
Michael GschwenderIST-Hochschule für Management · Communication & Business
Michael Gschwender
PhD
Currently researching IT security topics; phishing, social engineering, ransomware groups.
About
35
Publications
5,269
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
557
Citations
Introduction
Former astrophysicist, now full time red teamer and cybersecurity researcher. Topics: Cloud Security, Phishing, Red Teaming, Hacking and Ransomware groups.
Publications
Publications (35)
We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos (ν¯e) are detected in an organic liquid scintillator through the inverse β-decay reaction. In the present work we set model-independent upper limits in the...
We report on an improved measurement of the B8 solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is 0.223−0.016+0.015(stat) −...
Borexino is a large liquid scintillator detector with unprecedented intrinsic radiopurity levels, located at the LNGS laboratory in Italy. Its primary goal is to perform a real-time solar neutrinos spectroscopy, and the most recent result consists in the simultaneous measurement of the fluxes of neutrinos from the pp, 7Be and pep reactions, from th...
A bstract
The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar- ν e survival probability P ee ( E ), and the chiral couplings of the neutrino and electron. Some theories of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NS...
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and is one of the two detectors that has measured geoneutrinos so far. The unprecedented radio-purity of the scintillator, the shielding with highly purified water, and the placement of the detector at a 3800 m w.e. depth have resulte...
The Borexino liquid scintillator neutrino observatory has a unique capability to perform high-precision solar neutrino observations thanks to its exceptional radiopurity and good energy resolution (5% at 1 MeV). A comprehensive study of the pp-chain neutrinos was presented that includes the direct measurements of ⁷ Be, pp and pep neutrino fluxes wi...
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and is one of the two detectors that has measured geoneutrinos so far. The unprecedented radio-purity of the scintillator, the shielding with highly purified water, and the placement of the detector at a 3800 m w.e. depth have resulte...
The Borexino detector at Gran Sasso has now accumulated over ten years of continuous data which represent a magnificent opportunity to study the cosmic muon flux at a deep underground location. We present here a precision measurement of the flux and of the expected seasonal modulation. We present the correlation with the atmospheric temperature var...
This paper presents a comprehensive geoneutrino measurement using the Borexino detector, located at Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis is the result of 3262.74 days of data between December 2007 and April 2019. The paper describes improved analysis techniques and optimized data selection, which includes enlarged fiduc...
A thermal calorimetric apparatus was designed, built and calibrated for measuring the activity of the artificial ¹⁴⁴ Ce — ¹⁴⁴ Pr antineutrino source. This measurement will be performed at the Laboratori Nazionali del Gran Sasso in Italy, just before the source insertion in the tunnel under the Borexino detector and a precision better than 1% is req...
We present the simultaneous measurement of the interaction rates Rpp, RBe, Rpep of pp, Be7, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19–2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, c...
This paper presents a geoneutrino measurement using 3262.74 days of data taken with the Borexino detector at LNGS in Italy. By observing $52.6 ^{+9.4}_{-8.6} ({\rm stat}) ^{+2.7}_{-2.1}({\rm sys})$ geoneutrinos (68% interval) from $^{238}$U and $^{232}$Th, a signal of $47.0^{+8.4}_{-7.7}\,({\rm stat)}^{+2.4}_{-1.9}\,({\rm sys})$ TNU with $^{+18.3}_...
We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($\bar{\nu}_e$) are detected in an organic liquid scintillator through the inverse $\beta$-decay reaction. In the present work we set model-independent uppe...
In den vergangenen Jahren wurden diverse Anomalien und Abweichungen vom gängigen Neutrinomodell beobachtet. Ausgehend von sowohl beam-, als auch reaktorgestützten Experimenten könnten diese als erste Hinweise auf die mögliche Existenz eines vierten, sterilen Neutrinos verstanden werden. Das geplante SOX Experiment (Short distance neutrino Oscillati...
The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar-$\nu_{e}$ survival probability $P_{ee}(E)$, and the chiral couplings of the neutrino and electron. Some theories of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NSI's)...
We have measured the flux of cosmic muons in the Laboratori Nazionali del Gran Sasso at 3800 m w.e. To be (3.432 ± 0.003)ċ 10 ⁻⁴ m ⁻² s ⁻¹ based on ten years of Borexino data acquired between May 2007 and May 2017. A seasonal modulation with a period of (366.3 ± 0.6) d and a relative amplitude of (1.36 ±0.04)% is observed. The phase is measured to...
We present the most recent solar neutrino results from the Borexino
experiment at the Gran Sasso underground laboratory. In particular, refined
measurements of all neutrinos produced in the {\it pp} fusion chain have been
made. It is the first time that the same detector measures the entire range of
solar neutrinos at once. These new data weakly fa...
Solar neutrinos have played a central role in the discovery of the neutrino oscillation mechanism. They still are proving to be a unique tool to help investigate the fusion reactions that power stars and further probe basic neutrino properties. The Borexino neutrino observatory has been operationally acquiring data at Laboratori Nazionali del Gran...
Solar neutrinos have played a central role in the discovery of the neutrino oscillation mechanism. They still are proving to be a unique tool to help investigate the fusion reactions that power stars and further probe basic neutrino properties. The Borexino neutrino observatory has been operationally acquiring data at Laboratori Nazionali del Gran...
We describe the design and the performance of a high precision thermal calorimeter, whose purpose was the measurement of the total activity of the ¹⁴⁴Ce-¹⁴⁴Pr anti-neutrino source of the SOX (Short distance neutrino Oscillation with BoreXino) experiment. SOX aimed at the search for eV-scale sterile neutrinos by means of the Borexino detector at the...
We have measured the flux of cosmic muons in the Laboratori Nazionali del Gran Sasso at 3,800 m w.e. to be $(3.432 \pm 0.003)\cdot 10^{-4}\,\mathrm{m^{-2}s^{-1}}$ based on ten years of Borexino data acquired between May 2007 and May 2017. A seasonal modulation with a period of $(366.3 \pm 0.6)\,\mathrm{d}$ and a relative amplitude of $(1.36 \pm0.04...
Borexino is a liquid scintillator detector sited underground in the Laboratori Nazionali del Gran Sasso (Italy). Its physics program, until the end of this year, is focussed on the study of solar neutrinos, in particular from the Beryllium, pp, pep and CNO fusion reactions. Knowing the reaction chains in the sun provides insights towards physics di...
The third phase of the Borexino experiment that's referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a ¹⁴⁴Ce–¹⁴⁴Pr antineutrino source at the first stage (CeSOX) and possibly with a ⁵¹Cr n...
The aim of the SOX experiment is to test the hypothesis of existence of light sterile neutrinos trough a short baseline experiment. Electron antineutrinos will be produced by an high activity source and detected in the Borexino experiment. Both an oscillometry approach and a conventional disappearance analysis will be performed and, if combined, SO...
The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this pap...
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT wil...
The Large Observatory for X-ray Timing (LOFT) is one of the five mission
candidates that were considered by ESA for an M3 mission (with a launch
opportunity in 2022 - 2024). LOFT features two instruments: the Large Area
Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class
instrument with approximately 15 times the collecting...