About
216
Publications
4,082
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,354
Citations
Publications
Publications (216)
The title crystal structure is assembled from the superposition of two molecular structures, ( E )-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, C 12 H 9 ClOS 2 (93%), and ( Z )-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, C 12 H 11 ClOS 2 (7%), 0.93C 12 H 9 ClOS 2 ·0.07C 12 H 11 ClOS 2 . Both were obtain...
The synthesis, crystal structure and structural motif of two thiophene-based cyanoacrylate derivatives, namely, ethyl ( E )-2-cyano-3-(3-methylthiophen-2-yl)acrylate ( 1 ), C 11 H 11 NO 2 S, and ethyl ( E )-2-cyano-3-(thiophen-2-yl)acrylate ( 2 ), C 10 H 9 NO 2 S, are reported. Derivative 1 crystallized with two independent molecules in the asymmet...
In the title compound, C 16 H 16 Cl 2 N 2 O 2 S, the pyrazole ring has an envelope conformation with the C atom bearing the phenyl ring being the flap. The dihedral angles between the central pyrazole ring (all atoms) and pendant thiophene and phenyl rings are 2.00 (14) and 81.49 (12)°, respectively. In the crystal, weak C—H...O, Cl...π and π–π sta...
Summary of Data CCDC 1904125
Authors: Michael Marsch, Lennart Nicke, Armin Geyer
Formula: C15 H19 N1 O5
Unit Cell Parameters: a 9.5463(4) b 16.6629(8) c 10.0255(5)
Spacegroup P21/c
DOI: 10.5517/ccdc.csd.cc21xdds
Summary of Data CCDC 1904126
Authors: Michael Marsch, Christoph Priem, Armin Geyer
Formula: C12 H21 N1 O7 S1
Unit Cell Parameters: a 8.1297(8) b 10.7261(11) c 17.974(2)
Spacegroup P212121
DOI: 10.5517/ccdc.csd.cc21xdft
Summary of Data CCDC 1904104
Authors: Michael Marsch, Felix Weiher, Armin Geyer
Formula: C10 H14 O3
Unit Cell Parameters: a 21.4580(14) b 7.0850(6) c 6.3150(7)
Spacegroup Pna21
DOI: 10.5517/ccdc.csd.cc21xcq2
Summary of Data CCDC 1904134
Authors: Michael Marsch, Christoph Priem, Armin Geyer
Formula: C21 H23 N1 O7 S1
Unit Cell Parameters: a 9.7727(4) b 9.5061(4) c 22.7303(10)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21xdp2
Summary of Data CCDC 1904140
Authors: Michael Marsch, Lennart Nicke, Armin Geyer
Formula: C25 H22 N2 O5
Unit Cell Parameters: a 8.811(7) b 14.177(8) c 17.112(10)
Spacegroup P212121
DOI: 10.5517/ccdc.csd.cc21xdw8
Summary of Data CCDC 1904127
Authors: Michael Marsch, Christoph Priem, Armin Geyer
Formula: C13 H20 N2 O5
Unit Cell Parameters: a 9.0857(5) b 12.9140(5) c 12.9884(6)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21xdgv
Summary of Data CCDC 1904136
Authors: Michael Marsch, Lennart Nicke, Armin Geyer
Formula: C18 H19 N1 O3
Unit Cell Parameters: a 9.1412(4) b 15.5254(6) c 22.3430(11)
Spacegroup Pbca
DOI: 10.5517/ccdc.csd.cc21xdr4
Summary of Data CCDC 1904138
Authors: Michael Marsch, Lennart Nicke, Armin Geyer
Formula: C18 H17 N1 O3,C2 H6 O1 S1
Unit Cell Parameters: a 9.5160(4) b 9.6784(4) c 12.2712(5)
Spacegroup P-1
DOI: 10.5517/ccdc.csd.cc21xdt6
Summary of Data CCDC 1904139
Authors: Michael Marsch, Lennart Nicke, Armin Geyer
Formula: C25 H22 N2 O5
Unit Cell Parameters: a 12.298(3) b 5.4805(16) c 15.083(4)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21xdv7
Summary of Data CCDC 1904148
Authors: Michael Marsch, Christoph Priem, Armin Geyer
Formula: C17 H23 N1 O4 Se1
Unit Cell Parameters: a 11.7613(9) b 5.9773(5) c 12.7129(10)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21xf4k
Summary of Data CCDC 1902966
Michael Marsch, Sonja Eckhardt, Armin Geyer
Formula: C15 H13 F3 N2 O6 S2
Unit Cell Parameters: a 5.9381(2) b 8.1449(3) c 36.8782(16) P212121
DOI: 10.5517/ccdc.csd.cc21w605
Summary of Data CCDC 1902989
Michael Marsch, Susanne Kümmel, Armin Geyer
Formula: C10 H9 N1 O4 S1
Unit Cell Parameters: a 6.3391(4) b 21.1230(12) c 7.5907(5) P21/a
DOI: 10.5517/ccdc.csd.cc21w6rx
Summary of Data CCDC 1902991
Michael Marsch, Susanne Kümmel, Armin Geyer
Formula: C14 H18 N2 2+,2(Cl1 1-)
Unit Cell Parameters: a 11.2477(15) b 5.7441(5) c 11.3629(18) P21/n
DOI: 10.5517/ccdc.csd.cc21w6tz
Summary of Data CCDC 1903002
Michael Marsch, Sebastian Enck, Armin Geyer
Formula: C6 H6 N2 O3 S1
Unit Cell Parameters: a 7.2504(5) b 9.1044(4) c 11.7134(8) P21/n
DOI: 10.5517/ccdc.csd.cc21w75c
Summary of Data CCDC 1903005
Michael Marsch, Frauke Messik, Markus Oberthür
Formula: C6 H11 N1 O4
Unit Cell Parameters: a 6.8969(3) b 9.3139(5) c 11.0526(4) P212121
DOI: 10.5517/ccdc.csd.cc21w78g
Summary of Data CCDC 1902999
Michael Marsch, Felix Weiher, Armin Geyer
Formula: C15 H24 N2 O6,H2 O1
Unit Cell Parameters: a 10.4194(6) b 10.5401(8) c 16.0334(9) P212121
DOI: 10.5517/ccdc.csd.cc21w728
Summary of Data CCDC 1902640
Authors: Michael Marsch, Sonja Eckhardt, Armin Geyer
Formula: C13 H11 F3 N2 O4 S2
Unit Cell Parameters: a 12.9234(5) b 8.4914(3) c 13.7005(5)
Spacegroup P21/c
DOI: 10.5517/ccdc.csd.cc21vvh8
Summary of Data CCDC 1902644
Authors: Michael Marsch, Magdalena Wasielak, Armin Geyer
Formula: C9 H11 N1 O4
Unit Cell Parameters: a 8.9839(3) b 30.5977(14) c 6.9839(4)
Spacegroup P21/c
DOI: 10.5517/ccdc.csd.cc21vvmd
Summary of Data CCDC 1902649
Authors: Michael Marsch, Björn Eckhardt, Armin Geyer
Formula: C23 H30 N6 O9 S2
Unit Cell Parameters: a 6.2422(3) b 20.5181(13) c 21.1418(13)
Spacegroup P212121
DOI: 10.5517/ccdc.csd.cc21vvsk
Summary of Data CCDC 1902643
Authors: Michael Marsch, Sonja Eckhardt, Armin Geyer
Formula: C10 H13 N1 O5 S1
Unit Cell Parameters: a 5.4364(6) b 5.2336(3) c 19.791(2)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21vvlc
Summary of Data CCDC 1902646
Authors: Michael Marsch, Christoph Klotz, Armin Geyer
Formula: C9 H13 N1 O6 S1
Unit Cell Parameters: a 7.3767(2) b 18.1465(5) c 24.5676(8)
Spacegroup P212121
DOI: 10.5517/ccdc.csd.cc21vvpg
Summary of Data CCDC 1901923
Authors: Michael Marsch, Timm Schlosser, Armin Geyer
Formula: C8 H14 O1 C8 H10 O1
Unit Cell Parameters: a 8.3400(8) b 16.2352(14) c 11.3420(10)
Spacegroup P21/n
Summary of Data CCDC 1901934
Authors: Michael Marsch, Björn Eckhardt, Armin Geyer
Formula: C17 H26 N2 O7 S1
Unit Cell Parameters: a 8.7771(8) b 11.0771(7) c 20.6432(16)
Spacegroup P212121
Summary of Data CCDC 1902308
Authors: Michael Marsch, Sebastain Enck, Armin Geyer
Formula: C28 H57 N1 O7 S1 Si3
Unit Cell Parameters: a 19.997(3) b 16.246(3) c 23.468(3) C2
Summary of Data CCDC 1902323
Authors: Michael Marsch, Timm Schlosser, Armin Geyer
Formula: C12 H14 O2
Unit Cell Parameters: a 11.1851(14) b 11.5962(12) c 8.0539(8)
Spacegroup P21/c
Summary of Data CCDC 1902339
Authors: Michael Marsch, Dominik Kohr, Armin Geyer
Formula: C6 H11 N4 O2 1+ C2 F3 O2 1-
Unit Cell Parameters: a 7.4788(5) b 8.8087(5) c 9.2674(7)
Spacegroup P21
Summary of Data CCDC 1901932
Authors: Michael Marsch, Miriam Lauz, Armin Geyer
Formula: C20 H21 N1 O5
Unit Cell Parameters: a 11.5656(9) b 6.4796(4) c 11.6160(7)
Spacegroup P21
Summary of Data CCDC 1901931
Authors: Michael Marsch, Rolf Hörger, Armin Geyer
Formula: C17 H25 N1 O7 S1,0.13(H2 O1)
Unit Cell Parameters: a 7.8870(8) b 12.1889(10) c 20.227(2)
Spacegroup P212121
Summary of Data CCDC 1902313
Authors: Michael Marsch, Björn Eckhardt, Armin Geyer
Formula: C14 H21 N3 O6 S1
Unit Cell Parameters: a 6.9509(3) b 10.1853(4) c 23.1326(7)
Spacegroup P212121
Summary of Data CCDC 1901933
Formula: C14 H15 N1 O4 S1
Authors: Michael Marsch, Sonja Eckhardt, Armin Geyer
Unit Cell Parameters: a 9.010(7) b 9.721(6) c 15.109(8)
Spacegroup P212121
Summary of Data CCDC 1902320
Authors: Michael Marsch, Harald Seger, Armin Geyer
Formula: C16 H21 N1 O10 S1
Unit Cell Parameters: a 9.3157(5) b 8.3219(4) c 12.5309(9)
Spacegroup P21
Summary of Data CCDC 1902321
Authors: Michael Marsch, Harald Seger, Armin Geyer
Formula: C22 H30 N6 O12 S2,3(H2 O1)
Unit Cell Parameters: a 9.0051(13) b 17.0620(16) c 9.4081(13)
Spacegroup P21
Summary of Data CCDC 1902342
Authors: Michael Marsch, Harald Seger, Armin Geyer
Formula: C14 H19 N1 O7 S1
Unit Cell Parameters: a 8.2360(3) b 12.0518(4) c 15.8231(6)
Spacegroup P212121
Summary of Data CCDC 1901488
Authors: Michael Marsch, Ferdinand Bosold, Armin Geyer
Formula: C10 H10 Cl1 N1 O4 S1
Unit Cell Parameters: a 5.9481(4) b 9.1869(8) c 21.3378(18)
Spacegroup P 21 21 21
DOI: 10.5517/ccdc.csd.cc21tnbw
Summary of Data CCDC 1901636
Authors: Michael Marsch, Harald Seger, Armin Geyer
Formula: C16 H19 N1 O7 S1 * H2 O1
Unit Cell Parameters: a 8.2695(8) b 5.6479(3) c 18.3087(16)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21tt3t
Summary of Data CCDC 1901639
Authors: Michael Marsch, Dominik Kohr, Armin Geyer
Formula: C22 H34 N6 O8 * H2 O1
Unit Cell Parameters: a 12.7600(10) b 10.2294(6) c 19.5823(15)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21tt6x
Summary of Data CCDC 1901652
Authors: Michael Marsch, Rolf Hörger, Armin Geyer
Formula: C10 H15 N1 O7 S1 * H2 O1
Unit Cell Parameters: a 5.0040(2) b 6.9495(4) c 36.737(3)
Spacegroup P212121
DOI: 10.5517/ccdc.csd.cc21ttmb
Summary of Data CCDC 1901682
Authors: Michael Marsch, Harald Seger, Armin Geyer
Formula: C13 H19 N1 O7 S1
Unit Cell Parameters: a 10.5589(13) b 5.7632(8) c 13.2192(16)
Spacegroup P21
DOI: 10.5517/ccdc.csd.cc21tvlb
Summary of Data CCDC 1901665
Authors: Michael Marsch, Rolf Hörger, Armin Geyer
Formula: C18 H23 N1 O9 S2
Unit Cell Parameters: a 7.1842(3) b 8.8671(4) c 31.8062(16)
Spacegroup P212121
DOI: 10.5517/ccdc.csd.cc21tv1s
Summary of Data CCDC 1901686
Authors: Michael Marsch, Harald Seger, Armin Geyer
Formula: C7 H9 N1 O4 S2
Unit Cell Parameters: a 10.7345(12) b 5.1188(7) c 16.8496(18)
Spacegroup P21/c
DOI: 10.5517/ccdc.csd.cc21tvqg
Beta‐Substituted chiral gamma‐aminobutyric acids display important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein we report an efficient catalytic enantioselective approach for the synthesis of beta‐substituted gamma‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asy...
Beta‐Substituted chiral gamma‐aminobutyric acids display important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein we report an efficient catalytic enantioselective approach for the synthesis of beta‐substituted gamma‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asy...
Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ri...
Herein, we report about the design, synthesis, and application of a nucleophilic octahedral chiral-only-at-metal iridium(III) complex. We demonstrate that the enantiopure form of this complex serves as an efficient catalyst for the asymmetric Steglich rearrangement of O-acylated azlactones (up to 96% ee and 99% yield) and the related asymmetric Bla...
Summary of Data CCDC 1477552
Authors: H.Seger, M.Marsch, A.Geyer
Journal: Private Communication 2016
Formula: C13 H19 N O8 S
Unit cell parameters: a 5.680(<1) b 13.089(1) c 19.706(2) 90 90 90
Space group P212121
Summary of Data CCDC 1477581
Authors: A.Wuttke, M.Marsch, A.Geyer
Journal: Private Communication 2016
Formula: C26 H32 N6 O8 S, C H4 O
Unit cell parameters: a 7.715(<1) b 11.708(<1) c 15.984(<1) beta 97.64
Space group P21
The chiral Rh complex is highly efficient in the title reaction (detailed mechanism).
The title compound was prepared by the condensation of an equimolar mixture of 1-(2,5-dichlorothiophen-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one, malononitrile and sodium hydroxide. The molecular structure was fully characterized using different spectroscopic methods. Mass ESI–HRMS measurements were performed. The HRESIMS analysis revealed the molec...
A bis-cyclometalated rhodium(III) complex catalyzes a visible light activated enantioselective α-amination of 2-acyl imidazoles with up to 99% yield and 98% ee. The rhodium catalyst is ascribed a dual function as a chiral Lewis acid and simultaneously as a light activated smart initiator of a radical chain process through intermediate aminyl radica...
The 6,7,8,8a-cis (all-cis) substituted δ-valerolactams of type , and are high-affinity diols for boronic ester formation, superior to the corresponding 6,7-trans analogues , and . X-ray and NMR structure analysis have identified the differences of the six-membered ring conformations which cause the improved esterification properties of the all-cis...
The syntheses of the first molecular meta-selenidomercurate(ii), ortho-telluridothallate(iii) and a hydrate of an ortho-selenidoplubate(iv) are presented alongside an improved and facile synthesis of the selenidobismuthate(iii) with almost quantitative yields. By means of quantum chemical calculations, the energetics of the interconversions of smal...
Synthetic polyesters are usually composed of monohydroxycarboxylic acids to avoid the problem of regioselectivity during ring-opening polymerization. In contrast, the linear polyester BICpoly contains four secondary OH groups and is nevertheless esterified regioselectively at only one of these positions. Neither the synthesis of the tricyclic monom...
Synthetische Polyester sind aus Monohydroxycarbonsäuren aufgebaut, um das Problem der Regioselektivität der Veresterung bei der Ringöffnungspolymerisation zu vermeiden. Im Unterschied dazu trägt der lineare Polyester BICpoly gleich vier sekundäre OH-Gruppen pro Monomer und ist trotzdem nur über eine davon regioselektiv verestert. Sowohl bei der Syn...
Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic ch...
The title compound was prepared by the condensation of (E)-1-(2,5-dichlorothiophen-3-yl)-3-(4-methoxy)prop-2-en-1-one and thiourea in the presence of KOH. In the title compound, C34H28Cl16N4O2S4, the asymmetric unit consists of two independent molecules and four independent chloroform molecules. The heterocyclic pyrimidine-2(1H)-thione rings adopt...
The boron trifluoride activation of trichloroacetimidate donors was found to be an efficient method for the alpha-mannosylation of tyrosine-containing acceptors. Most notably, these conditions are compatible with the commonly used carbamate protecting groups, whereas trichloroacetimidate activation with trimethylsilyl triflate or the use of glycosy...
Formula: C16 H22 N2 O5
Unit cell parameters: a 4.7806(3) b 9.9198(4) c 18.0281(11) beta 90.350(5)
space group P21
Formula: C12 H16 N4 O5 S1
Unit cell parameters: a 6.4513(9) b 8.0413(11) c 8.3415(11)
alpha 74.668(16) beta 69.467(16) gamma 71.102(16)
space group P1
The absolute configuration has been determined for the title compound, C14H20N2OS. There are two independent molecules in the asymmetric unit. Intermolecular N—H...O hydrogen bonds are observed in the crystal packing, forming infinite chains with the base vectors [100] and [010]. Each chain contains only one of the two independent molecules.
The absolute configuration has been determined for the title compound, C(14)H(20)N(2)OS. Inter-molecular N-H⋯O hydrogen bonds are observed in the crystal packing, forming infinitive one-dimensional chains with the base vector [100].
The absolute configuration of the title tetracyclic bis-oxazine, C14H17N3O5S, has been determined. It is an unexpected product from the attempt to synthesize a new class of bis-oxazolines. The seven-membered lactam ring exhibits four axial (O and N) and one equatorial (S) substituents. The ortho-condensed and cis-configurated oxazine rings are pos...
Das vollständige Manuskript dieser Zuschrift erscheint in: Angew. Chem. Suppl. 1982, 345. DOI: 10.1002/ange.198203450
The absolute configuration of the title tetracyclic bis-oxazine, C14H17N3O5S, has been determined. It is an unexpected product from the attempt to synthesize a new class of bis-oxazolines. The seven-membered lactam ring exhibits four axial (O and N) and one equatorial (S) substituents. The ortho-condensed and cis-configurated oxazine rings are pos...
The absolute configuration has been determined for the title compound, C21H27NO9S2·C7H8. The compound is a precurser in the synthesis of bicyclic dipeptide isosteres based on mannuronic acid. The seven-membered lactam ring adopts a rigid chair conformation.
The absolute configuration has been determined for the title compound, C14H18N2O5S, a bicyclic aromatic building block which can act as a rigid fluorescence marker in peptide backbones. In the crystal packing, the two independent molecules of the asymmetric unit are aligned in an antiparallel manner as dimers which are stabilized by antiparallel in...
The absolute configuration has been determined for the title compound, C14H18N2O5S, a bicyclic aromatic building block which can act as a rigid fluorescence marker in peptide backbones. In the crystal packing, the two independent molecules of the asymmetric unit are aligned in an antiparallel manner as dimers which are stabilized by antiparallel in...
The absolute configuration has been determined for the bicyclic title compound, C14H17N7O7S, an intermediate in the synthesis of fixed chiral bis(1,2-aminohydroxy) compounds. In the crystal structure, the chair conformation of the seven-membered lactam ring exhibits four axial heteroatom substituents. The fused five-membered thiazolidine ring...
The absolute configuration has been determined for the title compound, C14H18N2O6S, a fluorescent dipeptide analogue, which can act as a rigid backbone chromophore in peptides. Intermolecular N—H⋯O=C hydrogen bonds [H⋯O = 2.37 (2) Å] are observed in the crystal packing.
The title compound, C11H19NO4, is a precursor for the preparation of (1S,2R,4R)-4-amino-2-(hydroxymethyl)cyclopentanol, which is an important carbocyclic analogue of β-2-deoxyribosylamine. The crystal packing of the title compound is stabilized by intermolecular O—H⋯O hydrogen bonds.