Michael Richard GillingsMacquarie University · Department of Biological Sciences
Michael Richard Gillings
BA, BSc, PhD
About
514
Publications
124,803
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,669
Citations
Introduction
Additional affiliations
April 1996 - present
Publications
Publications (514)
Habitats with intermittent flooding, such as paddy soils, are crucial reservoirs in the global carbon pool; however, the effect of phage–host interactions on the biogeochemical cycling of carbon in paddy soils remains unclear. Hence, this study applied multiomics and global datasets integrated with validation experiments to investigate phage–host c...
Objectives:
This study aimed to identify novel fosfomycin resistance genes across diverse environmental samples, ranging in levels of anthropogenic pollution. We focused on fosfomycin resistance, and given its increasing clinical importance, explored the prevalence of these genes within different environmental contexts.
Methods:
Metagenomic DNA was...
Giant clams (Tridacna and Hippopus) are large marine bivalves occupying tropical and subtropical reefs in the Indo‐Pacific. Giant clam populations have declined in many areas of the Indo‐Pacific and continue to be threatened by harvesting and environmental change. The small giant clam (Tridacna maxima) occurs throughout the Indo‐Pacific and has bee...
The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. He...
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly un...
Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions wit...
Understanding that evolution progresses through generation of DNA variants followed by selection is a key learning outcome for biology students. We designed an integrated and innovative undergraduate laboratory exercise using Saccharomyces cerevisiae to demonstrate these principles. Students perform in vitro experimental evolution by repeatedly pro...
Pesticides promote the stable development of intensive global agriculture. Nevertheless, their residues in the soil can cause ecological and human health risks. Glyphosate is a popular herbicide and is generally thought to be ecologically safe and nontoxic, but this conclusion has been questioned. Herein, we investigated the interaction among soil...
Antimicrobial resistance (AMR) is a major threat for public health. Plasmids play a critical role in the spread of AMR via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically...
Application of organic fertilizers is an important strategy for sustainable agriculture. The biological source of organic fertilizers determines their specific functional characteristics, but few studies have systematically examined these functions or assessed their health risk to soil ecology. To fill this gap, we analyzed 16S rRNA gene amplicon s...
Plastic offers a new niche for microorganisms, the plastisphere. The ever-increasing emission of plastic waste makes it urgent to understand the microbial ecology of the plastisphere and associated impacts. Here we present a global fingerprint of the plastisphere, analyzing samples collected from freshwater, seawater, and terrestrial ecosystems. Th...
Objectives:
Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of th...
Societal Impact Statement
Plants and bacteria interact in complex ways that are crucial to the health and productivity of native vegetation and croplands. While the range of characterised plant‐beneficial bacterial traits continues to grow, key questions remain regarding the distribution and mobility of genes associated with these traits. This work...
Giant clams are common across a broad geographic range and contribute important ecological functions within coral reef environments. However, giant clams are subject to considerable harvest pressure and require careful management that is underpinned by accurate data collection. The taxonomy of giant clams has undergone many changes, and recently, T...
The global crisis in antimicrobial resistance continues to grow. Estimating the risks of antibiotic resistance transmission across habitats is hindered by the lack of data on mobility and habitat‐specificity. Metagenomic samples of 6092 are analyzed to delineate the unique core resistomes from human feces and seven other habitats. This is found tha...
Integrons are genetic elements, found among diverse bacteria and archaea, that capture and rearrange gene cassettes to rapidly generate genetic diversity and drive adaptation. Despite their broad taxonomic and geographic prevalence, and their role in microbial adaptation, the functions of gene cassettes remain poorly characterized. Here, using a co...
Oceans serve as global reservoirs of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). However, little is known about the traits and expression of ARGs in response to environmental factors. We analyzed 347 metagenomes and 182 metatranscriptomes to determine the distribution, hosts, and expression of ARGs in oceans. Our study fou...
Surveillance of antimicrobial resistance is essential for an effective One Health response. This study explores the efficacy of European honey bees (Apis mellifera) for biomonitoring antimicrobial resistance (AMR) in urban areas. Class 1 integrons (intI1) are investigated as a universal AMR indicator, as well as associated cassette arrays and trace...
Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches...
Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin o...
Antimicrobial peptides are a promising new class of antimicrobials that could address the antibiotic resistance crisis, which poses a major threat to human health. These peptides are present in all kingdoms of life, but especially in microorganisms, having multiple origins in diverse taxa. To date, there has been no global study on the diversity of...
Context Knowledge of sawshark reproductive biology is limited to general parameters such as reproductive mode and litter size. The mating system is currently unknown. Aim To test for multiple paternity in the common (Pristiophorus cirratus) and southern (Pristiophorus nudipinnis) sawshark and investigate the occurrence of hybridisation between thes...
Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shor...
Horizontal gene transfer (HGT) drives bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are mobile genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage...
Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lyt...
The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and function...
Horizontal gene transfer between different domains of life is increasingly being recognized as an important evolutionary driver, with the potential to increase the pace of biochemical innovation and environmental adaptation. However, the mechanisms underlying the recruitment of exogenous genes from foreign domains are mostly unknown. Integrons are...
The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological...
The role of the gut microbiota in regulating host physiology and health is well established, with effects on host development, behaviour, nutrition, immunity, and reproductive strategy. While mammalian and insect microbiomes have attracted considerable research attention, avian microbiome research is deservedly growing, given the key roles that bir...
Fermentation-based antibiotic production results in abundant nutrient-rich fermentation residue with high potential for recycling, but the high antibiotic residual concentration restricts its usefulness (e.g., in land application as organic fertilizer). In this study, an industrial-scale hydrothermal facility for the treatment of erythromycin ferme...
Antibiotic resistance genes (ARGs) and virulence factors (VFs) are critical threats to human health. Their abundance in aquatic ecosystems is maintained and enhanced via selection driven by environmental xenobiotics. However, their activity and expression in these environments under xenobiotic stress remains unknown. Here ARG and VF expression prof...
Antibiotic resistance genes (ARGs) have accelerated microbial threats to human health in the last decade. Many genes can confer resistance, but evaluating the relative health risks of ARGs is complex. Factors such as the abundance, propensity for lateral transmission and ability of ARGs to be expressed in pathogens are all important. Here, an analy...
Integrons are microbial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of casset...
The endangered soft coral Dendronephthya australis faces substantial population decreases in central eastern Australian waters. Despite uncertainty about the cause of these declines, the population genetics of the species has not been investigated. Genetic analysis suggests that D. australis is a single species within the family Nephtheidae, confir...
Horizontal gene transfer between different domains of life is increasingly being recognised as an important driver of evolution, with the potential to provide the recipient with new gene functionality and assist niche adaptation ¹⁻³ . However, the molecular mechanisms underlying the integration of exogenous genes from foreign domains are mostly unk...
Biofilms are organised heterogeneous assemblages of microbial cells that are encased within a self-produced matrix. Current estimates suggest that up to 80% of bacterial and archaeal cells reside in biofilms. Since biofilms are the main mode of microbial life, understanding their biology and functions is critical, especially as controlling biofilm...
Mobile genetic elements (MGEs) are primary facilitators in the global spread of antibiotic resistance. Here, we present novel ecological and evolutionary perspectives to understand and manage these elements: as selfish entities that exhibit biological individuality, as pollutants that replicate and as invasive species that thrive under human impact...
Integrons were first identified because of their central role in assembling and disseminating antibiotic resistance genes in commensal and pathogenic bacteria. However, these clinically relevant integrons represent only a small proportion of integron diversity. Integrons are now known to be ancient genetic elements that are hotspots for genomic div...
Quantitative traits such as maximum growth rate and cell radial diameter are one facet of ecological strategy variation across bacteria and archaea. Another facet is substrate-use pathways, such as iron reduction or methylotrophy. Here we ask how these two facets intersect, using a large compilation of data for culturable species and examining seve...
Background
Increasing our knowledge of soil biodiversity is fundamental to forecast changes in ecosystem functions under global change scenarios. All multicellular organisms are now known to be holobionts, containing large assemblages of microbial species. Soil fauna is now known to have thousands of species living within them. However, we know ver...
Integrons are bacterial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of casset...
Integrons are bacterial genetic elements that can capture mobile gene cassettes. They are mostly known for their role in the spread of antibiotic resistance cassettes, contributing significantly to the global resistance crisis. These resistance cassettes likely originated from sedentary chromosomal integrons, having subsequently been acquired and d...
Antibiotic resistance genes (ARGs) are widespread among bacteria. However, not all ARGs pose serious threats to public health, highlighting the importance of identifying those that are high-risk. Here, we developed an ‘omics-based’ framework to evaluate ARG risk considering human-associated-enrichment, gene mobility, and host pathogenicity. Our fra...
The global rise of antimicrobial resistance (AMR) phenotypes is an exemplar for rapid evolutionary response. Resistance arises as a consequence of humanity’s widespread and largely indiscriminate use of antimicrobial compounds. However, some features of this crisis remain perplexing. The remarkably widespread and rapid rise of diverse, novel and ef...
In the waters of southeast Australia, two species of sawshark—the common (Pristiophorus cirratus) and southern (Pristiophorus nudipinnis) sawshark—are frequent by-catch in commercial fisheries. While harvesting of both species is currently considered sustainable, there has been no investigation of whether P. cirratus and P. nudipinnis display genet...
Bacteria and archaea have very different ecology compared to plants. One similarity, though, is that much discussion of their ecological strategies has invoked concepts such as oligotrophy or stress tolerance. For plants, so‐called ‘trait ecology’—strategy description reframed along measurable trait dimensions—has made global syntheses possible. Am...
Among bacteria and archaea, maximum relative growth rate, cell diameter, and genome size are widely regarded as important influences on ecological strategy. Via the most extensive data compilation so far for these traits across all clades and habitats, we ask whether they are correlated and if so how. Overall, we found little correlation among them...
A recent compilation of traits across culturable species of bacteria and archaea allows relationships to be quantified between genome size and other traits and habitat. Cell morphology, size, motility, sporulation and doubling time were not strongly correlated with genome size. Aerobic species averaged ca 35% larger genomes than anaerobic, adjusted...
Agricultural chemicals have the potential to become pollutants that adversely affect plant growth. Interactions between these compounds are likely, but potential synergies are under-researched. Multiwall carbon nanotubes are increasingly finding novel uses in agriculture, as delivery mechanisms and as slow-release fertilizers. There is potential fo...
Antibiotics are poorly metabolized, and can enter the environment via human waste streams, agricultural run-off and pharmaceutical effluent. We consequently expect to see a concentration gradient of antibiotic compounds radiating from areas of human population. Such antibiotics should be thought of as pollutants, as they can accumulate, and have bi...
Cyanobacterial blooms are a global ecological problem that directly threatens human health and crop safety. Cyanobacteria have toxic effects on aquatic microorganisms, which could drive the selection for resistance genes. The effect of cyanobacterial blooms on the dispersal and abundance of antibiotic-resistance genes (ARGs) of concern to human hea...
Acinetobacter species are emerging as major nosocomial pathogens, aided by their ability to acquire resistance to all classes of antibiotics. A key factor leading to their multi-drug resistance phenotypes is the acquisition of a wide variety of mobile genetic elements, particularly large conjugative plasmids. Here, we characterize a family of 21 mu...
Antibiotic-resistant pathogens pose a significant threat to human health. Several dispersal mechanisms have been described, but transport of both microbes and antibiotic resistance genes (ARGs) via atmospheric particles has received little attention as a pathway for global dissemination. These atmospheric particles can return to the Earth's surface...
Biofilms are assemblages of microorganisms attached to each other, or to a surface, and encased in a protective, self-produced matrix. Such associations are now recognized as the predominant microbial growth mode. The physiology of cells in biofilms differs from that of the planktonic cells on which most research has been conducted. Consequently, t...
The Red fox (Vulpes vulpes) has established large populations in Australia’s urban and rural areas since its introduction following European settlement. The cryptic and highly adaptable nature of foxes allows them to invade cities and live among humans while remaining largely unnoticed. Urban living and access to anthropogenic food resources also i...
Class 1 integrons are strongly associated with the dissemination of antibiotic resistance in bacteria. However, little is known about whether the presence of antibiotics affects the abundance of integrons and antibiotic resistance genes during biological wastewater treatment. To explore the roles of class 1 integrons in spreading antibiotic resista...
Globalization accelerates the mobilization of microorganisms via international trade and transport. Growth in population, increasing connectivity, and rapid urbanization all exacerbate the consequent risk of pandemics of zoonotic diseases. Global problems require global solutions, particularly the co-ordination of international research in biomedic...
The Red fox ( Vulpes vulpes ) has established large populations in Australia’s urban and rural areas since its introduction following European settlement. Foxes’ cryptic and highly adaptable nature allows them to invade cities and live among humans while remaining largely unnoticed. Urban living and access to anthropogenic food resources also influ...
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level...
Background Earthworms are globally distributed and quite capable of redistributing compounds, as well as bacteria and antibiotic resistance genes (ARGs) throughout the soil profile. The spread of medically relevant ARGs in soils has become an emerging environmental and health issue globally. However, our understanding on earthworm gut microbiome an...
Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes. They are best known for their role in disseminating antibiotic-resistance genes among pathogens. Their ability to rapidly spread resistance phenotypes makes it important to consider what other integron-mediated traits might impact human health i...
Organismal biology has undergone a dramatic paradigm shift in the last decade. The realization that host cells and genes are outnumbered by symbiotic microbial cells and their genes has forced us to rethink our focus on ‘individuals’. It is also becoming increasingly clear that the ecology and biology of animals and plants are intimately connected...
Infections caused by Acinetobacter baumannii are increasingly antibiotic resistant, generating a significant public health problem. Like many bacteria, A. baumannii adopts a biofilm lifestyle that enhances its antibiotic resistance and environmental resilience. Biofilms represent the predominant mode of microbial life, but research into antibiotic...
The increasing accumulation of antibiotic resistance genes (ARGs) in pathogens poses a severe threat to the treatment of bacterial infections. However, not all ARGs do not pose the same threats to human health. Here, we present a framework to rank the risk of ARGs based on three factors: "anthropogenic enrichment", "mobility", and "host pathogenici...