Michael Moor

Michael Moor
Stanford University | SU · Department of Computer Science

Doctor of Medicine

About

24
Publications
6,116
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
473
Citations
Citations since 2017
24 Research Items
473 Citations
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200

Publications

Publications (24)
Article
Full-text available
Motivation: Sepsis is a leading cause of death and disability in children globally, accounting for ∼3 million childhood deaths per year. In pediatric sepsis patients, the multiple organ dysfunction syndrome (MODS) is considered a significant risk factor for adverse clinical outcomes characterized by high mortality and morbidity in the pediatric in...
Preprint
Full-text available
Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analys...
Article
Full-text available
Background: Sepsis is among the leading causes of death in intensive care units (ICUs) worldwide and its recognition, particularly in the early stages of the disease, remains a medical challenge. The advent of an affluence of available digital health data has created a setting in which machine learning can be used for digital biomarker discovery, w...
Article
Full-text available
The last decade saw an enormous boost in the field of computational topology: methods and concepts from algebraic and differential topology, formerly confined to the realm of pure mathematics, have demonstrated their utility in numerous areas such as computational biology personalised medicine, and time-dependent data analysis, to name a few. The n...
Preprint
Full-text available
Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is stri...
Article
Full-text available
Care during the COVID-19 pandemic hinges upon the existence of fast, safe, and highly sensitive diagnostic tools. Considering significant practical advantages of lung ultrasound (LUS) over other imaging techniques, but difficulties for doctors in pattern recognition, we aim to leverage machine learning toward guiding diagnosis from LUS. We release...
Article
Full-text available
Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets r...
Preprint
Full-text available
Background: Sepsis is among the leading causes of death in intensive care units (ICU) worldwide and its recognition, particularly in the early stages of the disease, remains a medical challenge. The advent of an affluence of available digital health data has created a setting in which machine learning can be used for digital biomarker discovery, wi...
Chapter
With the biomedical field generating large quantities of time series data, there has been a growing interest in developing and refining machine learning methods that allow its mining and exploitation. Classification is one of the most important and challenging machine learning tasks related to time series. Many biomedical phenomena, such as the bra...
Preprint
Full-text available
Randomized controlled trials typically analyze the effectiveness of treatments with the goal of making treatment recommendations for patient subgroups. With the advance of electronic health records, a great variety of data has been collected in clinical practice, enabling the evaluation of treatments and treatment policies based on observational da...
Preprint
Full-text available
The signature transform is a 'universal nonlinearity' on the space of continuous vector-valued paths, and has received attention for use in machine learning on time series. However, real-world temporal data is typically observed at discrete points in time, and must first be transformed into a continuous path before signature techniques can be appli...
Article
Full-text available
Intensive-care clinicians are presented with large quantities of measurements from multiple monitoring systems. The limited ability of humans to process complex information hinders early recognition of patient deterioration, and high numbers of monitoring alarms lead to alarm fatigue. We used machine learning to develop an early-warning system that...
Conference Paper
Full-text available
Sepsis is a life-threatening host response to infection that is associated with high mortality, morbidity, and health costs. Its management is highly time-sensitive because each hour of delayed treatment increases mortality due to irreversible organ damage. Meanwhile, despite decades of clinical research, robust biomarkers for sepsis are missing. T...
Preprint
Full-text available
Despite the eminent successes of deep neural networks, many architectures are often hard to transfer to irregularly-sampled and asynchronous time series that occur in many real-world datasets, such as healthcare applications. This paper proposes a novel framework for classifying irregularly sampled time series with unaligned measurements, focusing...
Preprint
Full-text available
We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we can co...
Preprint
Full-text available
Sepsis is a life-threatening host response to infection associated with high mortality, morbidity, and health costs. Its management is highly time-sensitive since each hour of delayed treatment increases mortality due to irreversible organ damage. Meanwhile, despite decades of clinical research, robust biomarkers for sepsis are missing. Therefore,...
Preprint
Intensive care clinicians are presented with large quantities of patient information and measurements from a multitude of monitoring systems. The limited ability of humans to process such complex information hinders physicians to readily recognize and act on early signs of patient deterioration. We used machine learning to develop an early warning...
Conference Paper
Full-text available
While many approaches to make neural networks more fathomable have been proposed , they are restricted to interrogating the network with input data. Measures for characterizing and monitoring structural properties, however, have not been developed. In this work, we propose neural persistence, a complexity measure for neural network architectures ba...
Preprint
Full-text available
While many approaches to make neural networks more fathomable have been proposed, they are restricted to interrogating the network with input data. Measures for characterizing and monitoring structural properties, however, have not been developed. In this work, we propose neural persistence, a complexity measure for neural network architectures bas...
Article
Full-text available
Motivation: Most modern intensive care units record the physiological and vital signs of patients. These data can be used to extract signatures, commonly known as biomarkers, that help physicians understand the biological complexity of many syndromes. However, most biological biomarkers suffer from either poor predictive performance or weak explan...

Network

Cited By

Projects

Projects (2)
Project
We develop and apply machine learning methods for the early prediction of sepsis using electronic health records of the intensive care.