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P U R P O S E press Smad2, pSmad2, or Smad4 was associated with advanced-

stage disease, the presence of lymph node metastases, and a
Based largely on in vitro investigations and animal studies, inves-

significantly shorter overall survival (median survival: 35 vs 58
tigators believe that disruptions of transforming growth factor- b

months).
(TGF-b ) signaling contribute to the development and progression

of human colorectal cancer. The purpose of this study was to
D I S C U S S I O Ndirectly assess the status of the TGF-b signaling pathway in

colorectal cancer and determine the effects of its disruption on Loss of Smad activation and/or expression occurs in approxi-
clinical behavior and outcome. mately 10% of colorectal cancers. This subset has a poor progno-

sis because of its association with advanced disease and the

presence of lymph node metastases at diagnosis. (Cancer JM A T E R I A L S A N D M E T H O D S
2003;9:302–312)

Smad proteins are the principal intracellular components of the

TGF-b signaling pathway. We conducted a high-throughput analy- K E Y W O R D S :
sis of the expression patterns of Smad2, phosphor ylated (acti- Transforming growth factor- b , Smad, prognosis, colorectal cancer
vated) Smad2 (pSmad2), and Smad4 in more than 600 human

colorectal cancer specimens assembled in tissue microarrays. The transforminggrowth factor-b (TGF- b ) superfamily
of secreted polypeptides regulates cell proliferation, dif-

R E S U L T S ferentiation, motility, and apoptosis in different cell
types, including intestinal epithelial cells.1,2 The TGF- bThe vast majority (93.8%; 95% CI: 92%–96%) of colorectal can-
signal is transduced by a pair of transmembrane serine-cers expressed phosphorylated Smad2, indicating the ability of
threonine kinase receptors.2 Binding of TGF- b to typethe tumors to survive and proliferate within a microenvironment
II receptor (T b R-II) homodimers results in the recruit-that contains bioactive TGF-b . Twelve of 633 (1.9%; 95% CI:
ment of two type I receptor (T b R-I) molecules into1%–3%) cases failed to express Smad2, and 15 of 641 (2.3%;
heterotetrameric complexes, which in turn results in95% CI: 1%–4%) cases failed to express Smad4. Moreover, 29
activation of the T b R-I kinase by Tb R-II. In responseof 615 (4.7%; 95% CI: 3%–7%) of cases expressed Smad2 but
to receptor activation, two cytosolic proteins, Smad2not its activated form (pSmad2), suggesting the presence of a
and Smad3, become transiently associated with andTGF-b receptor defect. Based on an analysis of 577 cases for
phosphorylated by the Tb R-I kinase, allowing them towhich clinical outcome information was available, failure to ex-
form heteromeric complexes with a third homologue,
Smad4. These complexes are translocated to the nu-
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signaling play an important role in colon carcinogene-
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sis.11 For example, one strain of Smad3 mutant mice TGF- b signaling pathway occurs in approximately 10%
of colorectal cancers and is associated with advanceddevelops highly invasive and metastatic colorectal ade-

nocarcinomasbetween4 and 6 months of age.12 Further- disease and, consequently, with a poor prognosis.
more, in compound heterozygote mice that carry both
adenomatous polyposis coli (APC) and Smad4 gene mu-

M A T E R I A L S A N D M E T H O D Stations, intestinal polyps develop into malignant tumors
at an accelerated rate compared to the simple APC Const ruct ion and Processing of Colon Cancer
mutant heterozygotes.13 Moreover, Smad4 heterozygous T issue Microar rays
mice eventually develop intestinal polyps and invasive

Tissue microarrays were assembled using formalin-carcinomas at 6–12 months of age.14,15 In these cases,
fixed, paraffin-embedded tissue blocks retrieved fromloss of the second, wild-type Smad4 allele occurs at a
the archives of the Yale University School of Medicinelate stage of tumor development.15 Thus, haploid insuffi-
Department of Pathology, as previously described.41

ciency of Smad4 appears to support tumor initiation,
Each tissue specimen was represented in the arrays bywhereas biallelic loss contributes to later stages of tumor
at least two cores. Two separate tissue microarrays wereprogression. In man, germline mutations of either the
used in this study. The first array contained 45 cases ofT b R-II receptor or Smad4 confer a high risk of devel-
primary invasive colorectal cancer diagnosed in 1999.oping gastrointestinal cancers.16,17

The second and largest array contained 650 cases ofSecondly, numerous in vitro studies have demon-
primary invasive colorectal cancers, each representedstrated that transformed colon epithelial cells progres-
by two cores. For 624 of these cases, follow-up informa-sively loose the growth inhibitory response to TGF- b in
tion was available (median follow-up: 53 months). Thisparallel with the stage of the tumor of origin.11 Moreover,
study was approved by the institutional review board.TGF- b –overexpressing colon tumors may represent a

particularly aggressive subset because the prognosis of
Detection of Smad Proteins Usingpatients whose cancers overexpress TGF- b appears to
Immunoh istochemistr ybe worse than that of nonexpressors.18

Although molecular genetic studies of colorectal can- Smad proteins were identified in 5-mm tissue microarray
cer have identified two main subtypes with different sections by use of a polyclonal goat anti-Smad2 (S-20)
underlying forms of genetic instability, the TGF- b signal- antibody (1:100; Santa Cruz Inc., CA), a polyclonal
ing pathway appears to be affected in both types.19 Most rabbit anti-phospho-Smad2 (1:100; pSmad2) anti-
colorectal cancers are characterized by allelic losses in- body41-43), or a monoclonal mouse anti-Smad4 (B-8)
volving chromosome 18q, which contains the Smad2 antibody (1:150; Santa Cruz Inc., CA), as previously
and Smad4 gene loci. Approximately 10% and 20% of described.41 The intensity of positive staining was scored
sporadic colorectal carcinomas have been estimated to independently by two observers.41,43 Cases of disagree-
carry mutations in the Smad2 and Smad4 genes, respec- ment were re-reviewed jointly to arrive at a consensus
tively.20-25 Loss of expression of Smad4 protein was noted score. Disk scores from the same tumor were averaged
in two of 14 cases (14%) of colorectal cancer.26 Con- to produce a single score.44

versely, between 70% and 90% of colorectal carcinomas
and carcinoma cell lines associated with microsatellite

Statist ical Anal ys is
instability due to hereditary or acquired DNA mismatch
repair deficiencies (the so-called RER` phenotype) dis- Survival curves were estimated according to the Kaplan-

Meier method.45 For each curve, the starting point wasplay intragenic mutations of T b R-II that result in loss of
its tumor suppressive activity.27-39 In addition, missense the date of diagnosis of colon cancer. Death from any

cause was counted as an event in the calculation ofmutations in the T b R-II gene have been reported to
occur in approximately 15% of microsatellite-stable overall survival time. For surviving patients, time was

censoredat the last available follow-up date. The mediancolorectal cancer cell lines.40

To address the questions of whether and how disrup- follow-up time in this series was 53 months. The log-
rank test (Mantel-Cox) was used to compare outcomestions of TGF- b /Smad signaling affect outcome of pa-

tients with colorectal cancer in more detail, we have of different groups. Proportional-hazards regression
models were used for multivariable comparisons ofconducted a retrospective high-throughput tissue mi-

croarray analysis of a large cohort of unselected time-to-event endpoints.46 Contingency table analyses
using the Fisher’s exact test were used to determine thecolorectal cancers. In this study, we used an immunohis-

tochemical approach that allowed us to examine the relationships between Smad status and known prognos-
tic factors for colorectal carcinoma. All analyses werefunctional status of the TGF- b receptorsas well as recep-

tor-associated and common Smads. Our findings indi- performed using Abacus Concepts, Statview 4.51 (Aba-
cus Concepts, Inc., Berkeley, CA).cate that inactivation of any of these elements of the
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R E S U L T S (93.8%; 95% CI: 92%–95%) of 656 colorectal cancer
specimens (Table 1, Figs. 1 and 2). This is an important

Smad Expression Pat terns in Nor mal Colon T issue
finding because it indicates that TGF- b receptor signal-
ing is activated in the vast majority of invasive colorectalWe first examined the pattern of Smad expression and

activation in normal colonic epithelium (Fig. 1). As carcinomas. By inference, then, these tumor cells are
capable of proliferation in spite of an activated TGF-bexpected, all normal tissue elements, including epithelial

and stromal cells, as well as capillaries, expressed Smad2 signaling pathway. This finding indicates not only that
biologically active TGF- b is present within the microen-as well as Smad4. The staining was predominantly cyto-

plasmic in the case of Smad2 and mixed cytoplasmic vironment of these tumors but also that the carcinoma
cells must have escaped from TGF- b –mediated cell cycleand nuclear in the case of Smad4. However, to our

surprise, the activated form of Smad2 (pSmad2) was arrest. In the 41 remaining cases (6.3%; 95% CI:
5%–8%), we were unable to detect pSmad2 expressionclearly detectable in the cytoplasm and nuclei of epithe-

lial cells and the stromal elements of normal crypts of within the tumor cells, although it was present in sur-
rounding stromal cells and capillaries (Fig. 2). Thus,Lieberkühn, as well as in the capillary endothelial cells

(Fig. 1). Furthermore, the intensity of pSmad2 staining these cases are likely to have lost expression or to have
acquired inactivating mutations of one or the other TGF-of the epithelial and the stromal cells seemed to increase

along the crypt axis, from relatively weak at the base of b receptor subtype.27,40

Smad4 expression was observed in 626 (98%; 95%the crypts to stronger toward the luminal surface. These
findings suggest that biologically active TGF- b is present CI: 96%–99%) of 641 evaluable colorectal cancer speci-

mens (Table 1, Fig. 2). Positive staining was predomi-within the microenvironment immediately surrounding
normal colonic crypts and capillaries and that a relation- nantly confined to the cytoplasm of tumor epithelial

cells, with occasionalassociatednuclear staining. Smad4ship may exist between Smad2 activation and the differ-
entiation of the epithelial cells as they move up toward was undetectable in the tumor cells in the remaining 15

cases (2.3%; 95% CI: 1%–4%). Recent studies have dem-the luminal surface.
onstrated that loss of immunostainable Smad4 protein as
assayed by use of the B-8 monoclonal antibody (SantaSmad Expression Pat terns in Colon Cancer
Cruz) is an extremely sensitive and specific surrogateT issue Microar rays
marker for structural alterations of the Smad4 gene in

In order to determine the status of Smad signaling in tumor specimens.47,48 Thus, it is likely that the loss of
invasive human colon carcinomas in vivo, Smad2, Smad4 expression in our series is also the result of either
pSmad2, and Smad4 expression were examined by im- loss or mutation of both alleles of the Smad4 gene.
munostaining of tissue microarrays (Table 1). The two In summary, based on the expression pattern of
microarrays included a total of 695 primary invasive Smad2, pSmad2, and Smad4, colorectal cancers dis-
carcinomas of the colon or rectum. Of 633 evaluable played one of six different phenotypes (Table 2): most
cases, 621 (98.1%; 95% CI: 97%–99%) expressed cases (N 4 554) co-expressed Smad2, pSmad2, and
Smad2 (Table 1). The remaining 12 (2%; 95% CI: Smad4. Among the remaining 32 cases, seven were
1%–3%) cases failed to express Smad2 protein, probably Smad2 negative, 14 were pSmad2 negative, four were
reflecting inactivation of the Smad2 gene by deletion Smad4 negative, and seven had a dual defect in TGF-
or intragenic mutation.23 Phosphorylation of receptor- b signaling (Smad2 and Smad4 negative: four cases;
activated Smads by ligand-induced activation of the pSmad2 and Smad4 negative: three cases).
TGF- b receptor complex is a key step in the intracellular
transduction of TGF- b signaling. Our anti-pSmad2 anti-

Associat ions Between Losses of Smad Signal ing and
body allowed us to assess the state of activation of recep-

Clin ical Outcome
tor-associated Smad2 by the T b R receptor complex in
tumor tissue in situ.41 Diffuse positive cytoplasmic as Numerous small studies have suggested that alterations

of TGF- b signaling in colorectal cancers might havewell as nuclear staining for pSmad2 occurred in 615

TABLE 1 Smad Expression and Activation in Colorectal Cancer Tissue Microarrays: Classification by Individual Smada

Smad2 pSmad2 Smad4

Positive Negative Positive Negative Positive Negative

621 12 615 41 626 15
(98.1%) (1.9%) (93.8%) (6.2%) (97.7%) (2.3%)

aTotal numbers of cases with positive versus negative Smad immunostaining in colorectal cancer tissue microarrays (see Materials
and Methods).



FIGURE 1 Smad expression and acti-
vation in normal human colonic mu-
cosa and colorectal cancer.
Consecutive 5-mm paraf fin sections of
normal colonic mucosa (A through E)
and invasive colorectal cancer (F
through J) were stained using hematox-
ylin-eosin (A through F), a polyclonal
goat anti-Smad2 (S-20) antibody B and
G), our polyclonal rabbit anti-pSmad2
antibody (C and H), or a mouse mono-
clonal anti-Smad4 antibody (B-8, Santa
Cruz) (D and I), to detect expression
of total Smad2, pSmad2, and Smad4,
respectively. Control sections of each
specimen were processed without pri-
mary antibodies (E and J). All sections
were counterstained with hematoxylin.
Representative areas of normal co-
lonic mucosa (A–E) and invasive colon
cancer (F–J) are shown (4002 magnifi-
cation). R, mitosis.

A F

B G

C H

D I

R

E J

FIGURE 2 Smad expression and acti-
vation in human colorectal cancer.
Consecutive 5-mm sections of two dif-
ferent tissue microarrays containing a
total of 695 cases of primar y invasive
colorectal cancer were stained using
a mouse monoclonal anti-Smad4 anti-
body (B-8, Santa Cruz), a polyclonal
goat anti-Smad2 (S-20) antibody, or
our polyclonal rabbit anti-pSmad2 anti-
body, to detect expression of Smad4,
total Smad2, and pSmad2, respec-
tively. Control sections were stained
with the respective secondar y anti-
body only (CON) or with hematoxylin-
eosin (H&E). Representative 0.6-mm
diameter sections of invasive colon
carcinomas are shown (2002 magnifi-
cation). Top row: Most cases of inva-

H&E Smad2 Smad2P Smad4 Con

sive colorectal carcinomas expressed
Smad4, Smad2, and pSmad2. Middle
row: Representative case of a tumor
that expressed Smad4 and Smad2 but
failed to express pSmad2. Bottom row:
Representative case of a tumor that
expressed Smad2 but failed to ex-
press pSmad2 and Smad4.
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was significantly shorter than that of those whose tumors
expressed Smad2, pSmad2, and Smad4 (median overall
survival: 35 vs 58 months; P 4 0.0096 by log-rankTABLE 2

Smad Expression and Activation in Colorectal
Cancer Tissue Microarrays: Three-Way Cross-
Classification for Smad2, pSmad2, and Smad4a

Mantel-Cox test; P 4 0.021 by Peto and Peto’s general-Smad4
ized Wilcoxon test). Moreover, the failure to expresspSmad2 Negative Positive Total
pSmad2 or either Smad2 or Smad4 individually was

Negative 3b 14 17 associated with a poor outcome, even though the ob-
Smad2 Positive Positive 4 554 558 served differences did not quite reach statistical signifi-
Smad2 Negative 4b 7 11 cance (Table 3). Thus, in the present series, any

disruption in Smad signaling, whether it affected Smad2Total 11 575 586
or Smad4 expression or Smad2 activation, appears to

aThree-way cross-classification for Smad2, pSmad2, and Smad4. define a small but particularly aggressive subset of colo-
This analysis was per formed on the subset of 586 cases for

rectal cancers.which immunostaining with all three antibodies could be reliably
ascertained. Colorectal cancers displayed one of six phenotypes:
Smad2, pSmad2, and Smad4 positive (554 cases; 94.5%);

Associat ions Between Smad Expression andSmad2 negative (7 cases; 1%); pSmad2 negative (14 cases; 2%);
Smad4 negative (4 cases; 0.7%); Smad2 and Smad4 negative (4 Pathologica l and Bio log ic Featu res of Colorectal
cases; 0.7%); and pSmad2 and Smad4 negative (3 cases; 0.5%). Carcinoma
bCases with dual defect in transforming growth factor- b signaling.

To identify possible associations between the patterns
of expression of Smad2, pSmad2, and Smad4 and other
clinical and pathological features of the colorectal carci-

prognostic and/or predictive significance.18,49-54 We ex- nomas, Smad expression patterns were compared with
amined the possible relationships between loss of TGF- tumor location, histologic grade, pathological stage, and
b signaling (as measured by pSmad2, Smad2, or Smad4 presence or absence of lymph node metastases (Table
negativity) and overall survival in 624 unselected colo- 4). We found no association between Smad status and
rectal cancer cases for which this information was avail- histological grade or tumor location. Interestingly,
able (Fig. 3). As shown in Table 3 and Figure 3, the tumors with any type of loss of Smad signaling were
overall survival of patients whose cancers did not ex- more likely to be of more advanced pathological stage
press any one of the TGF- b signaling intermediates and to be associated with the presence of lymph node
(pSmad2, Smad2, or Smad4) or combinations thereof metastases (odds ratios: 2.15 and 2.35, respectively)

(Table 4). Both advanced stage and presence of lymph
node metastases are predictive of poor overall survival
(Table 5). After adjustment for stage or presence of
lymph node metastases, the relationship between the
presence of a Smad signaling defect and overall survival
was no longer significant (Table 5). Thus, our results
indicate that TGF- b signaling defects in the primary
tumor are strongly associated with the presence of meta-
static disease at diagnosis and, hence, indirectly affect
patient outcome.

D I S C U S S I O N
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FIGURE 3 Relationship between loss of Smad signaling and The main purpose of this study was to assess the state
clinical outcome. Survival curves were estimated according to of TGF- b signaling in colorectal cancer and its impact
the Kaplan-Meier method.45 The curves represent overall survival on patient outcome in a large cohort of archived cases
of the patients in whose tumors we found evidence for loss

for which this information was available. Although im-of transforming growth factor- b (TGF-b )/Smad signaling (Smad
munostainable TGF- b has been detected in and aroundnegative) compared with the group in which we did not (Smad

positive). The median overall survival of patients whose cancers colorectal cancers and the intensity of staining seems to
failed to express Smad2, pSmad2, or Smad4 (35 months; stan- correlate with advancing stages of tumor progres-
dard error [SE], 12.3 months) was significantly shorter than of sion,18,55-57 interpretation of these studies is complicated
those whose tumors expressed Smad2, pSmad2, and Smad4

by difficulties associatedwith distinguishing the biologi-(58 months; SE, 4.9 months) (Chi-square 4 6.715; P 4 0.0096
cally inactive, latent form of TGF- b from its activatedby log-rank Mantel-Cox test; Chi-square 4 5.325; P 4 0.021 by

Peto and Peto’s generalized Wilcoxon test). form. To circumvent these problems, we used phosphor-
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TABLE 3 Effect of Smad Signaling Defects on Patient Overall Survivala
Survivalb

Number (Median % SE) Chi-Square P Value

pSmad2 0.0616
Positive 566 55 5 5.9
Negative 21 47 5 9.2 3.49
Unscorable 25

Smad2 0.0471
Positive 599 54 5 8.1 3.94
Negative 12 18 5 6.1
Unscorable 13

Smad4 2.06 0.1512
Positive 582 57 5 3.9
Negative 13 41 5 22.5
Unscorable 29

Combinedc 6.715 0.0096
Positive 539 58 5 4.9
Negative 38 35 5 12.3
Unscorable 47

aThis analysis was per formed on the subset of 624 cases for which overall survival information was available.
bSurvival (in months) curves were estimated according to the Kaplan-Meier method,45 and differences were assessed by means
of the log-rank test (Mantel-Cox).
cIncludes all cases that failed to express pSmad2, Smad2, or Smad4.

TABLE 4 Associations Between Smad Expression and Clinical and Pathological Features of Colorectal Carcinomasa

Smad, N

Variable Positive Negative P Valueb Odds Ratio 95% CI

Histologic gradeb 432 26 1.000 0.89 0.26–3.08
Low 377 23
High 55 3

Pathological stagec 506 40 0.031 2.15 1.11–4.18
Stages I`II 285 15
Stages III`IV 221 20

LNN metastases 498 38 0.015 2.35 1.20–4.58
Negative 314 16
Positive 184 22

Tumor locationd 463 34 1.000 0.96 0.45–2.06
Proximal 132 10
Distal 331 24

Abbreviation: LNN, lymph node(s) negative.
aContingency table analyses using the Fisher’s exact test were used to determine the relationships between Smad status and
known prognostic factors for colorectal carcinoma. Cases with incomplete information were excluded from the individual analyses.
bHistological grade: low, moderately and well-dif ferentiated tumors; high, undif ferentiated and poorly dif ferentiated tumors.
cAJCC/UICC pathological stage.79

dTumor location: proximal colon includes cecum, ascending colon, and transverse colon; distal colon includes splenic flexure,
descending colon, sigmoid, and rectum.

ylation of the principal T b R-I substrate, Smad2, as a Smad2 phosphorylation occurs in response to TGF- b
treatment in a dose- and time-dependent fashion.41,42surrogate marker of activation of the TGF- b receptor

system by TGF-b . In cultured cells, the pSmad2-specific Moreover, we have demonstrated good concordance be-
tween the expression of pSmad2 by immunohistochem-antibody recognizes the phosphorylated form of Smad2

in a highly specific and sensitive manner, and that istry and Western blotting of the same tissues (R. Ge,
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TABLE 5 Associations Between Clinical, Pathological and Molecular Variables and Patient Overall Survival According to
Proportional Hazards Regression Modelsa

Multiple Variables Coefficient SE Chi-Square P Value

Pathological stageb (adjusted for Smad signaling defect) 10.494 0.095 27.025 < 0.0001
LNN metastasesc (adjusted for Smad signaling defect) 0.413 0.098 17.877 < 0.0001
Smad signaling defectd (adjusted for stage) 10.214 0.175 1.495 0.2214
Smad signaling defectd (adjusted for LNN metastases) 10.219 0.180 1.481 0.2236

Abbreviations: SE, standard error.
aProportional-hazards regression models were used for multivariable comparisons of time-to-event end points.46 After adjustment
for the presence of Smad signaling defects, pathological stage, and presence of lymph node metastases remained highly significant
predictors of overall survival. However, after the analysis was adjusted for pathological stage and presence of lymph node metastases,
Smad signaling defects no longer had a significant relation to overall survival.
bAmerican Joint Committee on Cancer (AJCC)/International Union Against Cancer (UICC) pathological stages I and II versus III and
IV.79

cPositive versus negative
dPositive versus negative.

M. Reiss, 2002, unpublished observation). Thus, the immunostaining can be used as a surrogate marker for
a TGF- b receptor defect in vivo.41 In the present series,presence of pSmad2 in cells can be used as an indicator

of receptor signaling by biologically active TGF-b pres- approximately 6% of colorectal cancers failed to express
pSmad2. In two thirds of these cases, this was clearlyent within the cellular microenvironment.

Our results indicate that the microenvironment of the due to a lack of phosphorylation and not due to a loss
of Smad2 expression. In addition, it was not due tonormal colonic mucosa apparently contains biologically

active TGF-b , leading to activation of Smad2 in epithe- absence of ligand, because surrounding normal cells
continued to express pSmad2. Thus, selective loss oflial, stromal, and capillary structures. This finding was

somewhat unexpected, because TGF-b is generally Smad2 activation is most likely due to a defect in recep-
tor signaling.41,42 The frequency of pSmad2-negativitybelieved to be deposited in the extracellular milieu in

a latent form and not to become activated except in in the present study is very similar to the frequency
of pSmad2-negativity we encountered in human breastresponse to tissue injury.58 In addition, we observed a

gradient of pSmad2 along the crypt axis, increasing from cancers41 but significantly lower than in endometrial
cancers.43 Thus, the frequencyof TGF- b receptor signal-the bottom of the crypts to the luminal surface. This

apparent gradient of Smad2 activation is consistent with ing loss varies considerably between different cancer
types.the pattern of immunostaining for TGF-b 1 described

by Avery et al.59 In colorectal cancers associated with microsatellite
instability, mutations found within the T b R-II codingSomewhat to our surprise, more than 90% of colo-

rectal carcinomas expressed pSmad2. This indicates that sequence result in mRNA instability and loss of receptor
expression.27,61 As microsatellite instability is found inbioactive TGF- b is present in the microenvironment

and is inducing receptor signaling in these cases. In approximately 15% of unselected colorectal cancers,62

and about one half to two thirds of these carry T b R-IIaddition, and perhaps more importantly, this observa-
tion provides direct evidence that the malignant tumor mutations,33,54 it is possible that the pSmad2-negative

cases in our series are representative of the RER` phe-cells are, in fact, capable of proliferating in the presence
of biologically active TGF- b in vivo. In this respect, the notype. Because only complete absence of Tb R-II would

result in loss of TGF- b responsiveness,63 our findingsphenotype of colorectal carcinomas in vivo parallels that
of most colon cancer cell lines in vitro.60 Moreover, this suggest that this degree of reduction in TGF-b receptor

expression occurs in no more than 4% of unselectedfinding supports the idea that TGF- b provides a selective
pressure that favors the outgrowth of cell clones that colorectalcarcinomas.This conclusion is entirely consis-

tent with reports that complete loss of T b R messengerare resistant to TGF- b –mediated cell cycle arrest.
Using tumor cell lines, we have shown that failure of RNA expression occurs in a small fraction of colon carci-

nomas64 and of colon carcinoma cell lines.61,65 BesidesTGF- b to induce phosphorylation of Smad2 accurately
reflects complete loss of expression or presence of an loss of receptor expression, loss-of-function receptor

mutations would also result in pSmad2 negativity.42inactivating mutation of one of the TGF- b receptors.41,42

Thus, as long as active TGF- b is present, loss of pSmad2 T b R-II mutations are frequently found in RER` colo-



309Xie et al: Loss of Smad S ignaling in Human Colorectal Cancer

rectal cancers and in a small fraction of microsatellite suppressor genes in this area (e.g., DCC) may be im-
portant. Ours is the first study to demonstrate that inac-stable colon cancers.40 Thus, it is likely that the selective

absence of Smad2 activation we observed in approxi- tivation of Smad2 and Smad4 per se (as determined
by lack of protein expression) is associated with poormately 4% of colorectal cancer specimens reflects the

presence of inactivating mutations and/or loss of expres- prognosis. Although Watanabe et al54 have suggested
that 18q21 loss is predictive of poor outcome in re-sion of the T b R-II gene.

Only 2% of our cases of colorectal cancer failed to sponse to adjuvant chemotherapy in patients with stage
III and high-risk stage II disease, most of our casesexpress Smad2 protein. This is consistent with a

reported frequency of Smad2 genomic alterations in co- predate the widespread use of adjuvant therapy and
were unselected in terms of stage. Thus, our observedlorectal cancer of between 1% and 5%.21,23,66-68 However,

these genomic alterations have included mainly mis- effect of Smad loss on overall survival is likely indepen-
dent of the effect of chemotherapy.sense mutations of the Smad2 gene and only a small

number of allelic deletions, which may not all result in The effect on prognosis was most clearly seen when
all cases with Smad signaling defects were pooled. How-loss of protein expression. Thus, additional mechanisms

of gene inactivation may be responsible for loss of Smad2 ever, each individual lesion (loss of pSmad2, Smad2,
or Smad4 expression) was associated with a negativeprotein.

Wilentz et al47,48 recently demonstrated that loss of outcome, although the numbers of cases were too small
to achieve statistical significance. Although it is biologi-Smad4 immunostaining using the B-8 antibody accu-

rately reflects loss or intragenic mutation of both alleles cally plausible that any defect in TGF- b signaling would
have a similar effect on the tumors, our results mightof the Smad4 gene. In the present study, only 2.3% of

the colorectal cancers failed to express Smad4 protein. seem to be at odds with studies that showed that micro-
satellite unstable colorectal cancers have an intrinsicallyThis is significantly lower than the estimated 15%–30%

of Smad4 protein negativity previously reported in two lower tendency to metastasize and better outcome. Al-
though 50%–60% of these RER` colon cancers carrysmall studies of a total of 94 cases.26,69 That the frequency

of Smad4 protein negativity is lower than the estimated inactivating T b R-II mutations, our results suggest that
it may be other genetic changes associated with thefrequency of Smad4 genomic alterations in colorectal

cancers20,22,24,25,67,68,70,71 is likely due to the fact that allelic microsatellite instability syndrome (e.g., BAX inactiva-
tion) that confer a good prognosis on RER` cases.loss not always denotes inactivation of both alleles, and

that not all Smad4 mutations result in loss of protein Moreover,microsatellite unstable cases are usually found
in the proximal colon, whereas in our series, there wasexpression.

Interestingly, we encountereda small number of cases no indication that any of the Smad defects had a particu-
lar predilection for the proximal versus distal colon.of colorectal cancer with a dual defect (loss of both

pSmad2 and Smad4, or both Smad2 and Smad4). It is Although a recent study54 seems to indicate that the
presence of T b R-II microsatellite mutations is predictivepossible that inactivation of TGF- b receptors or Smad2

on the one hand and of Smad4 on the other confer of better outcome after adjuvant chemotherapy, all pa-
tients received chemotherapy, so it is difficult to distin-partially nonoverlapping selective advantages during

tumor development. This idea is supported by numer- guish intrinsic biologically favorable effects from
chemotherapy-specific effects.ous recent reports of Smad4-negative human tumor cell

lines in which one of the TGF- b receptor subtypes was In our study, the presence of Smad defects was clearly
associated with higher pathological stage and presencealso inactivated.40,72

Ours is the largest series of colorectal cancers in of lymph node metastases. After the analysis was ad-
justed for stage or presence of lymph node metastases,which Smad signaling has been examined to date and

the one with the longest follow-up. One of the most the relationship between the presence of a Smad signal-
ing defect and patient overall survival was no longerimportant findings of the present study is the fact that

the overall survival of patients whose cancers displayed statistically significant (Table 5). Thus, although TGF-
b signaling defects in the primary tumor are clearlyany of the defects in Smad activation or expression

was significantly shorter than that of those whose can- associated with poor patient outcome, this appears to
be a function of their association with metastatic diseasecers expressed Smad2, pSmad2, and Smad4. This is

consistent with previous reports that allelic loss of at diagnosis. In this respect, the results of the current
study are consistent with those of several smaller previ-chromosome 18q21 has a negative impact on prog-

nosis.49,50,52,53,73-76 Although this region encompasses ous studies that have reported an association between
Smad4 genomic alterations in colorectal cancer andboth the Smad4 and Smad2 loci, the frequencyof Smad2

or Smad4 gene losses is much lower than that of allelic metastatic spread.67,68,71,77

Conversely, in two other recent analyses of humanloss at 18q21, suggesting that additional putative tumor
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polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999;59:pancreatic and breast cancers, the negative impact of
6113–6117.Smad signaling defects on patient outcome was indepen-

15. Xu X, Brodie SG, Yang X et al. Haploid loss of the tumor suppressordent of stage and metastatic spread.41,78 Future studies
Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Onco-

will need to address in more detail how alterations in gene 2000;19:1868–1874.
TGF- b signaling affect the biology of human cancer and 16. Howe JR, Roth S, Ringold JC et al. Mutations in the SMAD4/DPC4

gene in juvenile polyposis [see comments]. Science 1998;280:its response to treatment. Meanwhile, assessing the state
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predict both the extent of disease before surgery and, Genet 1998;19:17–18.
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