Michael Skeeles

Michael Skeeles
Deakin University · School of Life and Environmental Sciences

MSc

About

7
Publications
810
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
29
Citations
Citations since 2016
7 Research Items
27 Citations
2016201720182019202020212022024681012
2016201720182019202020212022024681012
2016201720182019202020212022024681012
2016201720182019202020212022024681012

Publications

Publications (7)
Article
Argyrosomus japonicus is arguably South Africa’s most important estuarine recreational and small-scale fishery species. Although juvenile A. japonicus predominate in estuarine environments, where catch-and-release angling is common, limited C&R studies have taken place. The aim of this study was to use angler-behaviour to robustly examine the physi...
Article
Experimental hyperoxia has been shown to enhance the maximum oxygen uptake capacity of fishes under acute conditions, potentially offering an avenue to test prominent physiological hypotheses attempting to explain impacts of climate warming on fish populations (e.g., gill‐oxygen limitation driving declines in fish size). Such benefits of experiment...
Article
Full-text available
Current understanding of behavioural thermoregulation in aquatic ectotherms largely stems from systems such as “shuttle boxes”, which are generally limited in their capacity to test large-bodied species. Here, we introduce a controlled system that allows large aquatic ectotherms to roam freely in a tank at sub-optimal temperatures, using thermal re...
Article
Full-text available
In a recent editorial, the Editors-in-Chief of Journal of Experimental Biology argued that consensus building, data sharing, and better integration across disciplines are needed to address the urgent scientific challenges posed by climate change. We agree and expand on the importance of cross-disciplinary integration and transparency to improve con...
Article
Full-text available
Climate change not only drives increases in global mean ocean temperatures, but also in the intensity and duration of marine heatwaves (MHWs), with potentially deleterious effects on local fishes. A first step to assess the vulnerability of fishes to MHWs is to quantify their upper thermal thresholds and contrast these limits against current and fu...
Article
Full-text available
Quantifying how the heart rate of ectothermic organisms responds to environmental conditions (e.g. water temperature) is important information to quantify their sensitivity to environmental change. Heart rate studies have typically been conducted in lab environments where fish are confined. However, commercially available implantable heart rate bio...
Article
As marine environments are influenced by global warming there is a need to thoroughly understand the relationship between physiological limits and temperature in fish. One quick screening method of a physiological thermal tipping point is the temperature at which maximum heart rate (ƒHmax) can no longer scale predictably with warming and is referre...

Network

Cited By