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ABSTRACT Bots in video games has been gaining the interest of industry as well as academia as a problem
that has been enabled by the recent advances in deep learning and reinforcement learning. In turn several
studies have attempted to establish bot detectors in various video games. In this article, we introduce a bot
detection model that can implemented in real-time and provide feedback on whether a player that is being
observed is a bot or human. The model uses a limited feature set and amount of time of observation in order
to be small and generalize easily to other domains. We trained and tested our model in a series of replays for
Starcraft: Brood War and have yielded a higher accuracy than past studies and a fraction of detection time.

INDEX TERMS Video games, deep learning, bot, detection.

I. INTRODUCTION
As the video game industry continues to grow and the com-
petition for online experiences becomes more fierce, the need
for accurate detection of non-human players that present
themselves as human players has grown as well. A game’s
economic lifespan can be curtailed by adversaries that use
bots (computer controlled players) who can harass or be
far superior to human players [1]. The prevalence of bots
in online gaming necessitates and presents an opportunity
to create and improve upon existing systems for bot detec-
tion. This study developed a bot detection method while
also presenting an approach that can balance accuracy with
computational overhead. Our research utilized datasets from
Starcraft: Brood War, a real-time strategy game originally
released by Blizzard Entertainment in 1998 and a remastered
version followed in 2017. The game involves two players
competing against each other by using a fictional civiliza-
tion (e.g., Terrans, Protoss and Zergs) having the control of
multiple buildings, units and research trees. The game has
a top-down perspective and units can move freely on the
map depending the mouse orders that a player gives to one
or multiple units. The winner is the player that manages to
destroy all of his or her opponents’ units and buildings.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

Presenting an accurate detection system for a real-time
strategy game depends on an understanding of bot behavior
during gameplay, which comes from the study of current
state-of-the-art bot techniques. The use of statistical meth-
ods that compare player behavior to statistically common
behaviors exhibited by bots has been found to be a successful
strategy for bot detection [1], [2]. Self-similarity, the ten-
dency for bots to repeat the same behavior, has also been
noted as a useful means of distinguishing bots from human
players [3], [4].

Over time, sophisticated attackers developed bots that
have mechanisms for detection avoidance. AI competitions
in StarCraft demonstrate an ability for bots to make intelli-
gent, ad hoc decisions in the way a human might. Machine
learning as well as human analysis have been used to study
these AI bot techniques in order to provide varying per-
spectives on a sophisticated set of decision making meth-
ods [5]–[7]. The availability of large datasets have in turn
aided in the development of bots capable of making com-
plicated decisions [8]. For example, dealing with incomplete
information and attempting to anticipate another player’s
actions [9]. The ability for complicated decision making
without reliance on large data sets has also been achieved
[10], [11]. As such, the ability to accurately distinguish
humans from bots becomes an increasingly challenging
task.
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We have formulated the following research question: can
we efficiently and accurately detect AI bots early in a strategy
game?

Due to the aforementioned advances in bot AI, we have
decided to apply machine learning for this nuanced clas-
sification task, which enables the option to be eventually
automated. Taking what is known about the current state of
bot detection in real time strategy games, we move forward to
present an computationally efficient method for bot detection
in StarCraft: Brood War using deep learning. We leverage
information and techniques provided by earlier studies in
order to develop a deep learning algorithm capable of accu-
rately detecting machine controlled players.

Our model’s contributions are the following:

• It uses a limited set of features in order to detect AI
bot allowing it to potentially generalize easier to other
games.

• It is computationally efficient requiring but a lim-
ited amount of gameplay in order to make accurate
predictions.

• It can predict with high accuracy AI bots.

A source code is provided along with the paper
and can be found at: https://gitlab.cs.wwu.edu/201940-
starcraft/tsikerdekis/starcraft. The rest of the paper is orga-
nized as follows. In section II, we provide an overview of
representative works in the field of AI bots and bot detection.
Section III illustrates the steps for our proposed method for
bot detection. Section IV introduces the experimental design
that we have used to evaluate our method. We present our
results in section V where we further contrast our method’s
performance and computational overhead with similar meth-
ods. Finally, in section VI we highlight some of the limita-
tions as well as future challenges and opportunities in bot
detection.

II. RELATED WORKS
Several examples of studies that use machine learning algo-
rithms for detecting bots in MMORPGs exist with promis-
ing results in their accuracy scores [1], [3], [4], [12], [13].
For example, a study experimented with different classifi-
cation architectures in order to ultimately discover a ran-
dom forest technique that demonstrated the highest degree
of accuracy [3]. The results from different works depend on
an emphasis of precision over recall. For example, a study
has demonstrated high precision scores in detecting bots in
StarCraft [3]. While high precision is important for avoiding
false identification of humans as bots, this can often come at
the cost of being able to detect amajority of the bot population
to improve the gaming experience (i.e., high recall). Low
recall scores obtained in some studies [3], [12] present an
opportunity for improvement of these bot detection methods.

However, high recall is not unattainable. Improved
recall scores in Massive Multiplayer Online Role Playing
Games (MMORPG) player classification have been demon-
strated in a study using similar algorithms [1]. The approach

resulted in such high precision and recall on a large test set
demonstrating an ability to generalize well to unseen data.
Additionally, classification was performed very efficiently
in these high-accuracy models with predictions on new data
often occurring in less than a second. Complex features such
as player networks are often seen as being effective in produc-
ing high accuracy from these classifiers [4]. The drawback
of such features is that they lead to a much greater amount
of computation time during training [1]. As an alternative,
achieving high accuracy scores while neglecting the use of
such complex features is possible if one includes features
beyond what can be taken from game replay data, effec-
tively reducing the false positive rate [1]. Another study has
demonstrated exceptional accuracy scores with a full detec-
tion framework comprised of several Bi-directional Long
Short TermMemory (Bi-LSTMs) neural networks [13]. How-
ever, in addition to extensive data preprocessing, the com-
putational overhead involved in training multiple supervised
and unsupervised models is significant. A substantial amount
of resources is required to implement and maintain such a
system, which makes such systems less scalable for online
gaming communities.

Current work demonstrates that training a classifier on a
sequence of game state data has the capability of producing
highly accurate detection systems. For example, studies have
used player trajectory taken from game traces to detect bots
[2], [14]. In this case, a model’s learning is dependent upon
the temporal relation between states. While this approach has
proven to produce high precision and recall scores, traces are
required to be up to ten minutes long for a model to produce
accurate predictions. This is similar to other methods, where
StarCraft replays are up to sixteen minutes long [12]. The
length of a data sequence has a drastic impact on the compu-
tational expense of training a model. Therefore, an efficient
approach which utilizes the richness of temporally related
game data appears to be missing from the community.

While many of the methods described in related literature
produce high classification results, we identified several key
areas where improvements could be made.

First, there is a disparity in the aforementioned methods
and their dataset sizes that were utilized in training and testing
their predictive models. On the lower end, [14] and [2] used
519 player trajectories in the Quake 2 game setting to train
their models. On the upper end, [4] and [13] used billions of
samples, which was achievable by having access to a wealth
of data provided by the developers of the games themselves.
More relevant to our work is [12], which aimed to detect bots
in StarCraft: Brood War specifically. In terms of dataset size,
the study used 1,139 Protoss vs Terran game logs to train
models. We believe that a larger and more general dataset
could be beneficial tomodel performancewhen usingmodern
machine learning techniques.

Second, there is opportunity for improvement in terms of
the frequency of predictions. The methods illustrated in some
studies [1], [4], [12], [13] make new predictions only when
certain player actions are taken (e.g., a player attacks another
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player). In the case of StarCraft: Brood War bot detection,
the method proposed in [12] makes new predictions when
players hit certain ‘‘milestones’’ in gameplay, such as build-
ing barracks, or expanding a base. Depending on the manner
in which a player plays, these predictions can be sparse.
Predictions that are not only accurate, but also occur more
often can help identify bots earlier in the game, leading to
efficiency benefits.

Third, the number of features used to detect bots could be
improved. Most of the existing bot detection methods use a
large number of features. For example, when testing the num-
ber of features, a study tested predictivemodels using 114, 62,
and 6 features and found that as the number of features used
decreases, the model performance suffered, but still retained
impressive results even using only 6 features [3]. Another
study was able to use 56 features to detect bots with good
results inside of StarCraft: Brood War [12]. Although using
a high number of features allows machine learning models
to use feature extraction to isolate and interpret important
information, fewer features provides efficiency benefits to
both training and making predictions with a machine learning
model.

III. PROPOSED METHOD
Our method predicts bot players inside of StarCraft: Brood
War with a high degree of classification performance using
machine learning algorithms. We also improve on other tech-
niques used in literature by using a larger training dataset,
utilizing fewer features, and having a higher prediction fre-
quency.

A. DATA PARSING
We gathered StarCraft: Brood War replay files from large
databases in order to get a sufficiently large training dataset.
These files are separated by games played by human players
and by bot players. We used over 6,000 professional human
replays and 500 non-professional human replays [15], and
7,865 bot replays from a 2014 AI competition [16].

We then converted these replay files into JavaScript Object
Notation (JSON) files. To do so, we used screp, an open
source replay parsing tool [17]. This script was run with the
argument -cmd in order to record player commands. JSON
files remained separated by human or bot players.

We used R to convert, format, clean, and save the data
from the JSON files as Comma Separated Value (CSV) files.
We kept the CSV files separated by human and bot players.
A unique CSV file was created for each player in the replay.
The CSV files contained a record of the frame in which the
player took an action, the number of units they have selected
at that time, and their x and y mouse coordinates at that time.

Because there is little documentation for screp [17],
we made the following assumptions on the extracted data.
When a player has negative mouse coordinates, we translated
this to mean that they are building units or constructing build-
ings. There also were occasionally instances where the same
frame number appears in multiple consecutive rows of the

CSV. This occured when multiple actions (usually building
and unit production) are recorded at the same time.

In order to conserve memory, all CSV files were truncated
so that none have frames above 15,000 (about 10 minutes
of gameplay). The 10 minute decision was decided as a
benchmark heuristically as well as a time threshold that has
been used in the past for predicting the winner of a game
[18]. Further, some players in a replay did not had any actions
happen in the first 30 seconds of the game likely due to
being a spectator or just a player that is away from their
computers when thematch starts. As such, any CSVfiles with
initial frames higher than 360 (no action in about 15 seconds
since the start of the match) were considered outliers and
were deleted from the dataset. The final dataset consisted
of 17,205 human players and 15,730 bot players that were
saved locally in folders labeled ‘‘human’’ and ‘‘bot.’’

This training data provided us with unique information for
our deep learning model. StarCraft: Brood War replays files
contain enough input data to ‘‘reconstruct’’ a match. This
includes the construction of buildings and units, without
specifically describing information about them, while all
using simple input data. This input data is recorded when-
ever a player performs any action, which means that any
predictions about whether a player is a bot or human can
be performed at a much higher frequency compared to other
methods in the literature.

B. DATA PREPROCESSING
After data was parsed, each CSV file was loaded inside of
a two dimensional (2D) Numpy array (a module used in
scientific computing for Python).

We introduced an experimental variable, S, which was
defined as the amount of time (in seconds) of player game
inputs from the start of a match. We devised S as a means
to determine what is the amount input data a model needs in
order to make a determination on whether a player that the
model is observing is a human or a bot. Smaller S values will
inevitably lead to less computational overhead on the model
and as such it was deemed critical to test variable values in
order to demonstrate that the model is not just effective. Each
2D array had the number of rows limited based on this time
constraint. Specifically, the last row of the split array was
such that the frame number of the next row exceeds 24 ∗ S,
where 24 is the number of game input frames that can occur
per second. If an array did not contain S seconds of game
input, no row limiting occurred.

After the number of rows were adjusted, numeric variables
(e.g., time) are scaled to help speed up learning.

The first column of each row, the frame number (FN ), was
scaled to be the proportion of the game input length, S, that
the frame occurs on. Mathematically, this scalar is 1

24∗S , since
there are a possible 24 logical input frames per second.

The second column of each row, the number of units
selected (SU ), was scaled by 1

24 , since StarCraft: BroodWar
only lets the player select a total of 24 units as an upper bound.
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The third and fourth column of each row, the X and Y
mouse positions on the game map (Mx andMy respectively),
are scaled by 1

8192 . Since the maximum boundaries of the
game map vary depending on which map is being played,
we used this general scalar to ensure that no matter how large
the maps are, the values are mostly in the range of 0 and 1.

Figure 1 shows the process through which a replay was
parsed and reprocessed.

FIGURE 1. The replay preprocessing flow to produce a dataset that can
be trained using deep learning.

C. DEEP LEARNING MODEL
We constructed a deep learning binary classifier model to
detect bot players using sequences of game input information.
Our model aimed to learn the mapping Bot : G 7→ {0, 1},
where G is the set of all possible gameplay input sequences
g ∈ G. In turn, the sequence of game frames, as a stream
of player game input information extracted from the game
is defined as g = 〈f1, f2, . . . , fL〉, where ft ∈ R4 is a frame
of game input from a player in real time and L is the index
of the last frame which occurs within a specified time limit.
This index is likely unique for every game, since frames occur
whenever the player performs an action, rather than at regular
timed intervals.

We chose to implement our deep neural network using
a standard 4 layer architecture. Figure 2 summarizes the
deep learning model. The input layer accepts vectors of
size 4 which represent a game input frame, ft . This input
layer is then followed by 2 hidden Long Short-Term Mem-
ory (LSTM) layers, both with 64 units each.

We chose to use LSTM layers for our model primarily
because they can process variable length sequences of input
vectors. While standard Recurrent Neural Network (RNN)
layers also have this ability, LSTM layers canmore accurately
interpret longer sequences due to the fact that they have input,

FIGURE 2. The deep learning binary classifier model that was used in this
study. Output is a sigmoid function. Number in parentheses shows the
number of neurons per layer. FN is frame number, SU is the number of
selected units, Mx is the X mouse position, and My is the Y mouse
position.

FIGURE 3. The Long Short-Term Memory (LSTM) cell [20]. σ is a sigmoid
function. Squares represent network layers. Circles are pointwize
operations.

output, and forget gates that manage the flow of information
through the layer [19]. Also, LSTM layers avoid the ‘‘dying
gradient’’ problem during training due to using vector addi-
tion, which prevents partial derivatives from getting close
to 0 after successive applications of the calculus chain rule.
Figure 3 depicts a single LSTM cell. The cell consists of
several functions which operate from left to right. There is
a ‘‘forget gate layer’’ that decides what information will be
thrown away from the cell, an ‘‘input sigmoid layer’’ that
decides which values to update, a tahn layer that create a
vector candidate values and combines with the previous layer,
and an ‘‘output layer’’ where the model decides what output
to export using a sigmoid and a tahn function.

We chose to use 2 hidden LSTM layers because it allows
the neural network to learn temporal hierarchical relation-
ships in the training data. Using 64 units for the hidden layer
size keeps the parameter count relatively small. Especially,
since parameter counts grow O(n2) where n is the number of
units in a hidden layer.

The final layer was a dense layer of one unit that uses the
sigmoid activation function, which outputs values in the range
of 0 and 1. Values close to 1 mean the model is predicting the
player to be a bot, while values close to 0 mean a prediction
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that the player is human. During training, these output values
were used directly, but were rounded to be either 0 or 1 for
testing and validation.

Overall, our machine learning model had a total of 50, 753
parameters that had to be trained before predictions can be
made. This parameter count is fairly small for a deep learning
application, and when written to disk, the parameters occu-
pied 220.1 kilobytes of memory. A small parameter count
also provides speed benefits for both training and prediction.
Thematrix operations are applied to relatively small matrices,
making both predictions and backpropagation (for finding
gradients) much faster.

D. DETECTOR USAGE INTENT
Our detection method was designed to be well suited for a
concurrent application environment. Likemany other popular
online games, StarCraft: BroodWar will have thousands of
players participating in matches during peak hours. At any
given moment, players may be currently inside of a match,
waiting for an opponent during match-making, or leaving a
completed game. This problem setting shares characteristics
with concurrent tasks, where resource utilization is important
to optimize.

A set of detectors can be considered to be a finite resource
which can be ‘‘acquired’’ or ‘‘freed’’ very similarly to a
semaphore. When a player enters a match, an open detector
can be acquired by the player (although the actual detector
exists on the server, not the client program). As the match
progresses, the player input frames are sent to the detector
for real time prediction and the LSTM layers of the model
maintains a hidden state unique to the specific player.

Although a detector could be active for the entire match,
it would be much more computationally efficient to make an
accurate judgement as to whether or not the player is a bot in
the least amount of time possible. In this scenario, a player
that is suspected to be a bot early in the game can be flagged
for further review and the detector can then be ‘‘freed’’ for
the next player to acquire.

Using real time predictions to make early detection of bots
provides several advantages. First, since fewer player input
frames are required to make a decision on whether a player
is a bot, fewer floating point operations would be required,
which puts computing resources under less strain.

Second, a single detector would be able to observe more
players in a given time, since it would only spend a fraction
of a match’s length making predictions on a player before
being freed and moving onto the next player. Another benefit
is that fewer detectors will be required to monitor an entire
population of players, leading to even more efficient usage of
computing resources.

IV. EXPERIMENTAL DESIGN
A. GAME INPUT SEQUENCE LENGTH EXPERIMENT
In order to demonstrate the accuracy, efficiency, and robust-
ness of our detector, we performed multiple k-folds cross

validation experiments across different game input sequence
lengths to measure the effect that the amount of game input
data has on model performance.

When loading the training data from disk, we omitted
player input sequences that did not contain enough infor-
mation. These data points often did not contain any input
vectors, and as such could not be used for training. Once
these outliers were removed, undersampling is performed to
balance the dataset so that there are equal number of bot and
human games. During all sequence lengths, 17,205 human
and 15,730 bot games were used for training and testing the
model.

For training, we chose to use the Adam optimizer [21]
with a learning rate of 10−4. To ensure training stability,
we also applied a clip to each component of the gradient of
0.1. We chose to use a minibatch size of 64 training samples,
which also helps with training stability in addition to faster
training through computing gradients in parallel.

We used Binary Cross-Entropy (BCE) as our loss function.
This loss function is well suited to this task, since the function
output approaches infinity as themodel output approaches the
opposite of the training label. This unique property allows the
model to train faster than a conventional loss function, such
as mean squared error.

Keeping our training hyperparameters constant, we varied
the game input length variable, S, to be 15, 30, 45, and
60 seconds. For each of these game input lengths, we per-
formed k-folds cross validation with k = 10. Once a fold was
complete, we evaluated our model’s performance on F1, F2
scores, precision, and recall on the test set. These four metrics
also provided uswith information about the frequency of false
positives, which are very important if a prediction of a bot
could result in a player being banned.

B. REAL TIME PREDICTION
Once a model was trained, we evaluated its performance in a
simulated real-time environment.

To accomplish this, an LSTM neural network model was
created nearly identically as the one used during training.
The difference being this newmodel was ‘‘stateful’’, meaning
the internal state of the model was preserved rather than
reset upon prediction. This was the real time detector. Since
the model architecture is identical to the trained model,
the learned parameters can be directly applied to the real time
detector.

The goal of this experiment was to determine how pre-
dictions change over the course of the game. In order to do
this, we ran each of the valid game input sequences into
the real time model one frame at a time. These predictions
were placed inside of an array of size 24 ∗ S. The index at
which these predictions were placed is the unscaled logical
game frame number. If multiple frames occurred on the same
game frame number, the frame with the highest index in the
sequence was used to make a prediction.

Since there are some logical game frames where the player
takes no action, the prediction array had ‘‘gaps’’ in it. In these
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cases, the gaps were filled using a post processing algorithm
that uses linear interpolation.

V. RESULTS
In this section, we describe the results of the experiments that
we conducted.

A. SEQUENCE LENGTH EXPERIMENT
We highlight the effect of sequence length (S) in accuracy
in figure 4 as well as table 1.

FIGURE 4. Sequence length experiment results in plotted form.

TABLE 1. Sequence length experiment results in tabular form (all entries
rounded to 4 decimal places, all metrics calculated from test sets on each
fold). Note: S: Number of seconds since the match started.

Overall, our model performed well irrespective of S. There
is a general improvement in model performance as the
amount of data provided to the model increased (i.e., the time
the detector can observe a player increases). This expectation
holds true for the 15 and 30 seconds tests, albeit the improve-
ment is small.

However, performance dropped beyond that point. There
are many reasons as to why this may be the case, but we
speculate that the LSTM hidden layers of the model were
more difficult to train on longer sequence lengths, which is
a well known issue.

It appears that the optimal sequence length for detecting
bots is around 30 seconds. Ideally, this model configuration
would be chosen to be used in a real application. However,
all 4 trained model configurations performed quite well,
so it may be more beneficial to use the 15 second con-
figuration, since it would perform slightly worse than the

30 second configuration, but make accurate predictions in
half the amount of time.

B. REAL TIME PREDICTION RESULTS
Results of the real time predictions are shown on figure 5.

For general performance, all the real time detector models
predicted classes were close to either 0 or 1 by the end of the
gameplay sequence.

There are many things these results have in common. First,
all of the models have the human and bot predictions very
close to each other for the first quarter of the gameplay
sequence. We believe this is due to both humans and bots
having extremely similar behavior at the start of a match
(selecting the initial workers and sending them to collect
resources).

Second, all models are more confident in bot predictions
than human predictions. This is clearly demonstrated on the
15 second model, where the detector has high confidence
in bot predictions from nearly the start of the match, while
human predictions are much farther from their supposed label
of 0.

Third, the human prediction curve is much more stable
across all models compared to the bot curve. It follows a
strange trend where human predictions will start off as bot
predictions before moving to 0 in a very smooth curve. Bot
predictions have different types of curves, especially the
15 second model compared to the 60 second model.

Fourth, both bot and human predictions curves do not
diverge until halfway through the gameplay sequence. This
occurs with all 4 models, which is a unique observation since
it is intuitive to believe that the prediction curves would
diverge at roughly the same time from the start of the match.

Fifth, the variance in predictions across all prediction
curves is somewhat high. This may be caused by the difficulty
in classifying bots from humans. Some prediction curves,
such as humans in the 15 second model, have a very high
level of variance.

We believe that many of the shortcomings from this experi-
ment (high variance, poor prediction curves) can be attributed
to the difficulty in training LSTM layers in the model. Even
though LSTMmodels aremore resistant to vanishing gradient
problems, their learning capacity is not infinite in terms of the
sequences they can remember. It is possible that the abnormal
behavior of bots is more likely to confuse even LSTMmodels
and possibly that is why human prediction seems to be more
stable in the later parts os a match’s observation. Since all
models performed more or less the same in a simulated real
time setting, the 15 second trained model seems to be the
best choice to use in an application, since reasonably good
predictions can be made within 10 seconds of a match start,
albeit with high variance in human predictions.

C. COMPARISON TO OTHER TECHNIQUES
We provide a comparison summary on table 2 for our method
with studies that have developed bot detectors.
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FIGURE 5. Real time detector predictions based on sequence length (S) of 15, 30, 45 and 60 seconds. Note: Shaded region denotes 1 standard
deviation.

TABLE 2. Comparison of our detector with other similar bot detectors.

Many of the bot detection techniques described in the liter-
ature did not all provide the same classification performance
metrics that we used. Recall, however, was provided, and
we have included that metric in the table for these stud-
ies. Additionally, the other methods in the literature also
use different video games as the setting for testing their
technique, so the comparison is relative. On the one other
source [12] that does use StarCraft: Brood War as the game
setting, the train and test data set were not the same as in our
technique.

Our technique meets or exceeds the recall score that the
other techniques produce. In particular, compared to the other

StarCraft: Brood War detector technique, our technique pro-
duces a significantly higher recall score andmore importantly
our precision scores is also just as high This is an important
factor for administrators that will base their decisions in part
based on the detector’s classification.

The novelty of our technique is also shown in regards to
prediction time. We were able to make accurate predictions
in the fraction of the time at no cost to accuracy. The ram-
ifications of this, is that a real-time implementation of our
approach can determine whether a player is a bot early in the
game and then proceed by examining another game. Further,
players involved in a game will not have to expend effort for a
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long period of gameplay in order to be warned that they may
be playing against an AI.

VI. LIMITATIONS
We introduce a few considerations that may apply to our
method. First, the dataset that we have used for training our
model is not a good representation of a typical StarCraft:
BroodWar match. Specifically, the human labeled games are
biased towards professional players. This is due to a lack of
availability of amateur level replays on the internet, as there is
a higher demand from the community for professional player
replays for learning and entertainment purposes. Addition-
ally, our dataset had amaximum of roughly 30,000 samples in
it. Although our detector did generalize well with this amount
of data, better results may be achieved with an even larger
dataset, such as, as an extreme, the entirety of all StarCraft:
BroodWarmultiplayermatches. There are also considerations
for the bot portion of the dataset. The bot data samples
were collected from bot competitions that had participants
developing bots to defeat primarily other bots. As such, bot
behavior may not necessarily be close to a human player.

VII. CONCLUSION
We plan to expand our method in several ways in the future.
This initially involves addressing some of the considerations
discussed in section VI. Issues with how the human portion of
the dataset being biased towards professional players could be
addressed by crowdsourcing replay files from the StarCraft:
BroodWar community. Replay files could then be acquired
from players on a wide spectrum of skill levels in order to
train a more generalized detector.

Acquiring bot replays of bots that attempt to behave sim-
ilar to humans is more challenging, as it would require bot
developers to redesign their bots to both play the game well
and behave like a human. Instead, it might be worthwhile
to use our detector as a component of a reward function for
a reinforcement learning agent. Specifically, the detector’s
output multiplied by −1 could be used directly as a reward.
If the bot is behaving like a human, the reward would be close
to 0, and if the bot is easily detectable, the reward would be
close to −1. Since our detector can make predictions every
input frame, the rewards would not be sparse, which could
help in training a reinforcement learning agent faster.

This idea could further be extended by having the detector
train against the reinforcement learning agent by adding the
agent’s input frame sequences into the detectors training
dataset. This would create an adversarial training environ-
ment where the detector would try and outsmart the agent,
while the agent tries to outsmart the detector.

Advanced bots in video games has become a reality in
the recent years with the proliferation of tools for reinforce-
ment and deep learning. This article aimed to advance detec-
tion strategies that can be easily implemented and detect
bots at a short amount of time compared to past methods.
As such, we have demonstrated the feasibility of attaining
high detection accuracy, with a small feature set and limited

observations. Given the information asymmetry that typically
exists between an attacker (bot developer) and a defender (bot
detector developer), we believe that simpler models may be
better at adapting in games where incomplete information
may exist (e.g., where observing player actions in games).

APPENDIX
MODEL HYPERPARAMETERS

TRAINING HYPERPARAMETERS

SEQUENCE LENGTH EXPERIMENT RESULTS (TABLE FORM)

All metrics were calculated on each fold’s test set during
k-folds cross validation training.
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