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ABSTRACT Handover (HO) is one of the key aspects of next-generation (NG) cellular communication
networks that need to be properly managed since it poses multiple threats to quality-of-service (QoS) such
as the reduction in the average throughput as well as service interruptions. With the introduction of new
enablers for fifth-generation (5G) networks, such as millimetre wave (mm-wave) communications, network
densification, Internet of things (IoT), etc., HO management is provisioned to be more challenging as the
number of base stations (BSs) per unit area, and the number of connections has been dramatically rising.
Considering the stringent requirements that have been newly released in the standards of 5G networks, the
level of the challenge is multiplied. To this end, intelligent HO management schemes have been proposed
and tested in the literature, paving the way for tackling these challenges more efficiently and effectively.
In this survey, we aim at revealing the current status of cellular networks and discussing mobility and HO
management in 5G alongside the general characteristics of 5G networks. We provide an extensive tutorial
on HO management in 5G networks accompanied by a discussion on machine learning (ML) applications to
HO management. A novel taxonomy in terms of the source of data to be utilized in training ML algorithms
is produced, where two broad categories are considered; namely, visual data and network data. The state-
of-the-art on ML-aided HO management in cellular networks under each category is extensively reviewed
with the most recent studies, and the challenges, as well as future research directions, are detailed.

INDEX TERMS Handover, machine learning, mobility management, fifth generation.

I. INTRODUCTION

W IRELESS communication networks have been wit-
nessing an unprecedented demand in terms of band-

width and number of connections in this so-called infor-
mation age—in particular the age of big data1 where data
is regarded as new oil [1]. It is reported in the Ericsson
Mobility Report that the mobile network traffic soared by
56% in the first quarter of 2020 [2], indicating the imminent

1Steve Lohr, The Age of Big Data, The New York Times, 11 Feb.
2012. Available online at https://www.nytimes.com/2012/02/12/sunday-
review/big-datas-impact-in-the-world.html. Accessed on 25 Oct. 2020.

issue that needs to be addressed. There are strong evidence
for the correlation between such growth in the global data
traffic and the proliferation of emerging applications, in-
cluding tactile-internet, virtual reality, high-definition video
streaming. For example, we learnt from the same report [2]
that video streaming alone constitutes more than half of the
mobile data traffic, and there is a tendency towards higher
resolutions—putting the issue at an alarming level in terms
of data demand. This, in turn, poses serious challenges to
legacy networks and paves the way for the fifth generation
of cellular networks (5G), which offers a thousandfold in-
crease in capacity [3]–[5]. As such, enhanced mobile broad-
band has been included in 5G New Radio (NR) as one of
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the scenarios—along with ultra-reliable low-latency com-
munications (URLLC) and massive machine-type commu-
nications (mMTC)—in order to support the aforementioned
bandwidth-hungry applications [6].

On the other hand, Internet of things (IoT) devices have
already pervaded our daily life, as they can be seen in
numerous domains, including agriculture [7], healthcare [8],
smart living [9]–[11], and smart city [12], to name a few.
In the case of smart city, for example, city waste, building
health monitoring, traffic, etc., are managed smartly using
IoT technology by deploying the IoT devices to the required
places accordingly [12]. A good example of this can be found
in the publication by the Mayor of London on the road map
for smart city agenda2 with the slogan “Smarter London To-
gether", which dictates a heavy use of IoT technology in Lon-
don to make the City more efficient and to boost the standard
of living of its residents. IoT technology owes this popularity
to the promises in terms of making our everyday life as well
as industrial processes more manageable and efficient with
continuous monitoring and quick response [13]–[15]. The
alarming point here is that IoT devices are becoming more
pervasive each year and are projected to gain more dramatic
prevalence in the near feature, albeit a slight deceleration due
to COVID-19 pandemic [2].

The challenges of 5G and beyond (B5G) cellular com-
munication networks, therefore, are primarily twofold: 1)
the bandwidth demand due to more advanced smartphones
with more computational capabilities, and the rise in data
demanding applications, such as online gaming, augmented
reality, etc. [16]; 2) the number of cellular connections that
is exponentially growing mainly due to IoT technology.
Various solutions have already been proposed in order to
combat these issues: network densification and millimetre
wave (mm-wave) communications are among the most im-
portant candidates for network capacity enhancement [17].
Network densification is a phenomenon, whereby the base
station (BS) density in a given environment is increased in
order to provide more radio access network (RAN) capacity.
This concept mainly uses the idea of frequency reuse, which
states that the frequency spectrum of one BS can be reused
by other BSs as well only if they avoid interfering with each
other. This avoidance is provided by lowering the transmit
power in order to reduce the footprints of BSs, so that the
overlapping regions are minimized—the less footprint of BSs
results in more BSs deployment opportunity, which then
leads to more RAN capacity. mm-wave, on the other hand,
offers a great enhancement in the RAN capacity of cellular
networks by exploiting the abundant bandwidth available
in the mm-wave frequency spectrum. Moreover, as antenna
sizes reduce with increasing carrier frequency, the use of
mm-wave communication enables Multiple-Input Multiple-
Output (MIMO) technology, which in turn enhances the

2The road map can be found at the following link. Accessed on
22/11/2020.
https://www.london.gov.uk/sites/default/files/smarter_london_together_v1.66_-
_published.pdf.

reliability and capacity of the network [18]. In other words,
the capacity enhancement supplied by mm-wave communi-
cations are mainly due to two factors: 1) increased bandwidth
made available, and 2) MIMO technology [18], [19].

Even though these are sensible and effective methods
of enhancing the capacity of cellular networks, a serious
side effect immediately emerges: mobility management [16].
The common ground for network densification and mm-
wave communication concepts is that both lead to more
frequent handovers (HOs), which is defined as the user
equipment’s (UE’s) change of channel, resource, or cell 3

association while keeping an ongoing call or session. The
underlying reasoning behind this consequence is mainly due
the reduction of the footprint of BSs. First, in the case of
network densification, the footprint is deliberately reduced
with the use of small cells (SCs) in order to facilitate more BS
deployments through frequency reuse. Second, concerning
the mm-wave communications, the footprint of BSs reduces
due to the higher propagation losses incurred at mm-wave
frequencies (more dependency on line of sight (LOS)). Fur-
thermore, the increased amount of bandwidth also shortens
the range of mm-wave signals [20].

As such, the frequency of HOs grows due to the smaller
footprints of BSs: mobile UEs would need to perform more
HOs, given that there are now more BSs in a certain envi-
ronment. Given that the average throughput of a user is a
function of the number of HOs with an inverse proportional-
ity [21], this issue has severe consequences in terms of com-
munication quality—degrades the quality-of-service (QoS).
Besides, as service interruptions are experienced during HOs,
the user satisfaction rates are also affected negatively, under-
mining the great promises of 5G networks. These adverse
effects are mainly cause by two reasons: 1) the number of HO
experienced during a call or data transfer session; and 2) the
HO cost incurred for each HO experienced. In this regards,
the research activities on HO management have predomi-
nantly focused on these two aspects, such that minimizing
the number of HOs and/or the cost incurred per HO.

Although the figures in terms of the growing number of
IoT devices and BSs along with increasing demand for data-
oriented applications have been discussed negatively so far,
there are some positive impacts as well. The volume of
data being generated by cellular networks is also growing
considerably, making it a gold mine for network operators
to exploit in such a way that more efficient management
can be facilitated [16], [22]–[24]. In other words, although
growing network sizes results in more complexity, the im-
mense data volume generation becomes a key to alleviate
such complexity: this so-called challenge brings its own op-
portunity and solution. In that regard, machine learning (ML)
techniques have gained significant attention in the field of
wireless communications, since such amount of data can be
very well utilized for training ML models, which could help

3Cell and BS are interchangeably used throughout this paper unless stated
otherwise.
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the networks gain experience and take proactive and more
informed actions.

Therefore, in this survey, we focus on the application of
ML algorithms to HO management in cellular networking
with special attention aimed at 5G and B5G networks in order
to keep the discussion timely as 5G has already become a
reality, and visionary works about 6G has started to appear in
the literature [25]–[27]. One of the common grounds of these
studies, which try to plot the framework of 6G, is that they
all agree that artificial intelligence (AI) and subsequently
ML will play a key role in 6G networks as intelligence
is expected to lie at the core of 6G networks. Moreover,
terahertz (THz) frequencies have been projected to be used
in 6G due to the abundance of the bandwidth available in
these frequencies [26]. However, this makes the HO man-
agement concept even more crucial as THz band includes
much higher frequencies that mm-wave band, and therefore
the smaller footprint (and more frequent HOs) will be much
more significant. To this end, we reviewed the state-of-the-art
on ML-based HO management in cellular networks (with a
special focus to 5G and B5G) by taking into account the data
used during the implementation of such algorithms; a top-
level taxonomy on the source of data generation is provided
with two primary classes: visual data and wireless network
data aided HO optimization. Visual data refers to the data
that is captured from the environment of interest in a visual
format, such as image and video. The data in visual format is
then used to assist the HO process by, for example, detecting
objects/blockages affecting signal propagation [28]. Wireless
network data, on the other hand, is any kind of data that
can be acquired by the wireless network, including received
signal strength, channel state information, BS traffic load,
neighbouring information, user locations, etc. As such, in
addition to reviewing the most recent literature, to the best of
the authors’ knowledge, this is the unique attempt to survey
the visual data assistance in HO management. Furthermore,
discussions on HO management of legacy networks, includ-
ing 3G and 4G, are omitted in this article, since a plethora of
works surveying such networks are already available in the
literature [29]–[32].

A. OBJECTIVES AND CONTRIBUTIONS
As HO management is deemed as one of the most severe
design challenges of 5G and B5G mobile communication
networks, in this survey paper, we aimed at highlighting the
current status of cellular communication networks as well
as forthcoming issues related to HO management. Moreover,
provided that ML assisted wireless communications has been
projected to be at the heart of network management, this
survey focuses primarily on the ML applications to HO
management in the next generations of cellular networks.
In this regards, the mobility management in 5G networks
is thoroughly discussed with a special interest given to HO
management in order to reveal the distinctive mobility man-
agement policy included in 5G standards, which makes it
quite different from the legacy networks. Furthermore, we

present the main characteristics of 5G networks, includ-
ing mm-wave communications, heterogeneous networking,
IoT, vehicular communications, device-to-device communi-
cations, and high-speed train communications, that make the
HO management even more challenging compared to the
legacy networks. One of the most distinctive contributions of
this paper is that we provide an outlook in terms of HO man-
agement in B5G, especially 6G where THz communications
is projected to be a key component. HO management in THz
communications is particularly covered in this work, since
the transmission range at THz frequency is quite short due
to the large-scale molecular absorption loss [33], increasing
the likelihood of HOs. Furthermore, as AI is considered to be
very instrumental in designing 6G networks [25]–[27], the
validity of this works spans from 5G to B5G networks. In
this regard, to the best of the authors’ knowledge, this paper
is one of the few attempts discussing the HO management in
B5G networks, and with this we intend to produce a timely
and novel survey paper that both reveals the current status
and mentions futuristic applications/technologies. .

After that, ML algorithms are categorized as supervised,
unsupervised, and RL and briefly introduced, followed by
discussions on ML-based HO management. Through these
discussions, we aimed at providing a basic understanding of
the generic principles of the most popular ML algorithms as
well as how those algorithms can be applied to HO manage-
ment process in cellular networks. Besides, the state-of-the-
art about ML-aided HO management is extensively surveyed
by reviewing the most recent studies in order to showcase
the current status and opportunities. A top-level taxonomy
is followed while reviewing the state-of-the-art, such that
the ML-aided HO management methodologies are classified
based on the source of the data they utilize. As such, two
broad categories are encompassed: visual data based and
wireless network data based HO management techniques.
With this novel taxonomy, the major objective is to recognize
the visual data aided HO management schemes—which has
been long overlooked in the literature—by giving it a special
place along with the traditional network data driven HO
schemes. On the other hand, for the network-data based HO
management, the most recent works are extensively reviewed
under certain use cases: beam selection and BS selection. In
addition, we also briefly discuss how intelligent HO schemes
can help in emergency situations in the case of mobile
clinics, ambulances, and remote hospitals, which could be
also beneficial for pandemic scenarios, such as the current
COVID-19 pandemic.

Another objective of this paper is to present the grand
challenges for the application of ML algorithms to HO
management, through which we aimed to address the current
and future requirements of such implementations, and to
identify possible research directions in order to make the ML
integration to HO management in 5G and B5G more efficient,
effective, and feasible. Therefore, with this section, we try to
canalize the research focus to the identified topics to open a
road for practical solutions.
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B. RELATED WORKS
ML applications to self-organizing cellular networks were
surveyed in [34], in which the authors provided in-depth
coverage on the ML algorithms along with the characteristics
of self-organizing networks. The authors presented the ML
applications to cellular networks under the categories of
the major functionalities in self-organizing networks: self-
configuration, self-optimization, and self-healing. Various
use-cases under each of the aforementioned functionality
were provided, leading to a comprehensive picture of ML
implementations to cellular networks. Thus, while this work
focused on ML implementations and included a brief discus-
sion on HO management, it did not primarily focus on HO
management in 5G networks; instead, it drew a comprehen-
sive framework for ML applications to multi-domain cellular
networks, such as radio resource management, anomaly de-
tection, backhauling, etc.

The work in [35] focused on the use-cases of mobility
predictions, and provided an extensive review on the charac-
teristics of mobility predictions (e.g., mobility predictability,
user location, prediction output, and performance metrics)
along with the methods of mobility prediction. Even though
the review was not meant for ML alone, the methods covered
are predominantly ML algorithms, hence it can be classified
as focusing on ML. However, the scope of the work is not
limited to HO management—albeit being included as one
of the use-cases—, and visual data driven HO management
is mostly ignored. The authors in [30] presented a brief
survey on HO management in 5G and B5G networks, where
they provided a background on 5G networks along with
some enabling technologies, such as mm-wave communi-
cations, heterogeneous networks (HetNets), software-defined
networking, and ML. Although the main focus of their work
is HO management in the next generation of cellular net-
works, the authors reviewed the literature without extensive
discussions. ML implementations were included in general,
and the authors failed to demonstrate an in-depth analysis of
how ML can be incorporated in HO management in 5G and
B5G networks. In addition, the visual data aided HO man-
agement and HO in emergency scenarios were completely
overlooked in their work.

A very comprehensive and detailed survey was given
in [29], in which HO management was elaborated for both
long-term evaluation (LTE) and 5G networks with compar-
ative discussions. HO procedures in both LTE and 5G were
presented step-by-step, and HO types were covered in a de-
tailed manner. The literature was also reviewed without any
particular attention to ML algorithms; as such, even though
some ML applications were mentioned while reviewing the
state-of-the-art methods, the scope of the paper was solely
HO management, not the ML applications to HO manage-
ment. Similarly, an extensive review of mobility management
in ultra-dense networks was given in [31]. In particular,
the authors included a meticulous tutorial on the mobility
management in cellular networks, followed by discussions
on proactive mobility management in the next generations

of cellular networks, which comprises of a brief introduction
to various ML techniques. Furthermore, the authors included
an analysis of AI assistance in mobility management, where
they mainly reviewed the literature by identifying the em-
ployed AI methods and use-cases. This work seems to be one
of the most overlapping survey papers with our present work;
however, the focus of the survey in [31] is broader as it tries
to encompasses every single issue in mobility management.
In our present work, on the other hand, the scope is kept
limited to HO management in order to make the review more
comprehensive in terms of HO management. Moreover, ML
application is not the main focus in [31], whereas, in our
present work, we try to exclusively analyse the integration
of ML to HO management in cellular networks by discussing
ML-oriented opportunities as well as challenges. Besides, vi-
sual data based HO management parts covered in our present
work constitutes one of the most important novelties and
contributions in this present work, as it is not available in [31]
or any other mobility or HO management based survey paper
in the literature.

Another comprehensive survey was conducted in [36]
for mobility management in 5G HetNets. In particular, the
authors provided a detailed tutorial on radio resource con-
trol (RRC) states included in 5G NR along with the initial
access and reachability. RRC protocol is essential for cellular
communication networks, and it performs several key func-
tionalities including connection establishment/release, con-
figuration/establishment/release of radio bearer (RB), broad-
casting of system information, etc. This topic is more elabo-
rated in Section III-A. Connected mode mobility (i.e., HO)
with various types of HOs were also elaborated, followed
by beam level mobility management issues. The ML im-
plementations were not the main focus of their work, and
thus the scope was primarily kept on mobility management.
As such, since ML was not the target, the source of data
generation (visual data and wireless network data) were also
not discussed. The authors in [37] analysed femtocell HOs
in HetNets and provided a detailed background on LTE HO
procedure with a particular interest to femtocell HOs. After
identifying some challenges with the HO decision process
in two-tier networks, an inclusive review was conducted on
the existing HO decision techniques. Although the paper was
meant for 5G networks, the main story was originated around
LTE networks, as there was no particular discussion on the
mobility management in 5G networks. In addition, the scope
was quite limited, as only HO decision techniques were dis-
cussed, and even though some of the cited literature included
ML implementations, ML was not the main consideration.

A succinct survey on HO-oriented mobility management
was conducted in [32], where the authors provided very
generic discussions on mobility and HO mechanisms in
HetNets. In particular, mobility management was divided
into location management and HO management, and each
group was elaborated subsequently. However, 5G or B5G
cellular communication networks were not mentioned, and
no special HO management scheme, such as ML-based HO
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management, was provided. Therefore, our present survey
on intelligent HO management is more advanced compared
to the one in [32] in terms of style, the methodology being
followed, and comprehensiveness. Another brief survey on
mobility management in 5G networks was given in [38].
An overview of the generations of cellular networks from
1G to 5G was first presented, followed by 5G structure and
mobility management related discussions in 5G networks.
HO management was also reviewed by introducing differ-
ent types of HOs as well as HO parameters. However, the
discussions were kept very short, and an in-depth coverage
was not provided for 5G networks or mobility management.
Furthermore, the author did not intend to make the survey
around the ML applications to HO management.

The authors in [39] produced an extensive survey on
mobility management by questioning the readiness of the
state-of-the-art solutions for the next-generations of cellular
networks, namely 5G and B5G. First, the requirements of the
next generations of cellular networks in terms of mobility
management were first identified, followed by an introduc-
tion of their own qualitative performance metrics for the
existing mobility management solutions. Moreover, a discus-
sion on the effectiveness and sufficiency of the standards for
both legacy networks and 5G as well as the research activ-
ities for meeting these requirements was included in their
work. Lastly, potential enabling technologies and existing
challenges were reviewed in detail. Compared to our present
survey; i) the authors did not focus only on HO management,
ii) ML applications were not mainly iterated although a mild
discussion on deep learning was included, and iii) visual data
assistance in HO management in addition to HO management
in emergency scenarios were not covered.

A tabular overview of the relevant survey papers on mo-
bility and HO management is given in Table 1, where the
included works are analyzed in terms of their focus on 5G
and B5G networks, HO management, ML applications to HO
management, the use of visua data for HO management, and
HO management in emergency scenarios.

C. PAPER ORGANIZATION
The reminder of the paper is structured as follows: the basics
of 5G networks along with mobility management-oriented
characteristics of 5G networks, including HetNets, IoT, ve-
hicular communications, device-to-device communications,
and high-speed train communications, are presented in Sec-
tion II, while Section III provides an inclusive discussion
on the mobility management in 5G. Section IV provides a
comprehensive tutorial on HO management in 5G networks
by detailing the HO types, requirements and performance
metrics, and radio resource management. ML applications to
HO management is elaborated in Section V with a brief in-
troduction to different branches of ML (namely, supervised,
unsupervised, and RL), followed by an extension literature
review on the state-of-the-art in ML-based HO management
techniques. Section VI highlights the challenges which ML-
assisted HO management schemes would confront, and iden-

tifies future research directions. Lastly, Section VII concludes
the paper with concluding remarks.

Nomenclature
3GPP 3rd Generation Partnership Project
5G Fifth Generation
A2C Advantage Actor-Critic
AI Artificial Intelligence
AMF Access Mobility Function
ANN Artificial Neural Network
AS Access Stratum
AUSF Authentication Server Function
B5G Beyond 5G
BBU Baseband Unit
BS Base Station
CCTV Closed-Circuit Television
CMAB Contextual Multi-Armed Bandit
CMAS Commercial Mobile Alert System
CN Core Network
CNN Convolution Neural Networks
CP Control Plane
CQI Channel Quality Information
CSI Channel State Information
D2D Device-to-Device
DRX Discontinuous Reception
DSRC Dedicated Short-Range Communication
E-UTRA Evolved Universal Mobile Telecommunications

System (UMTS) Terrestrial Radio Access
EM Expectation-Maximization
EPC Evolved Packet Core
ETWS Earthquake and Tsunami Warning Service
FDD Frequency Division Duplex
HetNets Heterogeneous Network
HO Handover
HOO Hierarchical Optimistic Optimization
HST High Speed Train
ICA Independent Component Analysis
IoT Internet-of-Things
IP Internet Protocol
KNN K-Nearest Neighbour
KPI Key performance indicators
LIDAR Light Detection and Ranging
LOS Line-of-Sight
LTE Long Term Evaluation
M2M Machine-to-Machine
MIMO Multiple-Input Multiple-Output
mm-wave Millimetre Wave
MME Mobility Management Entity
mMTC Massive Machine-type Communications
MR Measurement report
NAS Non-Access Stratum
NEF Network Exposure Function
NextGen Next Generation
NR New Radio
NRF NR Repository Function
NSI Network Slice Instance
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TABLE 1. An overview of the related survey papers on mobility and HO management.

Paper Year 5G+ Focus HO Focus ML Focus Visual-data HO in Emergency Key Points

[34] 2017 3 7 3 7 7
• ML applications to SON
• Not focused on HO

[35] 2019 3 7 3 7 7
• Detailed on mobility prediction
• Various use-cases

[30] 2020 3 3 3 7 7
• HO management in 5G+
• No in-depth coverage on ML

[29] 2019 3 3 7 7 7
• Detailed HO for LTE and 5G
• Not focused on ML

[31] 2020 3 3 3 7 7

• Mobility in ultra-dense networks
• Proactive mobility management
• AI assistance

[36] 2020 3 3 7 7 7

• Mobility in 5G HetNets
• Tutorials on RRC states and HO
• Not focused on ML

[37] 2020 7 3 7 7 7

• Femtocell HOs in HetNets
• HO decision techniques
• Not focused on ML

[32] 2019 7 3 7 7 7
• A generic tutorial on HO
• Not focused on 5G and ML

[38] 2020 3 3 7 7 7

• Mobility management in 5G
• No in-depth coverage
• ML was not scoped

[39] 2020 3 3 3 7 7

• Extensive in mobility management
• Questions the state-of-the-art
• ML was not mainly focused

NSSF Network Slice Selection Function
PCA Principal Component Analysis
PCF Policy Control Function
PCI Physical Cell Identifier
PPO Proximal Policy Optimization
QoS Quality-of-Service
RAI RAN Area Identifier
RAN Radio Access Network
RAT Radio Access Technology
RB Radio Bearer
RNA RAN-based Notification Area
RRC Radio Resource Control
SCs Small Cells
SGW Serving Gateway
SMF Session Management Function
SSB Synchronization Signal Block
SVM Support Vector Machine
TAI Tracking Area Identifier
TDD Time Division Duplex
UCB Upper Confidence Bound
UDM Unified Data Management
UDR Unified Data Repository

UDSF Unstructured Data Storage Function
UE User Equipment
UP User Plane
UPF User Plane Function
URLLC Ultra-Reliable Low-Latency Communications
V2X Vehicle-to-everything
XGBOOST Extreme Gradient Boosting

II. CHARACTERISTICS OF 5G AND BEYOND: SOME
GENERAL CONCEPTS
This section presents general concepts behind 5G and B5G
system in a cellular network. A short review of the ar-
chitecture, channel characteristics and various features and
applications of 5G are presented.

A. 5G SYSTEM
Although this survey focuses on HO management in NR, it
is useful to provide a brief overview of 5G’s architecture, in-
terfaces and connections to serve as a background. The Next
generation (NextGen) architecture is based on network func-
tion (NF) instead of a network entity (NE) that is obtained in
LTE, according to 3GPP specification for LTE and new 5G
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FIGURE 1. The 3GPP-5G architecture with reference points adapted
from [43].

systems [40]–[42]. In LTE’s core network (CN) also known
as evolved packet core (EPC), the appropriate network pro-
tocols and interfaces are defined among the entities for each
network entity (e.g. serving gateway (SGW) and the mobility
management entity (MME)). In contrast, network protocols
and interfaces in 5G CN (5GC) are specified for each NF. The
NF is the processing functionality in 5G networks, and it can
be implemented in three ways [41]: 1) as a network element
on dedicated hardware; 2) as a software instance running on
dedicated hardware; or 3) as a virtualized function built on
an appropriate platform, such as a cloud infrastructure. The
advantage of NF over NE is that it dramatically decreases
latency. This is achieved by carefully controlling the UE
mobility (e.g. tracking and paging procedures) scheme and
separating the user plane (UP) (also known as data plane is
the dedicated channel that carries the network user traffic)
from the control plane (CP) (which is responsible for routing
data traffic through the network and for carrying out other
control activities) to ensure that each plane’s resources are
independently scaled and that more NF can be deployed in a
distributed manner [43]. Fig. 1 shows the 5G system architec-
ture along with NFs and reference points. A reference point
shows the interaction between the services in two NFs (e.g.
N4 is the reference point that connects UPF and SMF). The
NF in the UP consists of user plane function (UPF) acting as
a gateway for the UE traffic passing through RAN to external
networks such as the Internet. It is responsible for packet
routing and forwarding, packet inspection, QoS handling,
packet filtering, and traffic measurement. Several compo-
nents of NFs run in the CP. Some of the components are:
access mobility function (AMF), session management func-
tion (SMF), network slice selection function (NSSF), unified
data management (UDM), policy control function (PCF), au-
thentication server function (AUSF). For further information
on these functions, the reader is referred to [43]–[45].

Overall, 5G architecture is divided into two parts, as shown
in Fig. 2. The first part is the CN whose components have
just been discussed while the second part is NextGen Radio

FIGURE 2. Overall architecture of 5G system showing network elements and
interfaces based on the logical CN/RAN split, as in [40].

Access Network (NG-RAN). The NextGen NodeB (gNB)
serves as the access point for the 5G network, transmitting
CP and UP traffic originating from N1, N2, N3 reference
interfaces as shown in Fig 1. The purpose of the ng-eNB
is to provide Evolved Universal Mobile Telecommunications
System (UMTS) Terrestrial Radio Access (E-UTRA) UP and
CP protocol terminations for UEs. In addition, 5G technology
also supports LTE via ng-eNB. It allows existing 4G radio
networks to coexist with the gNB. For example, if both LTE
and 5G radio coverage are available, a 5G UE may use either
LTE and 5G radio resources. Therefore, when there is no
5G coverage, LTE serves the 5G UE using the ng-eNB. The
connection interface between gNB and ng-eNB is known as
an Xn interface, and NG interface is the connection interface
between gNB/ng-eNB and CN more specifically to the UPF
the NG user-plane part (NG-U) and to the AMF the NG
control-plane part (NG-C). The last interface that needs to
be mentioned is the radio frequency interface, which is the
circuit between the UE and the active gNB or ng-eNB which
is also known as Uu interface. This interface supports a broad
spectrum from low to high frequencies [46].

B. CHANNEL CHARACTERISTICS OF 5G WIRELESS
SYSTEMS
As mentioned earlier, 5G systems use mm-wave frequencies,
along with sub-1 and 6 GHz spectrum. It is envisaged that
B5G networks will use THz frequencies [47], [48]. Com-
pared to the sub-6GHz band, the advantages of the mm-wave
band include more available bandwidth and use of small
antennas in devices. Antenna size is inversely proportional to
frequency; therefore, mm-wave antennas for UE and BS are
small and can be placed in small devices. However, the mm-
wave band has some drawbacks that necessitate the use of
sub-6 GHz frequencies in 5G. In this subsection, we present
the rationale for the co-existence of multiband frequencies in
5G, as well as the characteristics and applications of different
spectrum bands from sub-1 GHz to mm-wave.
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1) Sub-1 GHz and Sub-6 GHz in 5G
In its early phases of implementation, 5G’s main spectrum
options were around 3.5 GHz and 4.5 GHz for sub-6 GHz
with time division duplexing (TDD) technology. For the
3.5/4.5 GHz band, 5G aims to use existing BSs to help in the
roll-out and implementation [49]. The 3.5 GHz band provides
comparatively less coverage than the 2 GHz band used in
legacy networks, and this is because radio propagation de-
creases as frequency increases. However, introducing MIMO
beam-forming antennas at 3.5 GHz and higher spectrum
reduces propagation losses, thereby significantly increasing
coverage for 3.5/4.5 GHz.

The sub-1 GHz bands are also used through frequency
division duplex (FDD) in 5G, especially for deep indoor
penetration [50]. With its broader coverage, low data rate IoT
connectivity and other critical communication like remote
control or automotive applications can be introduced. There-
fore, extensive coverage becomes imperative for these new
use cases which can be served by the sub-1 GHz band [50]–
[52].

2) mm-wave in 5G
The propagation of waves at mm-wave is more prone to
adverse effects of obstacles which can be caused by move-
ment of people, presence of trees, foliage (outdoor scenario),
furniture and walls (indoor scenario). Since the mm-wave
spectrum is severely affected by rain and other atmospheric
conditions, previous studies suggested that it was impracti-
cal to use this frequency band for mobile communications.
However, this has been proven to be wrong, as recent studies
have shown that atmospheric absorption does not create a
significant loss when used in picocells—coverage below 200
m from transmitter— [53], [54]. These studies also show
that even under very extreme rainfall, the rain attenuation
would cause 1.4 dB and 2 dB loss at 28 GHz and 73 GHz,
respectively. The impact of rain attenuation on mm-wave
propagation, especially in urban picocell areas, will therefore
become insignificant [54]. The short-range coverage of mm-
wave has both advantages and disadvantages. Spatial reuse of
frequency band, strong multi-path behaviour due to reflection
are among the advantages of using mm-wave while one of
the disadvantages of using this band is that many SCs are
required to provide coverage due to the high propagation loss
of mm-wave.

mm-wave is an inherently directional wave which means
that there is a need for the transmitter and receiver to focus
the beam towards each other, this is commonly known as
beam steering. The main advantage of beam steering is to
achieve high gain by focusing the transmitter and receiver
towards each other. The beam steering is completed through
a beam training/tracking process. Beam training is a process
of finding the desired beam to connect the UEs in order
to reduce initial access delay. Another critical parameter to
consider is sensitivity to blockage. mm-wave has a higher
frequency, making the size of its wavelength small compared
to many physical objects, and thus the low ability of mm-

wave to diffract through large objects makes it sensitive to
blockage. For example, at the 60 GHz band, it is observed
that there is a 20-35 dB increase in the path-loss if an
obstacle (e.g., humans or furniture) is introduced between the
mm-wave link [54].

While it has been demonstrated that using mm-wave fre-
quencies such as 28 GHz and 38 GHz is possible even in
complex urban environments, many challenges such as low
throughput and high signaling overheads associated with HO
still needs to be addressed to realize the full potentials of the
mm-wave band [54], [55].

3) Co-existence of Sub-1 GHz, Sub-6 GHz and mm-wave
Given the rigid transmission efficiency standard for certain
use cases such as vehicular networks, the use of mm-wave
poses some significant difficulties in implementing reliable
but high data rate communication. Critical IoT applications,
including remote healthcare systems (for clinical remote
monitoring and assisted living), traffic and industrial control
(drone/robot/vehicle), and tactile Internet, etc., require higher
availability, higher reliability, safety, and lower latency to
ensure end-user experience as failure to satisfy these require-
ments would result in severe consequences, such as vehicle
collision, and accident [15].

A CP and UP decoupled network is designed to circumvent
these challenges by using the sub-6 GHz for the CP and
mm-wave frequencies for the UP [56]. This guarantees that
signaling from the CP reaches the UE with high reliability
by using the sub-6GHz spectrum. On the other hand, the use
of mm-wave frequencies for UP provides unprecedented data
speeds, due to the vast bandwidth availability at the mm-wave
spectrum. Therefore, the main purpose of sub-6 GHz and
sub-1 GHz bands is to provide uninterrupted access to the
CP or to provide coverage for areas where mm-wave cannot
offer adequate coverage.

C. HETEROGENEOUS NETWORKS
HetNets comprises the deployment of BSs with different
sizes. They are exciting low-cost approaches to meet the
industry’s growth requirements and offer a consistent con-
nectivity experience. HetNet comprises SCs that support ag-
gressive spectrum spatial reuse coexisting within macrocells,
as shown in Fig. 3. A macrocell is a BS used in cellular
networks with the function of providing radio coverage to a
large area of mobile network access. The macrocell overlaps
several SCs, and it has high output power, usually in the range
of tens of watts and can provide coverage to a large area.
However, the macrocell suffers from interference caused by
the use of sub-6 GHz, which can travel far by nature. While
the macrocell transmits radio waves over a long distance, if
not managed properly, signal interference with other cells
is very likely, which in turn could result in the degradation
of network performance [57]. Nevertheless, macrocell has
low spectral efficiency or area spectral efficiency, typically
measured in (bit/s/Hz) per unit area, which results in less
bandwidth and low data rate per UE. The data rate is the
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FIGURE 3. An illustration of heterogeneous networks —the macrocells are
overlaid by three tiers of low-power BSs which are microcells, picocells and
femtocells in the same geographic area.

function of bandwidth, and SCs allows frequency reuse due
to limited range hence more bandwidth and data rate per UE.
Therefore, to increase the data rate, the idea of reducing BS
footprint for macrocells was introduced [58].

In order to address the challenges facing the macrocell,
the easiest and simplest way was to get the transmitter
and receiver closer to each other. This solution creates a
dual-benefit of high-quality links and more spatial reuse.
Different cells with different sizes are considered based on
the transmitted power, and the frequency of transmission
used: macrocell, microcell, picocell, and femtocell are pop-
ular cells created by gradually reducing coverage range and
transmission power. A summary of the types of cells in terms
of coverage and capacity is presented in Table 2.

TABLE 2. Cell types in wireless networks in term of coverage and capacity

Cell type Coverage range(meter) Capacity

Femtocell 10-20 A few UEs
Picocell 200 20 - 40 UEs
Microcell 2000 > 100 UEs
Macrocell (30-35)×103 Many UEs

As the BS footprint becomes smaller with smaller BSs,
the use of mm-wave become more feasible. The mm-wave
frequency suffers from high penetration loss which brings
the advantage of enabling the reuse of mm-wave frequency
in indoor environment for femtocell. For further studies on
HetNets please refer to [57], [59]–[61].

D. INTERNET OF THINGS
In this modern era, various applications used by billions
of people are daily made available via the internet, thereby
making the Internet an essential tool to interconnect these
applications, among which services like video streaming, file
sharing, electronic commerce, etc. are increasingly taking
place online. The types of interconnected devices includes
smart phones and IoT devices such as sensors, wearables, etc.

FIGURE 4. Sensors and IoT use case.

These IoT devices are able to communicate with each other to
share information with little or no human involvement. Fig 4
illustrates some common IoT uses cases. As the number of
IoT devices keep increasing, the traffic generated by these
devices also increases, hence, the underlying protocols that
support IoT should be reconsidered to support the massive
interconnection of both new and conventional devices [62],
[63]. Conventional devices need to be made smarter by in-
corporating advanced technologies such as ubiquitous com-
puting, artificial intelligence, embedded devices, different
communication standards and technologies, various appli-
cation services, and different Internet standards. However,
the problem is that these devices used in IoT are memory-
limited and energy-limited, so information should be routed
efficiently, and the proper channel between source and sink
should be carefully chosen [63]. IoT has different use cases
such as smart cities, smart home, vehicular sensors, health
monitoring, and sport & leisure scenarios. Several of these
use cases are discussed in the following subsection, while
focusing on the differences in application domains require-
ments.

1) Smart Cities
This involves the use of smart technologies to provide rele-
vant information and automated services that would improve
the standard of living of the people in a particular area.
These smart technologies include: deployment of sensors for
traffic monitoring to prevent traffic jams and detect bad roads,
for automated street lights, smart grid, waste management
systems where environmental sensors deployed in various lo-
cations to detect pollution, water level, or fire. In these cases,
the early detection of abnormal environmental situations can
be used to alert the appropriate authorities in order to enable
them take the necessary actions when any incident occurs
etc [15].

2) Smart Home
This use case is sometimes classified as a part of smart cities.
However, it is mostly limited to user-oriented applications,
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particularly for home networks [15]. Different services that
can be classified under the smart home use-case include: (1)
Connected home appliances where appliances such as smart
fridges can be used to automatically order for the restocking
of the fridge with food items or beverages when it detects
that it is running out of supplies by checking a pre-defined
threshold for the amount of each item. (2) Home video
monitoring Homes can be equipped with small cameras that
are mounted in different locations, and can be used to stream
the video to the Internet for a remote monitoring. They can
also be used to send alarms upon the detection of unusual
movement or abnormal behavior, smoke, carbon monoxide,
etc. in the monitored area.

3) Healthcare/Telemedicine/Wearable
This use case is becoming more popular as more devices such
as watches and other wearable devices become increasingly
available. Patients do not necessarily need to be monitored
manually, but smart wearable devices track their health con-
ditions for any abnormality. Such devices send an alarm
message to a nearby hospital as soon as they detect anomalies
with the patients being monitored.

All the use cases mentioned above face challenges that
need to be addressed before IoT can become very efficient
and able to integrate heterogeneous devices—device with dif-
ferent communication standards (protocols, technologies and
hardware)—and applications envisaged for 5G [64]. These
challenges include scalability, network management, security
and privacy, interoperability and heterogeneity, network con-
gestion and overload, and network mobility and coverage. To
interconnect a massive number of devices and accommodate
enormous traffic generated within 5G system, conventional
sub-6 GHz is no longer sufficient, hence the need for the
utilization of a new frequency band (mm-wave) [62]. This
would led enhanced QoS for IoT devices.

E. DEVICE-TO-DEVICE COMMUNICATION
Device-to-device (D2D) communication involves the di-
rect communication between two devices without passing
through a BS. These devices could be smartphones, vehicles,
etc. This kind of communication usually occurs when both
device are in close proximity to each other [65]. The intro-
duction of D2D communication is necessary to cope with
the rise in the number of devices as well as the increase
in demand for high speed connections. It is one of the
technologies that is being exploited in 5G and B5G networks
as its use would lead to enhanced link reliability, spectral
efficiency, system capacity, energy efficiency and reduced
network delays [66]. The use of mm-wave in 5G would
facilitate D2D communications as more direct links would
be supported, thereby enhancing the capacity of the network.
In addition, due to the directional nature of 5G antennas, it
would be possible to support more simultaneous connections
in mm-wave systems. Despite the inherent advantages of
D2D communications, due to UE mobility, and the fact that
the UEs still need to connect to the BS in order to transmit

control signals, the issue of HO needs to be carefully con-
sidered in order to prevent ping-pong effects which results in
frequent HOs [67], [68].

F. VEHICULAR COMMUNICATIONS
Vehicular-to-everything (V2X) is a special case of D2D com-
munication. It is a technology that provides communication
between vehicles and surrounding devices, including hand-
held devices, moving/stationary cars, and all other external
IoT appliances. V2X is categorized into two main compo-
nents: vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I). The former allows communication between two or
more vehicles. On the other hand, the latter deals with
communication between cars and other devices in its exter-
nal environment, such as traffic/street lights [69]. The most
common and popular communication protocol that supports
vehicular networks is the dedicated short-range communi-
cation (DSRC), and it can support all V2X architecture.
DSRC uses 75 MHz bandwidth at 5.9 GHz band, and was
expected to provide the data rate up to 27 Mb/s and a
transmission range up to 1000 m [69], [70]. As a result of the
high mobility of vehicles, one of the major challenges that
vehicular networks suffer from is HO. This occurs because
in the course of the vehicles movement from one location
to another, the often move out of the coverage area of one
network also known as road side unit (RSU) to another
thereby leading to frequent change of connection from one
RSU to another. This issue would become more pronounced
with the use of mm-wave in 5G as the coverage area of the
RSUs would become smaller [71]. Hence, HO management
must be carefully considered for fast moving vehicles in
5G mm-wave communication networks in order to ensure
seamless HO.

G. HIGH SPEED TRAIN COMMUNICATION
High speed train (HST) communications is one of the ver-
ticals that would be supported by 5G networks. The avail-
ability of large spectrum in the mm-wave frequency band
would make the provision of enhanced mobile broadband
services possible for passengers in high speed trains [51].
HST communication networks basically encompasses two
kinds of communications, namely: critical and non-critical
communications. The former is the communication between
the HST and its associated infrastructures and is necessary to
control the speed and ensure the safety, reliability and smooth
functioning of the HST. The latter is required to provide
services to the passengers on-board such as high quality
video, and other data services [72]. Even though mm-wave
has great potentials for application in HST communications,
due to the high mobility of trains, HST communication is
often prone to frequent HOs and fast fading channels, that
potentially undermines its availability. As a result, some new
technologies such as hybrid beamforming, beam manage-
ment, network slicing, and distributed antenna system have
been introduced in mm-wave communications to enhance its
application in HST communications [52].
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H. BEYOND 5G SYSTEM
5G is game-changer as it can provide data rates up to tens
of gigabits per second, which is far beyond what is provided
by legacy networks [73]. However, with the introduction of
new use cases and applications such as virtual and augmented
reality, remote surgery and holographic projection, 5G would
not be able to meet the projected explosion in wireless
data demands. As a result, research into higher frequency
(beyond mm-wave) has risen, and THz frequency has become
the B5G researcher’s focus as the new spectrum for B5G
systems. Only frequency bands in the THz range can provide
the large amount of bandwidth that is needed to support the
terabit-per-second data rates in order to support huge traffic
types such as uncompressed videos that is envisioned in B5G
networks [74], [75].

The use of THz band in 6G is required to provide the
reliable communication that is required to support various
critical applications, accommodate high data rates per area,
and support massive amounts of connected UEs. The THz
frequency band has quite similar characteristics to that of
mm-wave. However, because it has a higher frequency com-
pared to mm-wave, this means that it would be prone to all the
challenges facing mm-wave alongside additional challenges.
Therefore, there is a need for more advanced error control
mechanisms, mobility management techniques, as well as
other new features to enable the utilization of this frequency
band in mobile cellular networks.

III. MOBILITY MANAGEMENT IN 5G
Mobility management in 5G is quite different from that of
legacy networks (2G-4G) and in this section, we present the
concepts behind the radio access mobility in 5G cellular net-
work. We also briefly explain the mobility state procedures in
5G system that makes it more efficient than legacy systems.

Definition III.1 (Access stratum). Access stratum (AS) is
the set of protocols in 5G that contains the functionality
associated with the UE’s access to the RAN and the control
of active connections between a UE and the RAN.

Definition III.2 (Non-access stratum). Non-access stratum
is the set of protocols in 5G that handles functionality oper-
ating between UE and CN.

Definition III.3 (RRC context). The RRC context are the
parameters necessary for establishing/maintaining communi-
cation between the UE and the CN.

Definition III.4 (Cell selection). Cell selection is the process
of choosing a suitable cell4 for the UE to camp on. This
process is performed as soon as the UE is switched on [77].

Definition III.5 (Cell re-selection). Cell re-selection is the
process of choosing a suitable cell after the UE camps on a
cell and stays in the idle or inactive state.

4A cell with the measured cell attributes satisfy the cell selection crite-
ria [76]

FIGURE 5. UE state machine and state transitions in 5G [78].

A. RADIO RESOURCE CONTROL STATE MACHINE
The RRC protocol is in the IP-level (Layer 3 /Network Layer)
and is the protocol between UE and NG-RAN as specified
by 3GPP TS 38.331 [78]. The RRC protocol’s essential
functions include; 1) broadcast of system information; 2)
Control of the RRC connection—this procedure includes
paging, establishment, modification and release of the RB. It
also involves establishing an RRC context; 3) measurement
configuration and reporting, and other functions specified by
3GPP TS 38.331 that can be summarized in [45], [78]. The
RRC’s operation is guided by a state machine that defines
specific states where a UE may be present. The different
states in this state machine have different amounts of radio
resources that can be utilized by the UE once it enters into
a particular state. Since different amounts of resources are
available in different states, the state machine impacts the
QoS that the user experiences and the energy consumption
of the UE [79]. In addition, RRC states provide a clear
distinction between HO and cell (re-) selection. The UE
can be in one of the three RRC states, namely: RRC_Idle,
RRC_Connected, and RRC Inactive state. Fig. 5 depicts the
UE state machine and state transitions in 5G while Table 3
summarizes the RRC protocols and functions in each RRC
state.

TABLE 3. Summary of the RRC State and mobility Handling in 5G.

RRC State

RRC Protocol Idle Inactive Connected

Network selection/registration 3

Cell re-selection 3 3

5GC based Paging 3

NG-RAN based Paging 3

5G-RAN manages the UE RNA 3

5G-RAN knows UE serving cell 3

Keep 5GC/5G-RAN connection for UE 3 3

UE AS context stored in 5G-RAN and UE 3 3
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1) RRC_Idle
In RRC_Idle state, the UE is not registered to a particular cell;
hence, it does not have an AS context or receive any network
information. This means that no specific link is established
for communication between the UE and CN, and the UE does
not belong to any specific cell. From the CN perspective, the
UE is in the CN_Idle state5, and the UE is in (a kind of) sleep
mode and wakes up periodically (according to a configured
discontinuous reception (DRX cycle)) to listen for paging
messages from the network through the downlink channel.
During this period, no data transfer takes place and the UE
enters into sleep mode regularly to reduce battery consump-
tion. The network can reach the UEs in the RRC_Idle state
by sending paging messages to notify them of changes in sys-
tem information, warning messages such as earthquake and
tsunami warning service (ETWS), and commercial mobile
alert system (CMAS) which are send as short messages. In
this state, the UE manages mobility based on the network
configurations via cell re-selections. It also performs the
neighbouring cell measurements needed for cell re-selection
in order to determine which cell it is to connect (explained
in Section III-B). To reduce the network signaling overhead
and the latency experienced by legacy networks (such as
LTE) during the transition to RRC_Connected state, the
RRC_Inactive state was introduced in 5G. In 5G, the network
initiates the RRC release procedure to transit a UE from the
connected to the idle state. In addition, as UE moves from
the idle to the connected state, both the UE and the network
establish the RRC context.

2) RRC_Inactive
5G-NR introduced RRC_Inactive state from lessons learned
during the development of LTE. The findings revealed that
the transition of wireless devices from idle state to con-
nected state is the most frequent high-layer signaling event
in existing LTE networks, occurring about 500 − 1, 000
times a day6. This transition involves a significant amount
of signaling overhead between the UE and the network, as
well as between network nodes, which can lead to increased
latency and power consumption in the UE. The solution is to
switch to RRC_Inactive state which will result in a significant
reduction in both latency and UE battery consumption. When
the UE is in inactive state, its behaviour is similar to that in
idle mode in term of power-saving. However, unlike the idle
state, in the inactive state, RRC context is kept in both UE
and gNB, and the UE is in CN_Connected state 7 from the
CN perspective, meaning that its connection to the CN is kept
intact. Different from RRC_Idle state, the primary purposed
of RRC_Inactive state is to reduce the network signaling load

5UE is said to be in CN_Idle state from CN perspective when no
connection is established between UE and the CN [45], [80].

6Meeting 5G latency requirements with inactive state, Published on 19
June. 2019. Available online at https://www.ericsson.com/en/reports-
and-papers/ericsson-technology-review/articles/meeting-5g-latency-
requirements-with-inactive-state. Accessed on 25 Nov. 2020.

7CN_Connected state is when the UE establishes connection to the
CN [45], [80].

and latency involved during RRC_Idle to RRC_Connected
state transition. In RRC_Inactive state, the network signaling
becomes faster since the AS context is stored in both the UE
and gNB. While 5G CN connection is still retained - (UE
remains in CN_Connected state), the UE in RRC_Inactive
state is in sleep mode and wakes up repeatedly- according
to configured DRX cycle (which in this case is controlled by
the 5G-RAN), and regularly monitors for paging messages
from the network. The procedure for notifying the UEs about
any change of system information or warning message is the
same as that of the idle state [81].

3) RRC_Connected

In the RRC_Connected state, the RRC context and all pa-
rameters needed to establish communication between the UE
and the RAN are known to all entities. The means that in
RRC_Connected state, the network configures all required
parameters for communication between the network and the
UE. In RRC_Connected state, the UE is in CN_Connected
state from the CN point of view. The cell to which the UE
belongs and the UE’s identity is known. In addition, the
cell radio-network temporary identifier (C-RNTI) used for
signaling purposes between the UE and the CN is configured.
The connected state is intended to transmit data to or from
the UE, and to minimize excessive power consumption of the
UE. DRX is optimized while maintaining user’s quality-of-
experience (QoE) [82]. With a configured DRX cycle, the
UE only monitors downlink signaling when active, and then
goes into sleep mode for the rest of the time with the receiver
circuitry turned off. This process allows significant power
consumption reduction, as the longer the DRX cycle, the
lesser the power consumption. For exhaustive discussion on
how DRX reduces excess power consumption, please refer
to [81], [83]. Also, the RRC context is established in gNB
for the connected state, therefore, data transmission/reception
can commence relatively fast, as no connection setup, and
signaling is needed. In this state, the network manages
mobility by the process known as HO, explained in the
Section IV-E

As regards cell re-selection when leaving RRC_Connected
state, the UE attempts to camp on a suitable cell ac-
cording to redirectedCarrierInfo when transitioning from
RRC_Connected state to RRC_Idle or RRC_Inactive
state [76]. In the connected state, if the network initiates
the RRC release message or the UE and CN are no longer
attached, the UE moves into an idle state, on the other hand,
if the network initiates the RRC suspend procedure, the UE
would transit from connected to inactive state [76], [78]
(see Fig. 5). One significant difference among the different
states, as seen from the preceding discussions, is the mobility
mechanisms involved. Efficient mobility management is an
essential aspect of any mobile communication system. In
the following subsections, we describe the different mobility
mechanisms including idle- and inactive-state mobility.
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FIGURE 6. RAN Areas and Tracking Areas.

B. IDLE AND INACTIVE STATE MOBILITY
Most importantly, RRC states ensure that the mobile UE is
accessible via network mobility mechanisms, mainly when
the UE is in the idle or inactive states, during which it has
limited connection to the network. The network, through
paging, communicates with the UE occasionally, and also
sends short broadcast message which carries information
about changes in the system [76]. The area over which a
paging message is sent is an essential feature of the paging
process. Also, in both states, the device can switch from
one cell to another via cell re-selection. The UE scans for
candidate cells for cell re-selection, and if the UE discovers a
cell with received power sufficiently higher than its current
one, it deems this the best cell and contacts the network
through random access [76].

UE tracking needs to be intelligently carried out to avoid
high overhead due to paging, and signaling at the network
and cell level respectively [84]. Hence, the cell-group level
tracking system was introduced in 5G-NR to tackle the chal-
lenge of high overhead due to signalling and paging. Figure. 6
illustrates how tracking of UE in the idle and inactive state
is carried out in 5G-NR. In order to enable effective UE
tracking, the cells are organized into cell groups, and the
UEs are only monitored on the cell-group level, as shown
in Figure. 6. The network only receives new UE location
information when the UE moves into another cell group
outside its previous cell-group. In case of paging the UE,
the broadcasted paging message is sent to all cells within
the specific cell group — this is done to reduce the paging
overhead. This is the primary tracking procedure in the NR
for both states. However, there is a difference in the way
that cells are grouped in both states as well as how paging
is initiated.

For the idle state, cell groups are grouped into RAN areas,
where a RAN area identifier (RAI) identifies each RAN
area. The RAN areas, in turn, are grouped into an even
larger group known as tracking areas, where a tracking area
identifier (TAI) is used to identify tracking area. Thus, each
cell belongs to one cell group which also belongs to one RAN

area as well as a tracking area, and their respective identities
are provided as part of cell system information.

Tracking areas are the basis for CN-based UE tracking,
and the CN is responsible for managing and initiating paging.
The CN assigns each UE to a UE registration area, which
consists of a list of TAIs. When a UE enters a cell belonging
to a tracking area outside its assigned registration area, it
accesses the CN and performs a Non-Access Stratum (NAS)
registration update. The CN records the UE’s location and
updates the UE’s registration area, then it provides the UE
with a new TAI list that includes the TAIs that the UE has
been assigned. The UE is assigned a set of TAIs to avoid
repeated NAS registration updates in case the UE moves back
and forth between two neighbouring tracking areas. If the UE
moves back to the old TAI within the updated UE registration
area, no new update is needed.

In the inactive state, RAN Area becomes the basis for
UE tracking, which is carried out in the 5G-RAN level. 5G-
RAN is responsible for initiating the paging and managing
RAN-based notification area. UEs are assigned a RNA com-
prising the following: a list of cell identities, a list of RAN
areas, or a list of tracking areas. The RNA is assigned to a
UE by its serving NG-RAN based on the UE’s registration
area and can cover a single or multiple cells (a subset of
the tracking areas). As a result, the UE can move freely
within the allocated RNA without contacting the NG-RAN.
However, if it moves to an area outside its current RNA,
it initiates RAN-based Notification Area Update (RNAU).
Once the serving cell (ng-eNB or gNB) receives the RNAU
request from the UE, it may send the UE to one of the
following RRC states: RRC_Inactive, RRC_Connected, or
RRC_Idle. If UE remains in the inactive state, the serving
NG-RAN may continue to send a periodic RNAU timer to
the UE, which is used to notify the network that the UE is
still active. The value of the RNAU time is assigned based
on the RRC_Inactive assistant information (RIAI) [41]. In
summary, two levels of paging can be applied for reaching
the UE depending on its RRC state: CN-based paging for
idle state and 5G-RAN-based paging for the inactive state
(see Table 3).

C. CONNECTED STATE MOBILITY
The connection between UE and network is established in the
connected state. Connected-state mobility aims to maintain
connectivity without interruption or noticeable degradation
as the UE moves within the network. To maintain the con-
nection between UE and network in the connected state, the
UE is continuously searching for new BSs to connect to.
The BS search is based on current carrier frequency (intra-
frequency measurements) and different carrier frequencies
(inter-frequency measurements) from the UE perspective.

Cell search in the connected state results in HO if suitable
condition are met while for idle and inactive state, it results
in cell re-selection. When it becomes necessary to perform
HO in the connected state, the UE is not responsible for the
decision. Instead, the UE performs signal measurement of the
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serving cell and neighbouring cells and generates the mea-
surement report (MR)—containing cell level measurement
results such as reference signal received power, signal-to-
interference-plus-noise ratio, reference signal received qual-
ity, etc.— sent to the network. Based on this report, the
network decides whether or not the UE is to HO to a new
cell. The above procedure is not applied to the very small
SCs (e.g 5G femtocell) that are tightly synchronized to each
other [40], [79].

IV. HANDOVER MANAGEMENT IN 5G AND BEYOND
This section describes the step-by-step procedure for HO in
5G NR, introduces the various categories of HO, and also
discusses HO requirements alongside its relationship with
radio resources management.

A. TYPES OF HANDOVER
There are two broad categories of HO, namely; intra-/inter-
frequency and intra-/inter- radio access technology (RAT)
HO.

1) Intra-/Inter-Frequency Handover
Intra-frequency and inter-frequency HO are the HOs types
for which the carrier frequency is the subject of interest. If
the UE is to move to the target cell with the same frequency
as that in the serving cell, it is generally known as intra-
frequency HO as seen in Fig. 7 Scenario 1. In contrast,
inter-frequency HO occurs if the UE is to use a different
carrier frequency in the target cell as shown in Scenario
2 in Fig. 7. Event A3 and A6 initiate intra-frequency HO.
Both Event A3 and A6 are triggered when the neighbouring
BSs RF condition is higher than that of the serving BS.
Moreover, Event A6 is used for intra-frequency HO of the
secondary frequency on which the UE camps. Event A4 and
A5 are typically used for inter-frequency HO. Event A4 is
triggered when the RF condition of one of the neighbouring
BSs is higher than the threshold compared to that of the
other BSs. On the other hand, Event A5 is triggered when
the serving BS RF condition becomes lesser than the lower
threshold and the RF condition of one of the neighbouring
BS becomes higher than the upper threshold (where the
threshold values are parameters that are optimized based on
the network) [78], [85]. As mentioned in Section III-A3, HO
occurs in the connected state and in that state, UE regularly
sends the measurement report (MR)—containing cell level
measurement results such as reference signal received power,
signal-to-interference-plus-noise, reference signal received
quality, etc.— of all neighbouring cells to the serving cell.
More information regarding the HO trigger events can be
found in [40], [78], [86].

The UE essentially carries out the measurements in the
measurement gap at different frequencies for inter-frequency
cases [85] and [87]. The measurement gap is necessary
because without it, the UE would not be able to measure the
target carrier frequency while transmitting/receiving to/from
the serving cell simultaneously. The measurement gap spec-

FIGURE 7. An illustration depicting intra-frequency HO in scenario 1 and
inter-frequency HO in scenario 2.

ifies the time interval when no downlink (DL) or uplink(UP)
signal is transmitted. Measurement gap only applies to some
cases of intra frequency HO where enhanced UE coverage
is not guaranteed to be aligned with the serving gNB’s
centre frequency [85], [87]. However, the measurement gap
is required for all cases of the inter-frequency HO as specified
in 3GPP [85]. Researches are concerned with fundamentals
question on how the measuring gaps can be reduced, as large
measuring gap results in lower throughput and higher UE
energy consumption.

FIGURE 8. UE undergoes HO from one cell to another with both cells using
the same RAT (intra-RAT).

2) Intra-/Inter-RAT Handover
In the case of intra-RAT HO, UE hands over from serving
BS (S-BS) to the target BS (T-BS) which both use the same
RAT. Intra-RAT HO is commonly referred to as horizontal
HO [87] as shown in Fig. 8. Intra-RAT HO can be either
intra- or inter-frequency HO. Intra-RAT HO aims to preserve
the connectivity of the UE with the existing network and the
primary reason for this kind of HO can be attributed to load
balancing or measurement trigger conditions [88]. Once UE
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HO occurs, it prefers to camp on the cell which provides the
strongest received signal.

In contrast to intra-RAT HO, inter-RAT (or vertical) HO
occurs when the UE hands over to a T-BS which uses a
different RAT from the S-BS. Unlike in intra-RAT HO where
the cell with the highest received signal is selected, in inter-
RAT HO, other factors such as user mobility, service type, as
well as the network property and state are considered when
selecting the target cell. It also involves the switching of the
logical interface between the two RATs [89]. The latency
incurred during inter-RAT HO is still prohibitive for many
application and services, thus, it poses a severe problem
in the NexGen mobile systems [89]. In order to improve
the user experience, centralized architecture for inter-RAT
HO, which integrates legacy and NR network protocol was
proposed [89]. Fig. 9 demonstrates how the UE performs
inter-RAT HO. From the figure, it can be seen that both dis-
tributed, and centralized CN architecture for multi-RATs are
possible. The advantage of using centralized architecture is
that it can lead to a significant reduction in HO signaling and
interruption time. 10 The centralized architecure comprises
unified CN along with the baseband unit (BBU) and remote
radio head (RRH) separated through a transport mechanism
such as optical fiber. In a C-RAN architecture, the RRHs are
connected to the BBU pool through high-bandwidth transport
links known as fronthaul.

B. HANDOVER REQUIREMENTS AND KEY
PERFORMANCE INDICATORS
Since HO has adverse effect on the overall performance
of wireless networks, different features and requirement are
necessary to reduce the impact of HO. Also, various key
performance indicators (KPIs) are used to measure how the
network performs during a HO. The various HO require-
ments and KPIs are presented as follows:

• Seamless HO: a seamless HO occurs when UE per-
ceives continuation of connection during HO with little
or no interruption during gNB switch. This guarantees
the UE’s active connection.

• HO interruption time: is a period where the UE is not
permitted to send user plane packets to the BS. The UE
experiences seamlessly HO if the interruption time is
very small (≤ 1ms) [90], [91].

• HO cost: is defined as mobility interruption time per
HO multiplied by the number of HOs for a particular
UE’s trajectory. This metric is imperative in the network
as it has a direct relationship to the system through-
put [92]. HO cost decreases as the number of HOs
and/or the mobility interruption time per HO decreases.

• HO failures rate: For any given UE trajectory or
unit time, the HOs failure rate is the number of HO

10Michael Wang, 5G, C-RAN, and the Required Technology
Breakthrough, Published on 21 Jun. 2018. Available online at
https://medium.com/@miccowang/5g-c-ran-and-the-required-technology-
breakthrough-a1b2babf774. Accessed on 25 Oct. 2020.

failures—unsuccessful HOs—divided by the number of
times the UE experienced the HOs.

• Signaling overhead: HO signaling overhead are the
various data generated during the process of HO to facil-
itate the operation. However, the HO process interrupts
the data flow and results in the reduction of the UE
throughput. [86].

There are other performance metrics that are essential to
ensure optimal performance in wireless networks, particu-
larly for HO optimization. Further details can be found in
Tayyab et al. [87].

C. HANDOVER AND RADIO RESOURCE MANAGEMENT
In 5G, the term radio resource includes both traditional
(from the legacy system) and extended resource concept [93].
These legacy resources include energy consumption (cell
and UE transmitting power), frequency (channel bandwidth,
frequency of the carrier) and antenna configurations. In ad-
dition, the extended resource definition in 5G covers the
hard resource (number/type/configuration of antennas, the
existence of nomadic/unplanned nodes, or mobile terminal
relays) and soft resources (network node and UE software
capabilities). It is also important to meet UE requirements
such as QoS or QoE for all the UEs while properly managing
resources. On the other hand, proper resource management
can help networks fulfill HO KPIs, for example, by reducing
the probability of HO failures while maintaining the QoE
during and after HO [94], [95]. To increase wireless system
efficiency, it is necessary to address and take into account the
fundamental issues related to HO and resource management
such as admission control, bandwidth and power control.

D. DUAL CONNECTIVITY
Dual connectivity means that the UEs can establish connec-
tion to two different cells at the same time [96]. Usually,
in dual connectivity, UEs either connect to BSs of different
sizes (macro cell and SC) or two different RATs simultane-
ously (e.g. 4G and 5G network), as illustrated in Fig. 10.
Since the UE can be connected to two different RAT over dif-
ferent frequency bands simultaneously, the interruption time
is reduced to zero. However, this would trigger an additional
likelihood of HO where new HO cases are introduced relative
to a single connection. These new HO scenarios (see Fig. 10)
occur in two situations; when the UE switches the connection
either from SC to macrocell or from SC to SC. With the intro-
duction of mm-wave, the use of dual connectivity could lead
to an increase in HO probability, thereby causing additional
problems with mobility management, including an increase
in signaling overhead, synchronization complexity between
RATs for multi-RAT connectivity, simultaneous utilization of
resources in multiple BSs, and reduction in battery lifespan.
The increase in signaling overhead is due to flow control
between the RATs [96], [97], and these issues could be
addressed using intelligent approaches.
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FIGURE 9. Inter-RAT HO scenarios in distributed and centralized RAN architectures9 [89].

FIGURE 10. Dual connectivity with HO scenarios in future communication
networks.

E. HANDOVER MANAGEMENT IN NR

NR physical layer uniquely differs from the legacy RAT with
the following features: dual connectivity, high-frequency
spectrum, forward compatibility, ultra-lean design, use of
mm-wave and relay for devices (device-to-device). NR sup-
ports both multi-connectivity and single-connectivity selec-
tion depending on the configuration set. For both configura-
tions, hard HO is used during path switching [86]. In both
licensed and unlicensed spectrum, NR operates between 600
MHz and 73 GHz. Forward compatibility means designing
radio-interface architecture that enables new service require-
ments and accommodate new technologies while supporting
legacy network UEs. While the ultra-lean design principle
aims to decrease the always-on transmissions (for example,
signals for BS detection, broadcast of system information)
to achieve high data rates with low energy consumption in
the network. The main challenge for NR is the coverage due
to the use of high frequency with high penetration loss that
makes the cell footprint to become smaller. In this section,

FIGURE 11. UE performs intra-gNB HO which involves the change of cells in
the same gNB.

we describe the NR HO with a brief introduction of critical
features and the entities involved in NR mobility. Also, a
step by step HO procedure is provided for intra-AMF/UPF.
The types of HO in NR are described as follows: 1) Intra-
gNB HO: This occurs when both the source and target cells11

belong to the same gNB, as shown in Fig. 11.
2) Inter-gNB HO without AMF Change: Inter-gNB HO

generally occurs when serving and target cells are from
different gNBs. There are two different types of HO within
inter-gNB HO without AMF change, depending on whether
the HO involves a change of UPF or not. However, the inter-
gNB HO discussed here does not include a change of AMF
in both cases, as shown in Fig. 12. Inter-gNB with intra-UPF
HO is presented in Fig 12 scenario 1 , where the HO involves
a cell change with the same UPF, while Fig. 12 scenario 2
presents inter-gNB with inter-UPF HO where the cell switch
involves a change of UPF.

11Cell here means the part of sector gNB that has specific beams and
covers the specific environment.
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FIGURE 12. UE performs inter-gNB HO, which involves the change of gNBs
with same UPF and AMF for scenario 1 and change of UPF for scenario 2.

3) Inter-gNB HO with AMF Change: In this case, the
HO requires a change of AMF from the source to the target
AMF. However, the HO involves no change of SMF, and only
the NG interface is used as depicted in Fig. 13. There are two
cases of inter-gNB HO with AMF change; in the first case
(Fig. 13 scenario 1), the same UPF is maintained while the
second case (Fig. 13 scenario 2) involves a change of UPF
during HO.

FIGURE 13. UE performs inter-gNB HO with AMF change, involving the
change of gNBs while UPF is maintained in scenario 1 and change of UPF in
scenario 2.

The basic HO procedure in NR is shown in Fig. 14 [40],
[87]. It consists of three phases, namely: HO preparation
(Steps 0-5), HO execution (Steps 6-8) and HO completion
(Steps 9-12), which are described as follows:

• Step 1: the UE measuring procedure is configured ac-
cording to access restriction and roaming information
by the serving gNB (S-gNB), and the UE sends an MR
to the target gNB (T-gNB).

• Step 2: the S-gNB determines to HO the UE, based on
the MR and radio resource management information.

• Step 3: the S-gNB sends a HO request message to the
T-gNB (which includes the necessary information to

prepare for HO to the T-gNB).
• Step 4: the T-gNB executes the admission control pro-

cedure if the T-gNB can grant the resources.
• Step 5: the T-gNB sends a HO request acknowledge-

ment to the S-gNB. As soon as the S-gNB receives the
HO request acknowledgement message, data forward-
ing may be initiated.

• Step 6: S-gNB sends a HO command to the UE.
• Step 7: S-gNB sends the Sequence number status trans-

fer message to the T-gNB.
• Step 8: UE detaches from the S-gNB and synchronizes

with the T-gNB.
• Step 9: the T-gNB informs the AMF that the UE has

changed the cell, through the Path switch request mes-
sage.

• Step 10: 5GC switches the DL data path towards the
T-gNB.

• Step 11: the AMF acknowledges the Path switch re-
quest.

• Step 12: the T-gNB informs the S-gNB that the HO was
successful and triggers the release of resources by the S-
gNB by sending a UE Context Release message. Finally,
the S-gNB release the radio resources associated with
the UE.

It is essential to point out that the above procedure is
applied for HO between NR and NR technologies.

F. MOBILITY AND HANDOVER MANAGEMENT IN B5G
Researchers have anticipated some use cases and applications
that make B5G to be different from 5G. Some of these use
cases include integrated unmanned aerial vehicles (UAVs)
communications, high mobility of devices (above 500 kmph),
holographic projection, etc [98]. The high mobility of de-
vices, UAVs, and other applications that use radio waves
at the mm-wave and THz spectrum presents unprecedented
wireless communication challenges in B5G. Among these
challenges, mobility and HO management are anticipated to
be the two most challenging issues in B5G networks since
B5G networks would be highly dynamic, and multi-layered,
which would lead to more frequent HO. High mobility of
devices and UAVs results in uncertainties of their locations
and keep in mind that high frequencies such as mm-wave
and THz that would be used in B5G can be easily blocked
by humans, buildings, etc.

Heuristic and traditional HO methods would not be able
to react quickly. An alternative solution is to adopt artificial
intelligence models for mobility prediction and optimal HO
strategy in order to guarantee communication connectivity.
Even though the introduction of multi-connectivity is a very
promising solution, the procedure still needs intelligent HO
management strategies to optimize the cell (re-)selection
process in order to reduce signaling, guarantee high data
rate, high reliability, and low latency in the B5G [98]. The
HO procedure for the B5G might be similar to that of 5G,
but there are no standards for B5G system yet. A summary
of the challenges associated with HO management in NR
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FIGURE 14. HO procedure in 5G-NR involving no change of AMF and UPF,
based on [40].

alongside their causes and potential solutions are presented
in the Table. 4.

V. MACHINE LEARNING FOR HO MANAGEMENT
The use of mm-wave and higher frequencies in 5G and
B5G networks is going to introduce new challenges and
complexity to the HO management that would be difficult
to handle by conventional methods. Firstly, these frequency
ranges suffer from severe attenuation (e.g., larger penetration
losses), which means their transmission distance will be
small. As a result, more BSs need to be deployed to cover the
same area that would have been covered by those utilizing the
microwave frequencies [110]. This implies that the size and
the complexity of the network is going to greatly increase and
the users will be prone to more frequent HOs which would
greatly affect their QoS, particularly for high mobility users
and applications.

Secondly, due to the use of directional beams for trans-
mission in mm-wave networks, the presence of obstacles

on the path of the transmitted beam can partially or com-
pletely hinder the user from gaining access to the network or
negatively impact the signal quality. As such, in mm-wave
communication networks, the users are not only faced with
the challenge of selecting the optimal BS but also the optimal
beam to connect to per time in order to maximize their
QoS. Hence, optimal beam selection has become another
factor to consider in HO management process which would
further add more complexity to the HO process because of
the massive number of beams that the user has to select from
during each HO instance [111], [112].

Finally, there is also the need to provide some high mobil-
ity based essential services for emergency scenarios such as
medical services to patients in ambulances en-route hospital
through real-time consultations with the doctors that are
situated in a remote hospital. Especially, in the pandemic
situation that we find ourselves in now, this kind of services
may be needed to sustain the lives of the patients in critical
conditions before they get to the hospital to receive proper
medical attention [113], [114]. Intelligent HO optimization
would help predict the route of the ambulance, determine the
optimal BSs to connect and also pre-allocate the resources
that will be needed at the BSs. This will help prevent in-
termittent service interruptions and guarantee the QoS need
to support the communication between the paramedics in
the ambulance and the doctors at the remote location [115],
[116].

Therefore, effective HO optimization would enable the
selection of the optimal BS and beam for user connection
that will maximize user connection, reduce excessive or
unnecessary HOs, and enable the detection of obstacles and
their avoidance. These are some of the issues that make HO
optimization in mm-wave communications networks more
challenging to handle compared to the previous generations
of cellular networks. Moreover, since the HO process in-
volves various network parameters that must be considered
and optimized in real time in order to ensure seamless HO,
this would be very challenging for most conventional meth-
ods to handle. The challenge with conventional methods of
HO management is that they are computationally demand-
ing to implement, particularly when the network dimension
becomes very large. As such, before they can decide which
target BS to associate the user with, the user must have
moved from that location. This would result in sub-optimal
HO decision and degradation in user QoS. In addition, they
cannot accurately capture certain details of the network such
as the presence of different types and sizes of obstacles, as
well as the dynamic traffic demand patterns that are typical of
5G and B5G networks, which are also important for making
an optimal HO decision [115], [117], [118].

However, ML techniques can assist in bringing intelli-
gence and helping the network to self-optimize. ML tech-
niques are able to learn various network characteristics from
data generated from the network, in order to optimize various
aspects of the network. They are able to capture hidden
details and patterns in the network from the network data that
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TABLE 4. Handover management in NR challenges associated, existing solution and future research directions.

Challenge Possible causes Consequences/Effects Solutions/Future research directions Ref
Frequent / unnec-
essary HO, HO
failures and Ping
Pong

The susceptibility of mm-wave
channel to significant pathloss,
atmospheric absorption and
blockages. Deployment of large
number of mm-wave small cells in
HetNets to meet the traffic demand
from UEs.

Varying signal strength, service
interruptions during communi-
cation between the UEs and s-
gNB which leads to a reduc-
tion in the overall QoS and in-
creased service failures.

Development of advance techniques for
array beam-forming and large MIMO to
increase channel gain. Multi-connectivity
that allows UE to communicate with
more than one BS at the same time. Im-
proved solutions for mobility and KPI’s
prediction for the proactive HO scheme.

[36], [96],
[97], [99],

Load balancing The uneven distribution of UEs in
the network due to the random
placement of cells or UEs mobility.

Cell congestion is likely to oc-
cur in some cells, due to load
imbalance, resulting in the high
HO failure rate.

Intelligent load balancing schemes that
can provide fairness between congested
and uncongested cells become vital to
ensure efficient resources allocation and
improvement in network performance.

[88], [100],
[101]

Signaling
overhead

Signalling overhead occurs during
HO procedure and the problem es-
calates as the number of UEs in-
crease. The paging procedure in-
volved when the BSs searches for
the UEs in the network also cause
additional signalling overhead.

The higher the number of HOs,
the more the signalling over-
head that is generated, which
causes more interruption in data
transfer and hence high latency
in the wireless system.

Optimal HO schemes that can reduce the
number of HOs by considering various
HO parameters. Development of models
that requires the paging of fewer BSs in
order to locate a UE in the network.

[36], [102],
[103], [104]

Power consump-
tion

Frequent HO procedures due to the
deployment of massive small cells
in the HetNets drains UE battery.
The introduction of handover skip-
ping scheme requires the UEs to in-
crease transmission power to main-
tain connection with a distant BS
results in more power consumption
in the UEs.

The higher the number of small
cells, the more the number of
measurement and the faster UE
battery drains. The HO skip-
ping schemes increase the dis-
tance between UE and BS,
thereby causing the UE to con-
sume more power to reach the
BS.

Measurements should be done within the
DRX cycle. Solutions that use ML tech-
niques should be developed to ensure a
proper trade-off between HO and power
consumption.

[105],
[106], [84]

HO latency The transmission of measurement
reports between the UEs and the BSs
during HO process causes signalling
overhead which results in service
delays.

During signaling, there is in-
terruption in data transmission
which leads to a reduction in
the average throughput of the
users as well as delays in data
transmission.

Proactive HO solutions are essential to
reduce the amount of signaling overhead
associated with the HO process and to se-
lect the optimal BS before HO happens.

[107],
[108], [109]

cannot be represented by analytical models [117]. They are
self-adaptive and as such can react to changes in network en-
vironment and even predict future network or user demands
before hand, thereby enabling the network to adequately
prepare to handle such demands when they occur [115].
They can be designed in a computationally efficient manner
such that the training phase of the algorithm, which is often
computationally demanding, can be carried out offline, and
then the trained model deployed online to carry out real-
time optimization after which the model can be updated
periodically, as it experiences new data [119].

In this section, we first present an overview of the major
categories and types of ML algorithms used for HO opti-
mization. Then, we delve into reviewing the state-of-the-art
on ML-aided HO management. A top-level taxonomy is fol-
lowed while reviewing the state-of-the-art, such that the ML-
aided HO management methodologies are classified based
on the source of the data they utilize. As such, two broad
categories are considered: visual data based and wireless data
based HO management techniques. The major objective of
this novel taxonomy is to recognize the visual data aided
HO management schemes—which has been long overlooked
in the literature—by giving it a special place along with
the traditional wireless data driven HO schemes. The vi-
sual aided wireless communications is an emerging research

area in wireless communications where visual information
(pictures/videos) captured from cameras, light detection and
ranging (LIDAR), etc., are combined with wireless sensory
data for wireless network optimization such as channel pre-
diction, HO optimization, etc [120], [121]. This is necessary
because mm-wave communication networks possess unique
challenges that would be difficult to handle using only wire-
less sensory data but with the assistance of visual data, some
of these challenges can be handled properly. On the other
hand, for the wireless data based HO management, the most
recent works are extensively reviewed under two use cases:
beam selection and BS selection.

A. AN OVERVIEW OF MACHINE LEARNING
ALGORITHMS

It has become very important to include AI/ML in the BS’s
and beam selection process during HO, in order to achieve
the primary objective of providing a seamless HO and to
ensure that the UE achieves maximum throughput during
the entire duration of its connection to the network. The
HO optimization problem is a decision-making problem, and
intelligence is imperative to ensure that the optimal decision
is taken at each HO instance in a more efficient and effective
manner.

We begin by defining ML and discussing the various
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categories. According to [122], ML is a set of computation
procedures that evolved from formidable techniques in the
field of AI that allow the computer to self-learn, discover
patterns, and generate models from historical data without
being explicitly programmed. The objective of ML is to
identify features of a given data set that are likely to influence
an outcome of interest given the input, and then use those
learned features to predict the result in a new situation
not previously encountered [34]. A substantial collection
of ML techniques (model and algorithms) has been cre-
ated to solve various challenges in different domains. These
algorithms can be classified according to how learning is
performed. They have been broadly categorized into three
major classes [123]. Table 5 presents an overview of ML
approaches based on their learning styles.

Definition V.1 (Labelled data set). A labelled data set is a
data set with clearly defined features (input) and target (out-
put). The features are usually related to the target and enables
the ML algorithm to identify the target or map the input to the
output during the training phase.

Definition V.2 (Unlabelled data set). An unlabelled data set
is a data set that does not have labels. That is, there is no clear
description of the features or targets in the data set.

Definition V.3 (Model training). Model training is the pro-
cess of exposing an ML algorithm to the training data set (i.e.,
labelled or unlabelled data set) in order to enable it to learn
the mapping between the features and the target. Thereafter,
a model is obtained that can correctly predict the right target,
even when it is feed with a new data set that it had not
previously seen.

1) Supervised Learning
As the name suggests, it is the learning technique which
requires a labelled training set consisting of inputs features
and output. The learning model tries to search for a function
that maps the input to the desired output by minimizing both
the bias and variance error of the predicted results. After that,
new data set is then applied to the trained model in order to
predict the output. Supervised learning is basically classified
into regression—where the predicted output is continuous—
, and classification— where the predicted output is discrete
or categorical. Examples of supervised learning algorithms
include: artificial neural networks (ANN), support vector
machine (SVM), extreme gradient boosting (XGBOOST),
k-nearest neighbour (kNN), decision tree, random forest,
etc, [124]. Supervised learning algorithms can help provide
user mobility information through prediction of future loca-
tion, trajectory, cell, etc., which is needed for proactive HO
optimization and efficient resource allocation in 5G and B5G
networks order to enhance the QoS of users [34].

2) Unsupervised Learning
Different from supervised learning, in unsupervised learning,
the training data set is unlabelled. The learning model in this

case, tries to find hidden patterns, structures, and correlations
within the training data set. They are mainly employed for
anomaly detection, pattern recognition, and the reduction of
the dimension of a data set. Common examples of unsu-
pervised learning algorithms are k-means clustering, prin-
cipal component analysis, expectation-maximization (EM),
etc [125]. With the deployment of ultra-dense cellular net-
works and use of diverse kinds of devices (conventional
UEs and IoT devices) in 5G and B5G, clustering algorithms
can enable scalable and decentralized HO optimization par-
ticularly for cases where user mobility patterns are hetero-
geneous thereby reducing complexity. As an example, the
authors in [126] proposed a two-layer approach to HO op-
timization in an ultra-dense network where k-means was first
used to cluster the devices with similar mobility pattern then
deep reinforcement learning was implemented to determine
the optimal HO policy of the devices within each cluster.

3) Reinforcement Learning
Unlike supervised and unsupervised learning that deal with
continuous or discrete output prediction and identification of
hidden pattern or structures in data, RL is concerned with
making decisions in order to obtain an optimal policy in a
given environment. It is a trial and error kind of learning
whereby an agent interacts with the environments, takes
action and gets feedback in terms of reward or penalty,
depending on whether the action taken is good or bad for
a given objective. The outcome of RL is to learn the optimal
policy that would enable the agent to make an optimal deci-
sion at any given state of the environment. RL algorithms can
be value-based (e.g. Q-learning, SARSA), policy-based (e.g.
policy gradient, proximal policy optimization (PPO) and
actor-critic (A2C)) [127], [128]. Reinforcement learning al-
gorithms are suitable for mobility management and HO opti-
mization as they are able to adapt to varying user mobility
and network condition in order to determine the optimal
HO policy. They are particularly relevant in 5G and B5G
networks because of increasing network dimension and com-
plexity in order to reduce HO delays and minimize frequent
HOs [34].

4) Distributed Learning
Conventional approach to ML requires that the training data
be stored in a central location either at the data centre or
in the cloud. However, this approach has several challenges
including data privacy, latency, increased signaling overhead,
increase in the energy consumption of the UEs, etc. This has
led to a growing interest in distributed learning where the
data is processed at the location where it is generated, and
only the trained ML models are transmitted to the central
entity [129] and [130]. In this regard, federated machine
learning [129] and [131] has been introduced to handle the
aforementioned challenges and is gaining increasing applica-
tion in the field of wireless communication [130] and [132].
Federated learning is a distributed machine learning approach
which enables data generating entities to jointly learn a
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TABLE 5. Types of Machine Learning Algorithm.

Learning category Inference task Learning algorithms

Supervised learning Classification/Regresssion

SVM,
ANN,
XGBOOST,
kNN,
decision tree,
random forest

Unsupervised learning Clustering/anomaly detection

k-means
Principal Component analysis
Expectation maximization
Independent component analysis

Reinforcement learning Decision making

Q-learning
SARSA
Policy gradient
Proximal policy optimization
Actor-critic

shared prediction model without having to send their data
to the central entity. In this case, only the trained models are
transmitted to the central entity. This ensures the preservation
of data privacy and requires less communication resources
for model transmission [133] and [134]. Federated learning
has been applied in [135] and [136] for human mobility
prediction in order to preserve the privacy of users and
in [109] for proactive HO mm-wave vehicular networks in or-
der ensure the privacy of user location information, minimize
communication overhead while minimizing frequent HOs.

B. MACHINE LEARNING BASED HANDOVER
OPTIMIZATION
HO optimization is necessary when selecting the BS/beam
that a user should connect to, in order to minimize frequent
HO due to the small footprint of mm-wave BSs in 5G and
THz wave BSs that are envisioned to be used in B5G. This is
because frequent HOs increase the HO cost, thereby reducing
the network throughput. Throughout this paper, we will refer
to HO as defined in [92] which establish the term HO cost.
With efficient HO optimization, the network is able to select
the best T-BS that will provide a higher throughput for UE.

Before ML came into play, classical methods for BS
selection were based on specific parameter measurement.
These methods include selecting the T-BS based on distance,
or the BS that provides a higher KPI such as reference
signal received power, received signal strength indicator, and
signal-to-noise ratio. In the measurement-based approaches,
the channel state information (CSI) from the MR of all
neighbouring BSs is measured, and the one with the best
CSI is selected as the potential T-BS. These approaches are
practical for sub-6 GHz frequencies; however, they are inef-
ficient solutions in mm-wave and THz application band due
to severe path loss and susceptibility to LOS blockage [108].

ML techniques can play a significant role in HO optimiza-
tion and BS station selection by reducing delays, computa-
tional overhead, and frequent HOs. They help predict the T-
BS and also ensure that adequate resources are available at
the T-BS before HO occurs in order to ensure a seamless HO.
In this section, we consider ML-based HO management in

5G networks from the perspective of visual, and wireless data
aided HO optimization. In Table 6, we present a summary of
the state-of-the-art ML-based HO optimization in 5G mm-
wave communication systems.

1) Visual data aided handover optimization
Successive generations of cellular networks have mainly
depended on wireless sensory information such as CSI,
received power, etc., for network design and optimization.
However, the use of mm-wave and THz frequencies in 5G
and B5G networks would mean that BSs will have many
antennas, communication will be through a large number of
LOS beams, which would be subject to blockages of various
types and would limit signal reception at the user end. In
addition, much signaling overhead would be involved in the
selection of the optimal beam for user connection in mm-
wave networks if only wireless sensory data are exploited for
optimal beam selection considering the massive number of
beams that would be involved [120], [121].

The vision assisted HO optimization has become neces-
sary because of the complexity of the mm-wave networks,
and it might not be possible to capture all the conditions
of the environments like obstacles, buildings, etc., using
wireless sensory data. As a result, detecting or predicting the
presence of obstacles that would block the received beam
and reduce the throughput at the user end is very difficult
to achieve using only wireless sensory data. However, with
vision assisted HO optimization, visual data (image/video)
is combined with wireless sensory data to enable proactive
obstacle prediction and optimized beam/BS selection that
would help enhance user QoS [137]. In addition, with the
advancement in computer vision, the training overhead that
is normally associated with training ML models for optimal
beam selection can be greatly reduced by utilizing the images
of networks in developing deep learning algorithms for effi-
cient HO operation [138], [139]. In the following paragraphs,
we review the research works that have been proposed on the
use of visual data for HO optimization in mm-wave networks.

One application of visual data for HO optimization is the
prediction of obstacles that might affect the magnitude of the
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received power or data rate at the user end. In this regard, the
authors in [28], proposed a cooperative sensing scheme for
proactive HO in mm-wave networks using a combination of
images captured from multiple cameras and received power.
The idea is to map camera images with HO decision using
DRL such that a proactive HO decision can be initiated
before the received signal is blocked by an obstacle. The
advantage of using multiple cameras is to cover areas that are
inaccessible by other cameras so as to get a complete view
of the network environment. The camera images also enable
the prediction of obstacles that will affect the mm-wave links.
The authors in [140] developed a DRL framework using cam-
era images for optimizing the HO timing by predicting the
future data rate of mm-wave links and ensuring that proactive
HO is performed before data rate degradation occurs due to
presence of obstacles.

Another application of visual data for HO optimization is
the prediction or selection of the optimal beam that the user
should connect based on user mobility and the presence of
obstacles in the mm-wave network environment. Following
this research direction, the authors in [141] demonstrated
how data obtained from LIDAR sensors could be used to re-
duce the overhead associated with mm-wave beam selection
and LOS detection, and proposed a decentralized architecture
using deep CNN. Their work was extended in [142] by
developing a deep learning-based centralized architecture for
beam selection and the detection of the LOS in vehicular
networks by combining location information and LIDAR
data. In [143], the authors proposed a novel beams selection
scheme that is capable of predicting the optimal beam to
connect to at any position in the cell using image-based
3D reconstruction and CNN. They argue that the proposed
method takes images from ordinary cameras and is cheaper to
implement compared to LIDAR-based approaches in [141],
[142].

The work in [137] considered the problem of beam selec-
tion and blockage prediction using camera images, channel
state, and deep learning for a single user communication in
a mm-wave network. The beam selection problem was for-
mulated as an image classification problem such that the UEs
are mapped to a class of beams having a unique beam index,
depending on their location in the image. However, to detect
users that are blocked, the images are matched with channel
information due to the difficulty of detecting obstacles in
still images. The authors in [138] first developed a realistic
image data set for ML-based mm-wave network optimization
that considers many BSs, users, different obstacles, and rich
environmental dynamics. Then leveraging the image data set
and information regarding previously selected beams, a ML
based vision-aided beam tracking framework was proposed
to predict the future beams of mobile users in a mm-wave
communication system.

2) Wireless data aided handover optimization
Non-vision assisted HO optimization, on the other hand, does
not involve the uses visual sensory information such as im-

ages and videos for HO optimization. It uses the conventional
wireless sensory information such as received signal level
and channel state, and user location information to optimize
the switching of user connection from one BS or beam to
another. This is the general technique that is commonly used
in wireless communications systems. In this session, we
review the state-of-the-art in HO optimization in mm-wave
communications networks from the perspective of the BS
and beam selection by exploiting the CSI and user mobility
information such as user location, trajectory, etc.

a) Beam selection: Due to the high path loss and sensi-
tivity to blockage experienced by mm-waves, a large number
of BSs comprising multiple directional antenna arrays have
to be deployed. The use of multiple antenna arrays enables
the formation of narrow signal beams with a high gain when
the phase or amplitude of each antenna is adjusted. This
approach, commonly known as beamforming [144], enables
the formation of directional links between the BSs and UEs.
However, because each BS comprises multiple beams, the
challenge becomes selecting the optimal beam that will serve
the UE in order to satisfy its QoS. In the following para-
graphs, we review the most recent works on ML-based beam
selection in mm-wave and THz communication systems.

The beam selection problem is sometimes modeled as
a multi-classification problem, after which a supervised or
deep learning algorithm is used to identify the beam class.
In this regards, the authors in [145] proposed a data-driven
approach for analog beam selection in hybrid MIMO sys-
tems. The beam selection problem was first formulated as a
multi-classification problem and then solved using SVM in
order to obtain the optimal analog beam for each user. The
performance evaluation shows that the proposed method has
similar data rate to that of traditional methods but with lesser
complexity. In [146], the direction of arrival information was
leveraged to developed a ML scheme for beams selection
in mm-wave communications. The beam selection problem
was expressed as a multi-class problem, and three supervised
learning algorithms namely kNN, SVM, and ANN were used
to solve the problem. The authors in [147], proposed a beam
selection policy for THz systems based on ML approach
with low complexity. The beam selection problem was first
formulated as a multi-classification problem after which a
random forest algorithm was used to determine the optimal
beam class.

In [148] and [149], a ML framework for analog beam
selection was proposed using SVM, which considers the
transmit power of the SCs and channel information as inputs
while the model training was performed using sequential
minimal optimization in order to achieve high sum-rate at
a lower computational complexity. A DNN model for beam
selection where channel knowledge is not required was de-
veloped in [150]. The beam selection problem was modeled
as an image reconstruction problem, after which the DNN
was used for interpolation. The proposed model was first
trained offline—to reduce the training overhead—before on-
line implementation of the trained model was performed. A
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beam selection framework for mm-wave vehicular networks
using different ML-based classification models was proposed
in [151]. The training data set comprised the vehicle location,
type of receiver vehicle and its surrounding vehicles as well
previously selected beams. It was observed that the random
forest algorithm outperformed other classification algorithms
in terms of accuracy and efficiency. A neural network frame-
work for beam selection in THz communication networks
was proposed in [152]. The proposed model was trained
using data samples obtained from the THz channel based on
the multi-classification approach. The proposed model was
able to determine the optimal beam for each user with low
complexity compared to the conventional exhaustive search
method.

Another category of mm-wave beam selection technique
exploits the CSI of sub-6 GHz to minimize the search
overhead involved in selecting the optimal beam as well as
for initial beam establishment. In this regards, the authors
in [153] proposed a DNN based framework for selecting the
optimal mm-wave SCs and beam in a HetNet involving mm-
wave SCs and sub-6 GHz macrocells. They utilized the CSI
from sub-6 GHz macrocells for both SCs and beam selection
in order to minimize the latency resulting from using con-
ventional exhaustive search approach for beam selection. The
authors in [154] introduced a deep learning approach to mm-
wave beam selection in 5G and B5G using sub-6 GHz CSI.
They argue that using the sub-6 GHz CSI for the mm-wave
beam selection would help reduce the search space required
for establishing the initial beam. In [155], a deep learning
framework was proposed for predicting mm-wave beam and
blockage while using sub-6 GHz channel. They proved that
under certain conditions, a mapping function exists, that
can be used to predict the optimal beam and blockages in
any environment. Then they went further to to show that
this mapping function can be learnt using a large enough
neural network after which a DNN model was designed to
perform both predictions. The work in [156], suggested a
deep learning approach for the prediction of the optimal
mm-wave downlink beam. The developed DNN model takes
as input a combination of features extracted from both the
sub-6 GHz channel and mm-wave band in order to enhance
prediction accuracy and achievable data rate.

RL techniques have also been applied to mm-wave beam
selection in literature. In this regard, different (deep) RL
algorithms such as multi-armed bandit (MAB), Q-learning,
deep Q-learning approaches have been proposed. A novel
ML-based beam tracking and alignment framework for a
sparse and time-varying mm-wave channel was proposed
in [157]. The channel tracking was performed using Bayesian
learning and Kalman filtering after which the optimal beam
selection strategy was obtained using MAB. A fast ML
algorithm for beam selection in 5G mm-wave vehicular
networks using contextual MAB (CMAB) was proposed in
[158] and [159]. The proposed model considers the traffic
pattern and different types of blockages in order to select
the optimal beam in real-time without prior training of the

model. In [160], a beam tracking approach based on MAB is
proposed to determine the optimal beams and data rates of the
beams in a mm-wave communication system. The proposed
model uses the beam quality information, and the feedback
obtained from users during initial access to determine the
optimal beam and transmission rate during the next transmis-
sion.

The authors in [161] proposed an online learning algorithm
for optimal beam selection in mm-wave vehicular networks
using CMAB. The developed algorithm is able to predict the
beam direction of the target mm-wave BS from the serving
mm-wave BS depending on the current traffic pattern while
considering the user QoS requirements. In [162] multi-agent
RL (MARL) approach for the joint optimization of user
scheduling and beam selection in mm-wave networks was
developed. The proposed method ensures that the delays
associated with beam selection are minimized while ensur-
ing that the users QoS are satisfied. The authors in [163]
proposed a framework for mm-wave beam prediction in
multi-UAV communication systems using Q-learning. The
proposed model exploits the received coupling coefficients (a
pair of analog beamforming vector from the transmitter and
receiver side of the channel) to determine the optimal beam
that will maximize the received signal-to-interference-plus-
noise-ratio.

A learning-based approach for optimizing beam search
in mm-wave BSs in an indoor network environment while
considering user mobility has been proposed in [164]. The
proposed approach uses multi-state Q-learning while exploit-
ing user trajectory-based data from the radio. They argue
that the proposed method is superior to traditional methods
because it jointly considers both BS and beam selection, can
be adapted to different indoor environments and user mobil-
ity and minimizes the delays due to beam search. A beam
selection framework for high mobility vehicular networks
which aims at enhancing data rate, minimizing the number
of HOs and disconnection time was proposed in [165]. The
proposed framework utilizes parallel Q-learning to determine
the optimal beam for each vehicle. The algorithm leverages
the possibility of simultaneously collecting information from
multiple vehicles on the road to hasten its convergence to
the optimal solution. In [166], an RL framework for beam
selection in NLOS scenarios was introduced. The proposed
framework employs Q-learning to determine the optimal
NLOS beam for each user based on the user’s QoS require-
ment.

The user location can also be exploited in order to identify
the optimal beam selection for user association. The authors
in [167], proposed a beam selection strategy based on ML
that considers the user position and receiver orientation to
select the optimal beam pair, thereby reducing the overhead
associated with beam alignment. Moreover, since their ap-
proach to beam selection is based on multi-classification, the
neural network model is enriched with a large amount of CSI
to enable it not only to select the strongest beam based on the
magnitude of received signal but also an alternative beam.
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This makes the proposed approach resilient against block-
ages. A hierarchical learning-based beam selection scheme
was proposed in [168] for multi-users in mm-wave vehicular
networks. They developed a graph neural network (GNN)
model for beam pair selection while considering CSI and user
positions. A deep learning model based on CNN architecture
was proposed in [169] for selecting the beam that gives
the best communication performance to users in a massive
MIMO system while considering user position. In [170], the
authors developed a learning-based beam alignment scheme
for mm-wave systems that can determine the optimal BS
while only exploiting the user position. The proposed scheme
can predict the optimal BS and beam even with incom-
plete user location information with reduced search time.
A position-based online learning framework for optimal
beam pair selection and refinement was proposed in [171]
while considering only user position. The beam selection
and refinement problem was first modeled as a continuum-
armed bandit problem after which a risk-aware greedy upper
confidence bound (UCB) algorithm was developed for beam
selection while a hierarchical optimistic optimization (HOO)
was used for beam refinement. The observed that where more
information regarding the environment can be obtained from
BS or user devices, the training overhead can be further
reduced.

b) Base station selection: A proactive HO framework that
enable users to switch connection to another BS before link
disconnection was proposed in [107]. The proposed method
uses deep learning to predict obstacles and trigger HO before
link disconnection occurs, thereby ensuring the reliability of
the link and preventing data transmission delays due to link
disconnection. In [172] and [172], a HO mechanism for se-
lecting the optimal BS in mm-wave network based on MAB
approach was developed in order to ensure the user has a
longer connection time with the BS after HO. The considered
the user’s post-HO trajectory, and the blockages along the
LOS to predict future HO. A RL framework for minimiz-
ing frequent HO while satisfying users QoS was proposed
in [173] using MAB. The proposed framework takes into
account the channel conditions and user QoS requirements
before triggering HO. Furthermore, two BS selection algo-
rithms were also developed based on user density for both
single-user and multiply user HO scenarios, respectively.
An intelligent HO decision framework for BS selection was
proposed in [103]. The proposed framework uses a double
DRL (DDRL) algorithm to learn the optimal BS for user
association in order to minimize the number of HOs and
optimize the average throughput along the user trajectory. A
distributed learning framework for HO optimization in dense
mm-wave networks was proposed in [174] and [175] in order
to minimize frequent HO and optimize user throughput. The
framework employs MARL where each user was modeled as
an agent and takes an independent HO decision based on its
local observation, thereby reducing signaling overhead.

The authors in [176] introduced a HO optimization algo-
rithm based on RL for 5G systems. They modeled the HO

problem as a CMAB, then developed a Q-learning solution.
In [177], the authors proposed a deep learning model for user
localization and proactive HO management, while consider-
ing user behaviour in the network. The proposed model uses
the received signal measurements to reduce the number of
unnecessary HOs and predict the user location while ensuring
that the throughput of the network is maintained. A joint
optimization framework for minimizing HO frequency and
maximizing user throughput was proposed in [178]. The
HO and power allocation problem was modeled as a coop-
erative multi-agent task, after which a MARL framework
using proximal policy optimization (PPO) was developed.
The model training was performed in a centralized manner
after which decentralized policies were obtained for each
user. The authors in [179], proposed a learning framework
that jointly optimizes HO and beamforming for mm-wave
networks. RL algorithm was employed to determine the opti-
mal backup BSs along user trajectory that will help reduce
the overhead signaling during channel estimation for user
association and minimize the number of HOs. This would
ensure an enhanced data rate along the user trajectory.

A learning-based load balancing HO mechanism was pro-
posed in [101]. The user association problem was modeled as
a non-convex optimization problem, after which a deep deter-
ministic policy gradient (DDPG) RL algorithm was applied
to solve the optimization problem. The algorithm’s goal is to
associate all the users in different trajectories in the network
environment to the optimal BSs in such a way that maximizes
their sum rate as well as reduces the number of HO occur-
rences. The authors in [180] exploit user-centric information
to predict user future content request and mobility pattern,
after which the optimal user association with UAVs, UAVs’
position and content to cache at the UAVs were determined.
The goal of their work was to enhance the QoE of the
users while reducing the UAV’s transmission power. A ML
framework using echo state networks was proposed to predict
the user future content requests and mobility pattern after
which analytical derivations of the optimal UAV locations
and contents to cache at the UAV were performed. In [181], a
joint optimization framework was proposed for both resource
and cache management over licensed and unlicensed for UAV
networks. To solve the optimization problem, a liquid state
machine learning algorithm was developed to predict the
distribution of the user content as well as to enable the UAV
select the optimal resource allocation strategy for serving
user requests. In addition, a closed form expression was
derived to determine the optimal user content to cache and
optimal resource allocation.

VI. CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
Although many studies have been carried out to address the
issue of HO management in 5G specifically for mm-wave
applications, many significant challenges still needs to be
addressed. In this section, we briefly highlight some of the
challenges associated with the application of ML techniques
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TABLE 6. Summary of the State-of-the-art ML-based HO Optimization in 5G mm-wave Communication Systems.

Paper Year Visual Data Wireless Data ML Algorithm
Beam Selection BS Selection

[28] 2020 3 DRL

[140] 2019 3 DRL

[141] 2019 3 CNN

[142] 2019 3 DNN

[143] 2019 3 CNN

[137] 2020 3 DNN

[138] 2020 3 DNN

[145] 2018 3 SVM

[146] 2019 3 kNN,SVM, ANN

[147] 2019 3 Random Forest

[148], [149] 2019, 2020 3 SVM

[150] 2019 3 DNN

[151] 2018 3 Random Forest

[152] 2019 3 ANN

[153] 2020 3 DNN

[154] 2020 3 DNN

[155] 2020 3 DNN

[156] 2020 3 DNN

[157] 2019 3 MAB

[160] 2020 3 MAB

[161] 2020 3 CMAB

[162] 2020 3 MARL

[163] 2020 3 Q-learning

[164] 2018 3 Q-learning

[165] 2020 3 Q-learning

[167] 2020 3 ANN

[168] 2019 3 GNN

[169] 2019 3 CNN

[170] 2019 3 DNN

[171] 2019 3 CMAB

[166] 2019 3 Q-learning

[107] 2018 3 DNN

[172], [182] 2019, 2020 3 CMAB

[173] 2018 3 MAB

[103], [183] 2020 3 DDRL

[174], [175] 2020 3 MARL

[176] 2020 3 Q-learning

[177] 2020 3 DNN

[178] 2020 3 MARL - PPO

[179] 2020 3 RL

[101] 2020 3 DDPG RL

VOLUME X, 2021 25



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3067503, IEEE Access

for HO management in 5G and present future research direc-
tions.

A. DATA SET AVAILABILITY
ML-based implementations rely on the availability of suffi-
cient 12 and quality data 13 for model training. However, ML
based mobility and HO optimization require data set con-
taining user mobility history which is usually very difficult
to obtain due to various data protection regulations [124].
Hence, synthetic data via network simulations are normally
used for model training. Also, there is the issue of data
uniformity where data set generated cannot be used across
different platforms. Hence, there is a need to create quality
data sets that can be used as benchmarks to assess the
accuracy of different ML models that are being proposed for
mobility predictions and HO optimization in order to verify
their authenticity.

B. PRIVACY AND SECURITY
Mobile service providers are typically responsible for pro-
tecting the privacy of their customers. As a result, it is very
difficult to release the complete and quality data sets from
mobile networks without revealing the personal identity of
the users and compromising their privacy. Moreover, ML
model security is another issue that should be considered as
deep learning models can be subject to adversarial attack.
These attacks often inject fake data set to the training data
set, thereby reducing model accuracy and resulting in sub-
optimal network performance [184] and [185]. More re-
searches need to be conducted on how to properly anonymise
data sets from mobile operators in other to prevent vital user
information from being revealed while retaining the relevant
features of the data set. There is also a need for more research
on how to secure deep learning model from adversarial attack
that seeks to undermine their accuracy. In addition, more
privacy-preserving ML algorithms such as federated learning
needs to developed and employed for mobility management
and HO optimization in order to guarantee the security and
secrecy of user information.

C. GENERALIZATION OF THE ML MODEL
Generalization is the ability of a ML model to learn from seen
data and be able to predict the unseen data. Nevertheless, it
is not always clear if the trained model is truly generalized
since it is difficult to determine if the data set that was used
for model training captured all the environment features and
parameters such that the model would have been exposed to
all these features during model training for effective gener-
alization to happen. Therefore, it is essential to ensure that
when generating synthetic data set or obtaining real data sets
for mobility predictions and HO optimization that all the

12Sufficiency here means that the available data set should be large enough
to enable proper training of the ML model.

13Quality here means that the data set must be free from missing entries,
duplicated entries or any form of noise that may hinder the ML model from
accurately learning from the data set.

features in the environment are adequately represented in the
data set in order to enhance generalization of the ML models.

D. OFFLINE VERSUS ONLINE LEARNING
Due to the large dimension of 5G and B5G networks as well
as the large number of parameters that needs to be learnt
during mobility prediction and HO optimization, network de-
signers often have to resort to offline training to reduce both
time and space complexity. The successful implementation
of offline trained model depends on the adaptability and gen-
eralization ability of the model. However, HO optimization
often require real-time training and decision making. Hence,
there is a need to reduce the number of parameters that needs
to be trained by employing clustering method [126] and
the use of hardware acceleration [186] to facilitate the ML
training process. There might also be a need for both offline
and online learning where the model goes through a periodic
update and refinement during real time implementation.

E. CENTRALIZED VS DISTRIBUTED DEPLOYMENT
ML models can either be implemented centrally or in a
distributed manner, depending on the network configuration
with each having its advantage or disadvantage. On the one
hand, the advantage of decentralized implementation is low
signaling overhead and lesser computation. At the same time,
it faces the challenge of inaccurate network optimization
due to localized or lack of global network information. On
the other hand, the centralized learning case has a global
information of the environment and is able to perform a
coordinated and collaborative learning that leads to global
network optimization. However, it results in massive signal-
ing and computation overhead due to periodic data collection
as well as end-to-end delays. Hence, there must be trade-
off considerations between global accuracy and huge over-
head [187]. With increased network dimensions, complexity
and heterogeneous UEs in 5G and B5G networks, it would
be more suitable to implement decentralized ML approaches
for mobility management and HO optimization as they can
help preserve user privacy, reduce latency and communica-
tion overhead and also minimize the energy consumption of
UEs [130]. However, the issue of coordination for decen-
tralized learning and the challenges involved in sending the
locally trained models from the user devices to the central
entity due to imperfect channel conditions [132], requires that
more research and investigations needs to be carried out on
how to effectively implement decentralized ML approaches
for mobility management and HO optimization in 5G and
B5G networks.

F. FREQUENT HANDOVER
The deployment of large number of mm-wave small
cells (due to the short transmission distance of mm-wave
signals) to serve the traffic demands of the growing number
of UEs would result in increased and unnecessary HOs as
well as HO failures. More frequent HO occurrences results
in increased signalling overhead, reduced QoS of UEs and
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increased device power consumption [188]. Therefore, more
improved models needs to be developed to reduce the number
of HO occurrences as well as optimize the procedure of the
HO decision-making process.

G. SIGNALING OVERHEAD
The increase in the number of UEs as well as the large de-
ployment of mm-wave BSs would make the UEs more prone
to frequent HOs. The process of HO usually involves the
transmission of packets which results in increased signaling
overhead in the network. The more the number of HO occur-
rences, the higher the signaling overhead. Signaling overhead
during HO leads to interruptions in data transmission which
reduces the user throughput and increases latency [189].
Newer approaches needs to be developed to reduce the
number of HOs and shorten data interruption time due to
transmission of HO signaling messages by optimizing HO
parameters and eliminating the concept of area notification.

H. DEVICE POWER CONSUMPTION
The process of HO in mm-wave communications requires
that the UEs makes intra-frequency or inter-frequency mea-
surements depending on its carrier frequency and that of the
BS. These measurements increases as the number of mm-
wave BSs increases, thereby resulting in increased power
consumption for the UEs [190]. This power consumption
can be minimized by reducing the measurement gaps and
ensuring that the UEs take measurements within the DRX
cycle. The smaller, the DRX cycle, the lesser the power
consumption [106]. Hence, mobility and HO management
schemes that can reduce the DRX cycle needs to be devel-
oped in order to optimize the device power consumption.

I. LOAD BALANCING
The uneven distribution of UEs within the network due to
random cell positioning and UEs mobility makes some cells
to become more loaded than others as a result of more UEs
associating with those cells than others. This load imbalance
among the cells causes frequent HO and degradation in the
QoS of the UEs [100]. Also, in an attempt to prevent frequent
HO, most of the HO optimization methods proposed in
literature suggest HO skipping or prolonged user connection
to a BS [191], which could lead to load imbalance in the
network. Therefore, further research needs to be conducted
on the effects of the proposed HO optimization schemes on
the load balance of the network in order to ensure the QoS of
UEs and minimize network congestion.

VII. CONCLUSION
HO management has already been one of the main issues in
cellular networks, and is envisioned to be more critical with
the introduction of 5G networks due to the prospective ca-
pacity enhancement technologies. ML has been quite perva-
sive in numerous domains, including healthcare, agriculture,
disaster prevention, etc., and it has become a reality in 5G
networks with proven capabilities in terms of effectiveness

and efficiency. Besides, almost all the visionary works that
attempt to draw a framework for 6G network foresee that ML
will lie at the heart of 6G. In this survey, we first tried to take
a snapshot of the current status of cellular communication
networks, and then gave a comprehensive tutorial in both
mobility and HO management in 5G after elaborating some
distinctive characteristics of 5G networks. After that, the
major ML branches, namely supervised, unsupervised, and
RL (RL), were introduced, and their applications to HO
management process were presented. An extensive review on
the recent studies on ML-aided HO management techniques
was provided under a novel classification that is based on
the source of the data for ML implementations. Lastly, the
challenges that can be faced while incorporating ML into
HO management procedure were identified and thoroughly
discussed, followed by a discussion of future research direc-
tions.

Although there are multiple survey papers available in the
literature reviewing mobility and/or HO management in 5G
networks, this is a unique attempt to solely focus on ML
applications to HO management. Further, the scope of the
paper was kept limited to HO management in order to analyze
the topic in a concise and clear manner. The state-of-the-art
was reviewed which encompasses the most recent studies in
order to demonstrate the current research focus within the
community and to keep the readers up-to-date with the most
relevant and timely data. In addition, we provided a novel tax-
onomy about the source of the data and visual data aided HO
management techniques, which has been overlooked in the
existing survey papers, was included in the discussions along
with the traditional wireless data driven applications. With
this, we aimed to divert the research focus from conventional
approaches to the visual data sources due to the promising
potentials of utilizing them in HO management. We also
included a discussion on how intelligent HO management
can be helpful in emergency scenarios, where there could
be mobile clinics, ambulances, remote hospitals, etc. This is
quite important on its own considering the current COVID-
19 pandemic, which created a chaos in the world and put the
need for intelligent and remote control under the spotlight.
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