Michael Schaub

Michael Schaub
  • PhD
  • RWTH Aachen University

About

139
Publications
27,304
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,813
Citations
Current institution
RWTH Aachen University

Publications

Publications (139)
Preprint
Full-text available
Simplicial complexes (SCs), a generalization of graph models for relational data that account for higher-order relations between data items, have become a popular abstraction for analyzing complex data using tools from topological data analysis or topological signal processing. However, the analysis of many real-world datasets leads to dense SCs wi...
Preprint
Full-text available
In this paper, we extend the classical Color Refinement algorithm for static networks to temporal (undirected and directed) networks. This enables us to design an algorithm to sample synthetic networks that preserves the $d$-hop neighborhood structure of a given temporal network. The higher $d$ is chosen, the better the temporal neighborhood struct...
Preprint
Full-text available
We consider the problem of classifying trajectories on a discrete or discretised 2-dimensional manifold modelled by a simplicial complex. Previous works have proposed to project the trajectories into the harmonic eigenspace of the Hodge Laplacian, and then cluster the resulting embeddings. However, if the considered space has vanishing homology (i....
Article
We study the problem of recovering a planted hierarchy of partitions in a network. The detectability of a single planted partition has previously been analyzed in detail and a phase transition has been identified below which the partition cannot be detected. Here we show that, in the hierarchical setting, there exist additional phases in which the...
Preprint
Full-text available
This work introduces TopoBenchmarkX, a modular open-source library designed to standardize benchmarking and accelerate research in Topological Deep Learning (TDL). TopoBenchmarkX maps the TDL pipeline into a sequence of independent and modular components for data loading and processing, as well as model training, optimization, and evaluation. This...
Preprint
Full-text available
We define a model for random (abstract) cell complexes (CCs), similiar to the well-known Erd\H{o}s-R\'enyi model for graphs and its extensions for simplicial complexes. To build a random cell complex, we first draw from an Erd\H{o}s-R\'enyi graph, and consecutively augment the graph with cells for each dimension with a specified probability. As the...
Preprint
Full-text available
Graph neural networks (GNNs) have emerged as powerful tools for processing relational data in applications. However, GNNs suffer from the problem of oversmoothing, the property that the features of all nodes exponentially converge to the same vector over layers, prohibiting the design of deep GNNs. In this work we study oversmoothing in graph convo...
Preprint
Full-text available
Topological Data Analysis (TDA) allows us to extract powerful topological and higher-order information on the global shape of a data set or point cloud. Tools like Persistent Homology or the Euler Transform give a single complex description of the global structure of the point cloud. However, common machine learning applications like classification...
Article
Dynamical systems on hypergraphs can display a rich set of behaviors not observable for systems with pairwise interactions. Given a distributed dynamical system with a putative hypergraph structure, an interesting question is thus how much of this hypergraph structure is actually necessary to faithfully replicate the observed dynamical behavior. To...
Conference Paper
Full-text available
Graph-based signal processing techniques have become essential for handling data in non-Euclidean spaces. However , there is a growing awareness that these graph models might need to be expanded into 'higher-order' domains to effectively represent the complex relations found in high-dimensional data. Such higher-order domains are typically modeled...
Article
We present PyGenStability, a general-use Python software package that provides a suite of analysis and visualisation tools for unsupervised multiscale community detection in graphs. PyGenStability finds optimized partitions of a graph at different levels of resolution by maximizing the generalized Markov Stability quality function with the Louvain...
Preprint
We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, in...
Article
Full-text available
Hajij et al. We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on thes...
Conference Paper
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data pr...
Article
Full-text available
Higher-order networks can sustain topological signals which are variables associated not only to the nodes, but also to the links, to the triangles and in general to the higher dimensional simplices of simplicial complexes. These topological signals can describe a large variety of real systems including currents in the ocean, synaptic currents betw...
Preprint
Dynamical systems on hypergraphs can display a rich set of behaviours not observable for systems with pairwise interactions. Given a distributed dynamical system with a putative hypergraph structure, an interesting question is thus how much of this hypergraph structure is actually necessary to faithfully replicate the observed dynamical behaviour....
Preprint
Full-text available
Similar to community detection, partitioning the nodes of a network according to their structural roles aims to identify fundamental building blocks of a network. The found partitions can be used, e.g., to simplify descriptions of the network connectivity, to derive reduced order models for dynamical processes unfolding on processes, or as ingredie...
Article
Modular and hierarchical community structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular have included identifying fundamental limits of detectability by formally defining community structure using probabili...
Article
Full-text available
Improving the position of minority groups in networks through interventions is a challenge of high theoretical and societal importance. However, a systematic analysis of interventions that alter the network growth process is still missing. In this work, we propose a model to examine how network growth interventions impact the position of minority n...
Article
Full-text available
Topological deep learning is a rapidly growing field that pertains to the development of deep learning models for data supported on topological domains such as simplicial complexes, cell complexes, and hypergraphs, which generalize many domains encountered in scientific computations. In this paper, we present a unifying deep learning framework buil...
Preprint
Full-text available
We present Topological Point Cloud Clustering (TPCC), a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features. TPCC synthesizes desirable features from spectral clustering and topological data analysis and is based on considering the spectral properties of a simplicial complex associated...
Preprint
We establish a framework for signal processing on product spaces of simplicial and cellular complexes. For simplicity, we focus on the product of two complexes representing time and space, although our results generalize naturally to products of simplicial complexes of arbitrary dimension. Our framework leverages the structure of the eigenmodes of...
Preprint
Full-text available
We present PyGenStability, a general-use Python software package that provides a suite of analysis and visualisation tools for unsupervised multiscale community detection in graphs. PyGenStability finds optimized partitions of a graph at different levels of resolution by maximizing the generalized Markov Stability quality function with the Louvain...
Preprint
We consider topological signals corresponding to variables supported on nodes, links and triangles of higher-order networks and simplicial complexes. So far such signals are typically processed independently of each other, and algorithms that can enforce a consistent processing of topological signals across different levels are largely lacking. Her...
Preprint
The processing of signals on simplicial and cellular complexes defined by nodes, edges, and higher-order cells has recently emerged as a principled extension of graph signal processing for signals supported on more general topological spaces. However, most works so far have considered signal processing problems for signals associated to only a sing...
Preprint
We develop a new method to efficiently sample synthetic networks that preserve the d-hop neighborhood structure of a given network for any given d. The proposed algorithm trades off the diversity in network samples against the depth of the neighborhood structure that is preserved. Our key innovation is to employ a colored Configuration Model with c...
Preprint
Improving the position of minorities in networks via interventions is a challenge of high theoretical and societal importance. In this work, we examine how different network growth interventions impact the position of minority nodes in degree rankings over time. We distinguish between two kinds of interventions: (i) group size interventions, such a...
Preprint
Full-text available
We study the task of node classification for graph neural networks (GNNs) and establish a connection between group fairness, as measured by statistical parity and equal opportunity, and local assortativity, i.e., the tendency of linked nodes to have similar attributes. Such assortativity is often induced by homophily, the tendency for nodes of simi...
Article
Full-text available
The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in h...
Chapter
In this chapter, we derive and analyse models for consensus dynamics on hypergraphs. As we discuss, unless there are nonlinear node interaction functions, it is always possible to rewrite the system in terms of a new network of effective pairwise node interactions, regardless of the initially underlying multi-way interaction structure. We thus focu...
Chapter
Higher-order networks have so far been considered primarily in the context of studying the structure of complex systems, i.e., the higher-order or multi-way relations connecting the constituent entities. More recently, a number of studies have considered dynamical processes that explicitly account for such higher-order dependencies, e.g., in the co...
Preprint
Full-text available
Finding equitable partitions is closely related to the extraction of graph symmetries and of interest in a variety of applications context such as node role detection, cluster synchronization, consensus dynamics, and network control problems. In this work we study a blind identification problem in which we aim to recover an equitable partition of a...
Book
Full-text available
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in wh...
Preprint
Full-text available
We study linear filters for processing signals supported on abstract topological spaces modeled as simplicial complexes, which may be interpreted as generalizations of graphs that account for nodes, edges, triangular faces etc. To process such signals, we develop simplicial convolutional filters defined as matrix polynomials of the lower and upper...
Article
We study linear filters for processing signals supported on abstract topological spaces modeled as simplicial complexes, which may be interpreted as generalizations of graphs that account for nodes, edges, triangular faces, etc. To process such signals, we develop simplicial convolutional filters defined as matrix polynomials of the lower and upper...
Article
We investigate consensus dynamics on temporal hypergraphs that encode network systems with time-dependent, multiway interactions. We compare these consensus processes with dynamics evolving on projections that remove the temporal and/or the multiway interactions of the higher-order network representation. For linear average consensus dynamics, we f...
Preprint
We propose a method to detect outliers in empirically observed trajectories on a discrete or discretized manifold modeled by a simplicial complex. Our approach is similar to spectral embeddings such as diffusion-maps and Laplacian eigenmaps, that construct vertex embeddings from the eigenvectors of the graph Laplacian associated with low eigenvalue...
Article
Full-text available
Network analysis provides powerful tools to learn about a variety of social systems. However, most analyses implicitly assume that the considered relational data is error-free, and reliable and accurately reflects the system to be analysed. Especially if the network consists of multiple groups (e.g., genders, races), this assumption conflicts with...
Article
Full-text available
The processing of signals supported on non-Euclidean domains has attracted large interest in the last years. Thus far, such non-Euclidean domains have been abstracted primarily as graphs with signals supported on the nodes, though recently the processing of signals on more general structures such as simplicial complexes has also been considered. In...
Preprint
The processing of signals supported on non-Euclidean domains has attracted large interest in the last years. Thus far, such non-Euclidean domains have been abstracted primarily as graphs with signals supported on the nodes, though recently the processing of signals on more general structures such as simplicial complexes has also been considered. In...
Preprint
We develop wavelet representations for edge-flows on simplicial complexes, using ideas rooted in combinatorial Hodge theory and spectral graph wavelets. We first show that the Hodge Laplacian can be used in lieu of the graph Laplacian to construct a family of wavelets for higher-order signals on simplicial complexes. Then, we refine this idea to co...
Chapter
We introduce and analyse a three-body consensus model (3CM) for non-linear consensus dynamics on hypergraphs. Our model incorporates reinforcing group effects, which can cause shifts in the average state of the system even in if the underlying graph is complete (corresponding to a mean-field interaction), a phenomena that may be interpreted as a ty...
Preprint
We investigate consensus dynamics on temporal hypergraphs that encode network systems with time-dependent, multi-way interactions. We compare this dynamics with that on appropriate projections of this higher-order network representation that flatten the temporal, the multi-way component, or both. For linear average consensus dynamics, we find that...
Article
We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T=1 this recovers the maximum-likelihood estimator of the degree-corr...
Preprint
Higher-order networks have so far been considered primarily in the context of studying the structure of complex systems, i.e., the higher-order or multi-way relations connecting the constituent entities. More recently, a number of studies have considered dynamical processes that explicitly ac- count for such higher-order dependencies, e.g., in the...
Preprint
Recent studies have exposed that many graph neural networks (GNNs) are sensitive to adversarial attacks, and can suffer from performance loss if the graph structure is intentionally perturbed. A different line of research has shown that many GNN architectures implicitly assume that the underlying graph displays homophily, i.e., connected nodes are...
Preprint
This paper re-examines the concept of node equivalences like structural equivalence or automorphic equivalence, which have originally emerged in social network analysis to characterize the role an actor plays within a social system, but have since then been of independent interest for graph-based learning tasks. Traditionally, such exact node equiv...
Article
Full-text available
Motivation Ligand-receptor (LR) network analysis allows the characterization of cellular crosstalk based on single cell RNA-seq data. However, current methods typically provide a list of inferred LR interactions and do not allow the researcher to focus on specific cell types, ligands or receptors. In addition, most of these methods cannot quantify...
Preprint
In this chapter, we derive and analyse models for consensus dynamics on hypergraphs. As we discuss, unless there are nonlinear node interaction functions, it is always possible to rewrite the system in terms of a new network of effective pairwise node interactions, regardless of the initially underlying multi-way interaction structure. We thus focu...
Article
In this tutorial, we provide a didactic treatment of the emerging topic of signal processing on higher-order networks. Drawing analogies from discrete and graph signal processing, we introduce the building blocks for processing data on simplicial complexes and hypergraphs, two common higher-order network abstractions that can incorporate polyadic r...
Preprint
Modeling complex systems and data using the language of graphs and networks has become an essential topic across a range of different disciplines. Arguably, this network-based perspective derives is success from the relative simplicity of graphs: A graph consists of nothing more than a set of vertices and a set of edges, describing relationships be...
Preprint
In this paper, we study linear filters to process signals defined on simplicial complexes, i.e., signals defined on nodes, edges, triangles, etc. of a simplicial complex, thereby generalizing filtering operations for graph signals. We propose a finite impulse response filter based on the Hodge Laplacian, and demonstrate how this filter can be desig...
Preprint
This tutorial paper presents a didactic treatment of the emerging topic of signal processing on higher-order networks. Drawing analogies from discrete and graph signal processing, we introduce the building blocks for processing data on simplicial complexes and hypergraphs, two common abstractions of higher-order networks that can incorporate polyad...
Preprint
Full-text available
Networks are a widely-used tool to investigate the large-scale connectivity structure in complex systems and graphons have been proposed as an infinite size limit of dense networks. The detection of communities or other meso-scale structures is a prominent topic in network science as it allows the identification of functional building blocks in com...
Preprint
Network analysis provides powerful tools to learn about a variety of social systems. However, most analyses implicitly assume that the considered data is error-free and reliable. Especially if the network consists of multiple groups, this assumption conflicts with the range of systematic reporting biases, measurement errors and other inaccuracies t...
Preprint
We study the problem of recovering a planted hierarchy of partitions in a network. The detectability of a single planted partition has previously been analysed in detail and a phase transition has been identified below which the partition cannot be detected. Here we show that, in the hierarchical setting, there exist additional phases in which the...
Preprint
Modular and hierarchical structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular, or "community", structures have included identifying fundamental limits of detectability by formally defining community structu...
Article
Networks and data supported on graphs have become ubiquitous in the sciences and engineering. This paper studies the 'blind' community detection problem, where we seek to infer the community structure of a graph model given the observation of independent graph signals on a set of nodes whose connections are unknown. We model each observation as fil...
Preprint
Full-text available
We consider state aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T = 1 this approach recovers the maximum-likelihood estimator of the...
Article
We explore the problem of inferring the graph Laplacian of a weighted, undirected network from snapshots of a single or multiple discrete-time consensus dynamics, subject to parameter uncertainty, taking place on the network. Specifically, we consider three problems in which we assume different levels of knowledge about the diffusion rates, observa...
Preprint
Full-text available
We introduce and analyse a three-body consensus model (3CM) for non-linear consensus dynamics on hypergraphs. Our model incorporates reinforcing group effects, which can cause shifts in the average state of the system even in if the underlying graph is complete (corresponding to a mean-field interaction), a phenomena that may be interpreted as a ty...
Preprint
Networks and data supported on graphs have become ubiquitous in the sciences and engineering. This paper studies the 'blind' community detection problem, where we seek to infer the community structure of a graph model given the observation of independent graph signals on a set of nodes whose connections are unknown. We model each observation as fil...
Chapter
This chapter focuses on the rich interplay between network structure and a dynamics acting on top of the network as a means of identifying modules in the network or describing the effect that modules can have on the dynamical behavior of a system. One of the main motivations for identifying modular structures in networks is that they provide a simp...
Chapter
Full-text available
This chapter unfolds different aims underpinning community detection – in a relaxed form that includes assortative as well as disassortative group structures with dense and sparse internal connections, respectively – and discusses how the resulting problem perspectives relate to various applications. It focuses on four broad perspectives that have...
Preprint
We explore the problem of inferring the graph Laplacian of a weighted, undirected network from snapshots of a single or multiple discrete-time consensus dynamics, subject to parameter uncertainty, taking place on the network. Specifically, we consider three problems in which we assume different levels of knowledge about the diffusion rates, observa...
Conference Paper
We present a graph-based semi-supervised learning (SSL) method for learning edge flows defined on a graph. Specifically, given flow measurements on a subset of edges, we want to predict the flows on the remaining edges. To this end, we develop a computational framework that imposes certain constraints on the overall flows, such as (approximate) flo...
Article
Full-text available
Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict and control their behavior a crucial step is to extract reduced descriptions of such networks. Inspired by notions from Control Theory, here we propose a time-dependent dynamical similarity measure between nodes, which quantifies the...
Preprint
We consider a blind identification problem in which we aim to recover a statistical model of a network without knowledge of the network's edges, but based solely on nodal observations of a certain process. More concretely, we focus on observations that consist of snapshots of a diffusive process that evolves over the unknown network. We model the n...
Preprint
We present a graph-based semi-supervised learning (SSL) method for learning edge flows defined on a graph. Specifically, given flow measurements on a subset of edges, we want to predict the flows on the remaining edges. To this end, we develop a computational framework that imposes certain constraints on the overall flows, such as (approximate) flo...
Preprint
We discuss a variant of `blind' community detection, in which we aim to partition an unobserved network from the observation of a (dynamical) graph signal defined on the network. We consider a scenario where our observed graph signals are obtained by filtering white noise input, and the underlying network is different for every observation. In this...
Article
As relational datasets modeled as graphs keep increasing in size and their data-acquisition is permeated by uncertainty, graph-based analysis techniques can become computationally and conceptually challenging. In particular, node centrality measures rely on the assumption that the graph is perfectly known --- a premise not necessarily fulfilled for...
Preprint
This paper focuses on devising graph signal processing tools for the treatment of data defined on the edges of a graph. We first show that conventional tools from graph signal processing may not be suitable for the analysis of such signals. More specifically, we discuss how the underlying notion of a `smooth signal' inherited from (the typically co...
Preprint
Full-text available
Modeling complex systems and data with graphs has been a mainstay of the applied mathematics community. The nodes in the graph represent entities and the edges model the relations between them. Simplicial complexes, a mathematical object common in topological data analysis, have emerged as a model for multi-nodal interactions that occur in several...
Article
Full-text available
We develop a mathematical model considering a random walker with long-range hops on arbitrary graphs. The random multi-hopper can jump to any node of the graph from an initial position, with a probability that decays as a function of the shortest-path distance between the two nodes in the graph. We consider here two decaying functions in the form o...
Conference Paper
Full-text available
Network-based data mining techniques such as graph mining, (social) network analysis, link prediction and graph clustering form an important foundation for data science applications in computer science, computational social science, and the life sciences. They help to detect patterns in large data sets that capture dyadic relations between pairs of...
Article
Full-text available
This chapter discusses the interplay between structure and dynamics in complex networks. Given a particular network with an endowed dynamics, our goal is to find partitions aligned with the dynamical process acting on top of the network. We thus aim to gain a reduced description of the system that takes into account both its structure and dynamics....
Preprint
Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from Control Theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effe...
Article
Full-text available
Networks provide a powerful formalism for modeling complex systems, by representing the underlying set of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to-person, collaboration among a team ra...

Network

Cited By