
The CÆSAR Code:

Software Design Issues

(Extended Version)

Michael L. Hall

Radiation Transport Methods Group (XTM)

Los Alamos National Laboratory

Email: hall@lanl.gov

X-Division External

Review Committee Presentation

3 / 10 / 99

Available on-line at

http://www.lanl.gov/Caesar/



Outline

• Background

– Cæsar Description

– Diffusion Discretization References

• Documentation

– Why Document A Program?

– Levels of Documentation

– Literate Programming

– Simplified Approach: Document

– Examples

– Cæsar Documentation Features

• Unit Testing / Levelized Design

– Basic Ideas

– Preliminary Cæsar Levelized Design

– Unit Testing Implementation

• Design By Contract / Verification

– Basic Ideas

– Verification Implementation

– Design By Contract Implementation

• Summary

2 of 21



Cæsar Description

• 3-T Photonics Diffusion (P1) Code

• Multiple Dimensionality (1-D, 2-D, 3-D)

• Unstructured Hexahedral Cells in 3-D

• Second-Order Convergent Diffusion Discretizations

• Parallel, written in Fortran 90

• Based on earlier Augustus (P-1) and Spartan (SPN )

codes

• Future: Polyhedral Meshes, Multigroup, Tensor Diffu-

sion, Mixed Cells, Transport

3 of 21



Diffusion Discretization References

• Morel-Hall Asymmetric Method

– Described in

Michael L. Hall, and Jim E. Morel. A Second-Order Cell-
Centered Diffusion Differencing Scheme for Unstructured Hex-
ahedral Lagrangian Meshes. In Proceedings of the 1996
Nuclear Explosives Code Developers Conference (NECDC),
UCRL-MI-124790, pages 359–375, San Diego, CA, Octo-
ber 21–25 1996. LA-UR-97-8.

which is an extension of

J. E. Morel, J. E. Dendy, Jr., Michael L. Hall, and Stephen W.
White. A Cell-Centered Lagrangian-Mesh Diffusion Differenc-
ing Scheme. Journal of Computational Physics, 103(2):286-
299, December 1992.

to 3-D unstructured meshes, with an alternate derivation.

• Support Operator Symmetric Method:

– Described in

Michael L. Hall, and Jim E. Morel. Diffusion Discretization
Schemes in Augustus: A New Hexahedral Symmetric Support
Operator Method. In Proceedings of the 1998 Nuclear Explo-
sives Code Developers Conference (NECDC), Las Vegas, NV,
October 26–30 1998. LA-UR-98-3146.

which is an extension of

Mikhail Shashkov and Stanly Steinberg. Solving Diffusion
Equations with Rough Coefficients in Rough Grids. Journal
of Computational Physics, 129:383-405, 1996.

to 3-D unstructured meshes, with an alternate derivation.

4 of 21



Why Document A Program?

For Others:

• To Demonstrate Progress in Coding

• To Encourage Use of the Package

• To Reduce “Hit-By-A-Bus” Syndrome

• To Facilitate Technical Review

For Yourself:

• To Understand Global Logical Code Structure

• To Facilitate Computer Code “Re-Entry” For Debug-

ging, Maintenance, and Enhancement

• To Explain Things Once, not Multiple Times, to Users

• To Allow Quick Code Access via Hypertext

• To Be Proud of Your Work

5 of 21



Levels of Documentation

A code can be rated according to where it falls on this sequential list:

0. Layout

0-a. Consistency

0-b. Logical Block Structure (Few or No Branches)

0-c. Indentation to Show Logical Structure

0-d. Blank Lines and Spaces for Readability

0-e. Statements Grouped Semantically

1. Descriptive Variable and Routine Names

2. Comments throughout the Code

3. Routine Headers with

3-a. Purpose

3-b. Input/Output Variable Descriptions

3-c. Internal Variable Descriptions

3-d. Methods Employed

6 of 21



Levels of Documentation (cont)

4. Hardcopy Documentation

4-a. Code Listing

4-b. Code Manual

4-c. User’s Manual

4-d. Method Discussion

5. Hypertext Documentation

5-a. Code Listing

5-b. Code Manual

5-c. User’s Manual

5-d. Method Discussion

5-e. External Links

6. Literate Programming:

Source Code and Documentation are Generated from

the Same File

Articles on methods constitute supporting, but ancillary, documentation

of a code. They should be included in the references of the hardcopy

version and the external links of the hypertext version.

7 of 21



Literate Programming

• Basic Idea: Combine Documentation and Source Code

• WEB (Donald Knuth, of TEX fame)

– Weave: web file −→ documentation (TEX)

– Tangle: web file −→ source code (Pascal)

• Many others, most based on WEB:

Program Source Formatting Availability
Language Language

APLWEB APL TEX MSDOS
AWEB Ada ? ?
CLiP Any Any written in Pascal

CWEB C/C++ TEX/LATEX Unix/DOS/Amiga
mCWEB C/C++ TEX Unix

FunnelWeb Any TEX/Any Many
FWEB Many/Any LATEX written in C

IMPACT C/C++ TEX Macintosh Only
LPW C++/Pascal WYSIWYG Macintosh Only

MWEB Modula-2 ? ?
noweb Any TEX/LATEX/HTML Unix/DOS
nuweb Any LATEX Unix/DOS/Amiga
ProTeX Any TEX/LATEX written in TEX
RWEB ? ? written in awk

SchemeWEB Lisp LATEX Unix/DOS
SpideryWEB C/Ada/Pascal TEX/LATEX Unix/DOS

WEB Pascal TEX ?
WinWordWEB Any Word DOS

• My opinion: most are too complex or don’t support

my situation (F90, LATEX, Unix)

8 of 21



The Document Package:

A Simplified Approach to Literate Programming

• Eliminate “tangle” step – files are compilable source

• Documentation is included in comments

• Small set of commands to direct output

• Formatting language independent

• Source code language independent (almost — just need

to know comment characters)

• Implementation via a perl script: Document

• Document (1000 lines of documented source) is much

smaller than WEB (10,000 lines)

• Source and documentation for the Document Package

are available online at:

http://www.lanl.gov/Document

9 of 21



A Simple Example

This input file:

! Begin_Doc
! Some documentation for standard out.
! End_Doc
!
! This line doesn’t get output by Document.
! Begin_Doc file.tex
! This output goes to the file named file.tex.
! Comment characters are stripped by default.
!
! Begin_Verbatim
! Comment characters are included in verbatim
! environments, which are often used for code:

do i = 1, 100
j = j+1

end do
! End_Verbatim
! End_Doc

when processed by Document, outputs this to standard out:

Some documentation for standard out.

and this to file.tex:

This output goes to the file named file.tex.
Comment characters are stripped by default.

! Comment characters are included in verbatim
! environments, which are often used for code:

do i = 1, 100
j = j+1

end do

10 of 21



Other Document Features

If your formatting language supports it, you can modify
input order:

! Begin_Doc main.tex
! % Note that the order of files a.tex
! % and b.tex has been switched.
! \input{b}
! \input{a}
! End_Doc
!
! Begin_Doc a.tex
! This line is in file a.tex.
! End_Doc
!
! Begin_Doc b.tex
! This line is in file b.tex.
! End_Doc
!
! Begin_Doc a.tex
! This line is appended to file a.tex.
! End_Doc

Document also has a self-document (or self-test) option:

! Begin_Self_Documentation (or Begin_Self_Test)
! % mv file1 file2
! % f90 file.f90
! % Document file.f90
! End_Self_Documentation (or End_Self_Test)

which executes commands included in the file itself.

11 of 21



Cæsar Documentation

Making use of the capabilities of Document, LATEX and
LATEX2HTML, the Cæsar Code documentation has these
features:

• Hardcopy and HTML versions from a single source,
which is collocated with the source code

• Multiple output files and source languages (f90, gm4)

• Graphics, equations, code listings easily included

• Automatic table of contents (hyperlinked in HTML)

• Semi-automatic indexing (hyperlinked in HTML)

• Items included in only LATEX or HTML version

• Automatic navigation tools for HTML (Next, Up,
Previous, Contents, and Index links on every page)

• Hyper references (e.g. “see Section 3.2” becomes a link)

• External HTML links (e.g. to related presentations,
papers, packages or projects)

• Level 6 Documentation — User’s Manual, Code Man-
ual, Methods Discussion and Code Listing in Hardcopy
and Hyperlinked HTML via Literate Programming

12 of 21



Unit Testing / Levelized Design

Basic Idea of Unit Testing:
Each component is tested in isolation – only components

that have been previously tested may be included.

Basic Idea of Levelized Design:
Each component depends only on components that are at a

lower level – no feedback or circular designs.

Example:

Level 0:

Level 1:

Level 2:

Level 3: A

B E

C D

F

GNot 
Allowed

Why is a Levelized Design desirable?

• Necessary for incremental compilation in F90 if depen-

dency is via “use association”

• Makes Unit Testing possible

13 of 21



Preliminary Levelized Design for Cæsar

Level 0:

Level 1:

Level 2:

Level 3:

Level 4:

Communication 
Library

Linear 
Solver 
Package

Material 
Properties

Term 
Library

Intrinsic 
Library

Problem 
Solution

Matrix

Equation

Problem 
Definition

Timestep 
Control

Boundary 
and Initial 
Conditions

Mesh

Host Code 
or Driver

14 of 21



Unit Testing Implementation

• Every component contains its own specific driver rou-

tine for unit testing.

• All Cæsar files are filtered through the gm4 macro

preprocessor.

• Unless the UNITTEST flag is set, the Unit Test driver

routine is filtered out.

Example:

module Template_Class

! Module data and routines.

end module Template_Class

ifdef([UNITTEST],[

program Unittest

! Testing code.

end

])

15 of 21



Unit Testing Implementation (cont)

• Each component to be unit tested must be compiled

and linked with a unique subset of Cæsar.

• The make utility is not well suited to this task.

• Cæsar uses Document to extract and run a unit test

script imbedded in each component.

Example:

! To test this module,

!

! Begin_Self_Test

! % echo "Preprocessing unit test on Template..."

! % m4 -P -I../include ../constants/numbers.F90 > unittest.f90

! % m4 -P -I../include ../constants/flags.F90 >> unittest.f90

! % m4 -P -I../include ../debug/verify.F90 >> unittest.f90

! % m4 -P -I../include logical.F90 >> unittest.f90

! % m4 -P -DUNITTEST -I../include template.F90 >> unittest.f90

! % echo "Compiling unit test on Template..."

! % f90 unittest.f90 -w -o unittest

! % echo "Running unit test on Template..."

! % unittest > battery/template.test.new 2>&1

! % rm -f unittest*

! % echo "Diffing Template results with saved version..."

! % diffnewold battery/template.test.new battery/template.test

! End_Self_Test

16 of 21



Design By Contract / Verification

Basic Idea of Verification:
Statements that verify that specified conditions are true are
conditionally compiled into the code, allowing error checking
that can be turned off completely for fast execution.

Basic Idea of Design by Contract:
Routines satisfy a contract when they are called – input
requirements are verified upon entry and output guarantees
are verified prior to exit.

These are very simple, but very powerful ideas. Unfortu-
nately, the main proponents of these ideas (Eiffel and C++)
use bad nomenclature.

Here’s a translation table, so you’ll recognize these ideas in
other venues:

Eiffel or C++ English
assert verify
precondition requirement
postcondition guarantee
class invariant valid state
require verify (on routine entry)
ensure verify (on routine exit)

17 of 21



Verification Implementation

Verification is implemented via gm4 macros.

Command syntax is:

VERIFY(<logical expression>, <activation level>)

where

<logical expression> is the test to be satisfied.

<activation level> is the value of the gm4 variable

DEBUG_LEVEL which is necessary to activate the veri-

fication.

For example, if a file named example.F90 contains:

VERIFY(i < 1, 1) ← on line 46
VERIFY(Valid_State(matrix), 5) ← on line 92

and it is processed by gm4 -DDEBUG_LEVEL=3, then:

if (.not.(i < 1)) &
call Verify_Out ("i < 1", &
"example.F90", 46, .true.)

! if (.not.(Valid_State(matrix))) &
! call Verify_Out ("Valid_State(matrix)", &
! "example.F90", 92, .true.)

Aside: Valid State is an F90 logical function which is defined for every variable

type and dispatched polymorphically (both at compile time and dynamically).

18 of 21



Verification Implementation (cont)

If the Verify_Out routine is called, it prints

Verification failed: i < 1, file example.F90, line 46.

and terminates the program.

A similar gm4 macro is called WARN_IF. It is controlled
by the WARNING_LEVEL gm4 variable. In contrast to the
VERIFY macro, WARN_IF prints

Warning - test failed: i < 1, file example.F90, line 46.

and continues execution.

Note that this implementation of the verification idea allows

for extreme error checking if the tests are compiled in and

unfettered execution speed if they are commented out.

19 of 21



Design By Contract Implementation

Design by Contract does nothing more than specify where

and what to verify. For example:
subroutine Quadratic_Roots (a, b, c, root1, root2)

! Input variables.
type(real), intent(in) :: a, b, c ! Equation coefficients.

! Output variables.
type(real), intent(out) :: root1, root2 ! Roots of the equation.

! Internal variable.
type(real) :: determ ! Determinant of the equation.

! Verify requirements.

VERIFY(Valid_State(a),1) ! The equation coefficients can
VERIFY(Valid_State(b),1) ! take on any real value, but
VERIFY(Valid_State(c),1) ! we can check for NaNs & Infs.

! Calculate roots.

determ = b**2 - 4.d0*a*c
VERIFY(determ>=0.d0,1)
determ = sqrt(determ)
root1 = (-b + determ)/(2.*a)
root2 = (-b - determ)/(2.*a)

! Verify guarantees.

VERIFY(Valid_State(root1),1) ! The roots can take on any real
VERIFY(Valid_State(root2),1) ! value, so only test Valid_State.

return
end subroutine Quadratic_Roots

Aside: type(real) is a gm4 macro for the F90 intrinsic real type.

20 of 21



Summary

The Cæsar 3-T photonics package employs many of the

latest ideas in software design:

• Literate Programming - source and documentation

stored together.

• The Document Package is used to extract documenta-

tion from code source, which is processed by LATEX into

hardcopy and LATEX2HTML into hyperlinked HTML.

• A Levelized Design is used to facilitate Unit Testing,

which is accomplished using the gm4 preprocessor and

the self-test feature of the Document Package.

• Verification gm4 macros are used to implement Design

By Contract.

21 of 21


