to invest in distributed energy resources (DERs) based on different electricity rate structures, DER ownership frameworks, and DER rebates offered by electric utilities. The tool is demonstrated...
In this study, we develop a load estimation method and an optimization tool for community-driven planning of rural electricity systems which aims to encourage stakeholder involvement in planning processes and reinforce the sustainability of small-scale electrification projects. Electricity demand is estimated through the bottom-up construction of l...
This work shares a model that was developed to compare the energy requirements of meal-kit delivery systems to conventional grocery shopping. Meal-kit services can reduce food waste because the kits pre-portion ingredients for each recipe, thereby saving energy. However, the supply chain and packaging requirements of meal-kit delivery are different...
Growth of electricity generation from variable renewable resources like wind and solar has raised questions about future grid stability. This paper used several renewable energy penetration scenarios to determine when an electric grid might be more vulnerable to frequency contingencies, such as a generator outage. Unit commitment and dispatch model...
Brackish groundwater desalination is increasingly being considered as a means to supplement drinking water in regions facing scarce freshwater supplies. Desalination is more energy intensive and expensive than traditional freshwater sources. One method of offsetting carbon emissions is to pair desalination technology with renewable energy sources....
Hydrogen as an energy carrier allows the decarbonization of transport, industry, and space heating as well as storage for intermittent renewable energy. The objective of this paper is to assess the future engineering potential for hydrogen and provide insight to areas of research to help lower economic barriers for hydrogen adoption. This assessmen...
This study builds a generalized tool to forecast the change of 4 coincident peak (4CP) loads and payments based on varying amounts of solar, storage capacity, and population estimates over a 10-year period for utilities within the Electric Reliability Council of Texas (ERCOT). It also incorporates an optimization model for the energy storage system...
The goal of this analysis was to evaluate energy and cost requirements for different configurations of a rainwater harvesting (RWH) system in conjunction with a solar PV and energy storage system for an off-grid house. Using models in fluid mechanics, we evaluated energy and power requirements for four different system configurations: 1. An On-Dema...
This analysis uses empirical data for 20 single-family homes from a smart grid demonstration project in Austin, Texas to create intra-day natural gas and electricity use profiles on one-minute intervals based on cooling and heating degree days. Combining these intra-day energy use profiles with emissions factors and a linear programming model, temp...
This study reviews the research literature's recommendations on which policies a city can pursue to reduce its greenhouse gas emissions. Using these recommendations, we develop a multi-parameter, analytic scoring rubric for quantifying the comprehensiveness of a city's climate action policy plans. The scoring rubric is used to assess the plans of 2...
This study evaluated the potential for data from dedicated water sub-meters and circuit-level electricity gauges to support accurate water end-use disaggregation tools. A supervised learning algorithm was trained to categorize end-use events from an existing database consisting of features related to whole-home and hot water use. Additional feature...
This paper develops a method and framework for analyzing the tradeoffs between the calendar life and cycle life of battery energy storage used for energy arbitrage in a wholesale electricity market. We implement a linear program to analyze the revenue potential of a battery system participating in the Electric Reliability Council of Texas (ERCOT) e...
This study develops a mixed-integer linear program for modeling the optimal equipment capacity and dispatch of a central utility plant (CUP) in a residential neighborhood and its ability to improve rooftop solar integration. The CUP equipment includes a microturbine, battery, chiller plant, and cooling storage. The CUP model is exposed to a variety...
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current...
This study evaluated the potential for circuit-level electricity data to improve performance by a water end-use disaggregation tool. Support vector machine classifiers were employed to categorize observed water events from an extensive dataset published in the literature. Additional electricity-related event features were assigned depending on temp...
This study explores economic and environmental impacts of a community-scale potable water recycling facility (WRF) by developing an optimal capacity and dispatch model, formulated as a mixed-integer linear program (MILP) that minimizes utility service costs, operating costs, and annualized capital costs where water recycling is augmented by service...
Purpose of Review
In this study, we compile and curate data from 2012, 2013, and 2014 on flared gas and generated wastewater associated with hydraulic fracturing operations in seven major shale regions of the USA. In the process, we provide an historical perspective of the management practices of flared gas and wastewater prior to the decline in oi...
This study develops a model for calculating the optimal amount of transmission, wind, and solar capacity that should be built in a grid's different regions. It also presents a framework for choosing CO2 prices by balancing increasing system cost and flexibility requirements with CO2 emissions reductions. In a simulation of the ERCOT grid, the model...
A model predictive control (MPC) framework, exploiting both feedforward and feedback control loops, is employed to minimize large disturbances that occur in military water networks. Military installations’ need for resilient and efficient water supplies is often challenged by large disturbances like fires, terrorist activity, troop training rotatio...
This paper assesses the environmental impacts of the average American's diet and food loss and waste (FLW) habits through an analysis of energy, water, land, and fertilizer requirements (inputs) and greenhouse gas (GHG) emissions (outputs). We synthesized existing datasets to determine the ramifications of the typical American adult's food habits,...
Purpose of Review
Water for the energy sector is an interdisciplinary challenge that requires new integrated systems knowledge, well-documented case studies that test various decision processes, and both quantitative and qualitative modeling and analyses to support sustainable decision-making. This review paper highlights water requirements of the...
Hydrocarbon fuel production and utilization are considered water intensive processes due to the high volumes of water used in source development and fuel processing. At the same time, there is significant water formed during combustion. However, this water is not currently widely harvested at the site of production. Instead, it is added to the hydr...
This article explains the need for producing synthetic fuels in support of making a clean and reliable energy system. This production process is expected to solve several problems at once: stabilizing intermittent electricity supply while creating renewable fuels for use in power generation, transportation, and industry. The large-scale introductio...
Mexico's government enacted an energy reform in 2013 that aims to foster competitiveness and private investment throughout the energy sector value chain. As part of this reform, it is expected that extraction of oil and gas via hydraulic fracturing will increase in five shale basins (e.g. Burgos, Sabinas, Tampico, Tuxpan, and Veracruz). Because hyd...
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits...
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits...
Transforming costly wastes into valuable resources can make cities highly efficient
Recently, demand flexibility has been highlighted as a promising distributed resource from the customer side, especially from industrial customers like commercial buildings, capable of providing grid support services. However, the quantification of demand flexibility is a complex process that requires a methodology including the requirements of bot...
In this analysis we developed and applied a geographically-resolved method to calculate the Levelized Cost of Electricity (LCOE) of new power plants on a county-by-county basis while including estimates of some environmental externalities. We calculated the LCOE for each county of the contiguous United States for 12 power plant technologies. The mi...
A recently developed flame retardant (FR) nanocoating of polydopamine (PDA) was applied to flexible polyurethane foam (PU) and thermogravimetrically analyzed (TGA). Thermal degradation kinetics were described by a simplified multi-component, Arrhenius expression coupled with a first-order reaction model. Kinetic parameters were then extracted via a...
The installation of wind and solar capacity in the electric grid can influence net load ramp rates and volatility, affecting grid stability and operating costs. In this study, the statistical analysis of load, wind, and solar data from the Electric Reliability Council of Texas (ERCOT) shows how wind and solar capacity impacts these grid flexibility...
There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on the traditional utility. However, few studies have critically assessed the trade-offs associated with storing solar energy rather than sending it to the utility grid, as is typically done today. Here we show that a typical...
The power sector in the United States is a major user of water primarily for cooling thermoelectric power plants. Those water needs are determined by the fuel, power cycle (steam cycle, combined cycle, etc.), cooling technology, and prevailing climatic conditions. In addition, water is used to generate power at dams, produce fuels, transport fuels,...
This talk offers a big picture perspective that reveals the interdependence of the world’s two most critical resources -- energy and water.
Desalination is often considered an approach for mitigating water stress. Despite the abundance of saline water worldwide, additional energy consumption and increased costs present barriers to widespread deployment of desalination as a municipal water supply. Specific energy consumption (SEC) is a common measure of the energy use in desalination pr...
Sustainable building construction is one of the fastest-growing industries in the USA. Changes in materials, products, designs, and methodologies are occurring to accommodate this green progression. While these changes have energy and environmental benefits, questions have been raised about impacts on fire safety. There are two major reasons to con...
This article discusses increasing use of energy water due to increasing unavailability of fresh water. There has been an increasing demand for energy and water even faster than population increase, driven by economic growth on top of the population growth. The increased energy intensity of water has several different components, including stricter...
Adding large solar photovoltaic (PV) resources into an electric grid influences the flexibility characteristics of its net load profile. The dispatch of the existing generation fleet changes as it adjusts to accommodate the new net load. This study categorizes and defines these flexibility characteristics. It utilizes a unit commitment and dispatch...
Water flow through engineered channels is important for decision making given its close ties to availability for allocation. However, planners often rely on estimates for natural streamflow, then use stream-by-stream assumptions and aggregation to estimate allocatable flows rather than directly assessing flows through engineered channels. Further,...
This article emphasis the need for new engineering approaches to deal with increasing environmental challenges. The Paris Agreement calls on mechanical engineers to take the ongoing decarbonization trend and accelerate it. The challenge of the Paris Agreement differs from earlier energy transitions in an important way: this shift is being intention...
The U.S. Department of Defense has recently shown an interest in incorporating the concepts of energy efficiency and energy security into decision-making processes, including decisions that pertain to military base camp equipment. Logistics—transportation of resources to forward locations in a military context—make up the vast majority of costs ass...
In this analysis we calculate the effect of energy retrofits in almost 500 homes in Austin, TX. We used measured daily energy use data (kWh/day) from before and after the homes received energy retrofits. These retrofits included attic insulation, new heating, ventilation, and air-conditioning (HVAC) systems, window screen/film, new windows, new duc...
The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in...
Policymakers, consumers, and industry leaders are increasingly concerned about the environmental impacts of modern products. In response, product designers seek simple and effective methods for lowering the environmental footprints of their concepts. Design for Environment (DfE) is a field of product design methodology that includes tools, methods...
Hydraulic fracturing-the injection of pressurized fluid, often water, to increase recovery of oil or gas-has become increasingly popular in combination with horizontal drilling. Hydraulic fracturing improves production from a well, but requires a significant amount of water to do so and could put pressure on existing water resources, especially in...
Recent droughts and heat waves have revealed the vulnerability of some power plants to effects from higher temperature intake water for cooling. In this evaluation, we develop a methodology for predicting whether power plants are at risk of violating thermal pollution limits. We begin by developing a regression model of average monthly intake tempe...
The articles in this special issue examine the critical nexus of electricity, water, and climate, emphasizing connections among resources; the prospect of increasing vulnerabilities of water resources and electricity generation in a changing climate; and the opportunities for research to inform integrated energy and water policy and management meas...
Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and...
A multi-objective fire safety and sustainability screening tool for specifying insulation materials has been developed. This paper discusses a methodology for balancing competing requirements by evaluating the thermal resistance, fire performance, sustainability, cost, acoustic damping, and durability objectives of various insulating materials thro...
This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water) from two low value resources (brackish groundwater and intermittent solar energy). Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed...
This paper discusses the development of a model for evaluating peak load reduction and change in overall energy consumption for a residential air conditioning (AC) compressor with and without condenser-side thermal storage. Stored rainwater (or any other type of on-site water storage) could be utilized as a heat sink for the condenser during peak h...
This investigation studies desalination powered by wind and solar energy, including a study of a configuration using PVT solar panels. First, a water treatment was developed to estimate the power requirement for brackish groundwater reverse-osmosis (BWRO) desalination. Next, an energy model was designed to (1) size a wind farm based on this power r...
Energy and water systems are interconnected. This work first characterizes 2010 primary energy demand for direct water services and local freshwater demand for energy on Maui Island, Hawaii, then investigates scenarios for future changes in these demands. The goal of this manuscript is to dissect the relationship and trends of energy–water connecti...
Simulations of building energy use can give insights into how energy efficiency retrofits and operational changes can influence a building's total and temporal energy use. However, before those models are used to generate recommendations, it is important to understand how accurately the simulations predict actual energy use. This paper seeks to det...
Our future rides on our ability to integrate Energy Water Food
Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water...
Little is known about variations in electricity use at finely-resolved timescales, or the drivers for those variations. Using measured electricity use data from 103 homes in Austin, TX, this analysis sought to (1) determine the shape of seasonally-resolved residential demand profiles, (2) determine the optimal number of normalized representative re...
To connect energy storage operational planning with real-time battery control, this paper integrates a dynamic battery model with an optimization program. First, we transform a behavioral circuit model designed to describe a variety of battery chemistries into a set of coupled nonlinear differential equations. Then, we discretize the differential e...