Michael Fried

Michael Fried
  • University of Kentucky

About

104
Publications
10,705
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,795
Citations
Introduction
Current institution
University of Kentucky

Publications

Publications (104)
Article
Full-text available
Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act a...
Article
Full-text available
Human O⁶-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O⁶-alkylguanine and O⁴-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary s...
Article
Full-text available
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible...
Chapter
Strong, positively cooperative binding can lead to the clustering of proteins on DNA. Here, we describe one approach to the analysis of such clusters. Our example is based on recent studies of the interactions of O6-alkylguanine DNA alkyltransferase (AGT) with high-molecular-weight DNAs (Adams et al., 2009; Tessmer, Melikishvili, & Fried, 2012). Co...
Article
The Munc13 family of exocytosis regulators has multiple Ca(2+)-binding, C2 domains. Here, we probed the mechanism by which Munc13-4 regulates in vitro membrane fusion and platelet exocytosis. We show that Munc13-4 enhances in vitro SNARE-dependent, proteoliposome fusion in a Ca(2+)- and phosphatidylserine (PS)-dependent manner that was independent...
Article
The O(6) -alkylguanine DNA alkyltransferase (AGT) is a DNA repair enzyme that binds DNA with moderate cooperativity. This cooperativity is important for its search for alkylated bases. A structural model of the cooperative complex of AGT with DNA predicts short-range interactions between nearest protein neighbors and long-range interactions between...
Article
Human cells contain DNA alkyltransferases that protect genomic integrity under normal conditions but also defend tumor cells against chemotherapeutic alkylating agents. Here we explore how structural features of the DNA substrate affect the binding and repair activities of the human O6-alkylguanine-DNA alkyltransferase (AGT). In vitro, cooperative...
Article
Full-text available
Neuropeptidases specialize in the hydrolysis of the small bioactive peptides that play a variety of signaling roles in the nervous and endocrine systems. One neuropeptidase, neurolysin, helps control the levels of the dopaminergic circuit modulator neurotensin and is a member of a fold group that includes the antihypertensive target angiotensin con...
Article
Full-text available
O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on...
Article
Full-text available
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Though mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challengin...
Article
Full-text available
Cysteine residues in insulin degrading enzyme have been reported as non-critical for its activity. We found that converting the twelve cysteine residues in rat insulin degrading enzyme (IDE) to serines resulted in a cysteine-free form of the enzyme with reduced activity and decreased activation by polyanions. Mutation of each cysteine residue indiv...
Article
Full-text available
Binding experiments with alkyl-transfer-active and -inactive mutants of human O6-alkylguanine DNA alkyltransferase (AGT) show that it forms an O6-methylguanine (6mG)-specific complex on duplex DNA that is distinct from non-specific assemblies previously studied. Specific complexes with duplex DNA have a 2:1 stoichiometry that is formed without accu...
Article
Full-text available
O6-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in DNA, protecting the genome and also contributing to the resistance of tumors to chemotherapeutic alkylating agents. AGT binds DNA cooperatively, and cooperative interactions are likely to be important in lesion search and repair. We examined...
Article
The (His 6 )–nickel(II)–nitrilotriacetic acid (Ni ²⁺ –NTA) system is a universal tool for affinity purification of recom‐binant proteins. This interaction can be exploited for the attachment of fluorophores and chromophores to proteins at user‐defined locations. (Ni ²⁺ –NTA) 2 –Cyanine dyes bind model His 6 proteins with moderate affinity (K~1.5 (...
Article
Homohexameric, N‐ethylmaleimide Sensitive Factor (NSF) disassembles Soluble NSF Attachment Protein Receptor (SNARE) complexes after membrane fusion, an essential step in vesicular trafficking. NSF contains three domains (NSF‐N, NSF‐D1, and NSF‐D2), each contributing to activity. We combined electron microscopic (EM) analysis, analytical ultracentri...
Article
Thrombin binds to the highly anionic fibrinogen γ' chain through anion-binding exosite II. This binding profoundly alters thrombin's ability to cleave substrates, including fibrinogen, factor VIII, and PAR1. However, it is unknown whether this interaction is due mainly to general electrostatic complementarity between the γ' chain and exosite II or...
Article
Full-text available
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of...
Article
Full-text available
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxo...
Chapter
The electrophoretic mobility shift assay (EMSA) is commonly used to study protein–nucleic acid interactions. The technique is based on the observation that protein-bound nucleic acid molecules migrate more slowly than free nucleic acid molecules when subjected to native polyacrylamide or agarose gel electrophoresis. After electrophoresis, the distr...
Article
Homohexameric, N-Ethylmaleimide Sensitive Factor (NSF) disassembles Soluble NSF Attachment Protein Receptor (SNARE) complexes after membrane fusion, an essential step in vesicular trafficking. NSF contains three domains (NSF-N, NSF-D1, and NSF-D2), each contributing to activity. We combined electron microscopic (EM) analysis, analytical ultracentri...
Article
The hexahistidine (His6)/nickel(II)-nitrilotriacetic acid (Ni2+-NTA) system is a universal tool for the affinity purification of recombinant proteins. Additionally, the NTA group can be exploited for the attachment of fluorophores and chromophores to His6 proteins at unique user-defined locations. The applications of one such derivative, (Ni2+-NTA)...
Article
Human cells contain DNA alkyltransferases that protect genomic integrity under normal conditions but also defend tumor cells against chemotherapeutic alkylating agents. Here we explore how structural features of the DNA substrate affect the binding and repair activities of the human O6-alkylguanine-DNA alkyltransferase (AGT).To perform its repair f...
Article
Human O⁶-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O⁶-alkylguanine and O⁴-alkylthymine adducts in single-stranded and duplex DNAs. These activities protect normal cells and tumor cells against drugs that alkylate DNA; drugs that inactivate AGT are under test as chemotherapeutic enhancers. In studies using 6-carboxyfluorescein (FAM)-...
Article
Full-text available
We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large dom...
Article
O(6)-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O(6)-alkylguanine and O(4)-alkylthymine adducts present in DNA that has been exposed to alkylating agents. AGT binds DNA cooperatively, and models of cooperative complexes predict that residues 1-7 of one protein molecule and residues 163-169 of a neighboring protein are closely juxtapo...
Chapter
Many proteins bind DNA with moderate cooperativity and low sequence discrimination. Important among these are bacterial and eukaryotic chromosome-structuring proteins [2, 22] and single-stranded DNA-binding proteins [14]. In addition, many sequence-specific DNA-binding proteins interact with nontarget sequences cooperatively and with low sequence d...
Article
Many recombinant proteins carry an oligohistidine (His(X))-tag that allows their purification by immobilized metal affinity chromatography (IMAC). This tag can be exploited for the site-specific attachment of chromophores and fluorophores, using the same metal ion-nitrilotriacetic acid (NTA) coordination chemistry that forms the basis of popular ve...
Article
Full-text available
Borrelia burgdorferi produces Erp outer surface proteins throughout mammalian infection, but represses their synthesis during colonization of vector ticks. A DNA region 5′ of the start of erp transcription, Operator 2, was previously shown to be essential for regulation of expression. We now report identification and characterization of a novel erp...
Article
The hexahistidine (His(6))/nickel(II)-nitrilotriacetic acid (Ni(2+)-NTA) system is widely used for affinity purification of recombinant proteins. The NTA group has many other applications, including the attachment of chromophores, fluorophores, or nanogold to His(6) proteins. Here we explore several applications of the NTA derivative, (Ni(2+)-NTA)(...
Article
Neuropilin is an essential cell surface receptor that functions in both semaphorin-dependent axon guidance and vascular endothelial growth factor (VEGF)-dependent angiogenesis. The interplay between these two seemingly distinct pathways is a source of considerable interest. Indeed, several semaphorin family members have been shown to have potent an...
Article
The hexahistidine (His6)/Nickel (II)-Nitrilotriacetic Acid (Ni2+-NTA) system is a rapid and efficient tool for affinity purification of recombinant proteins. The NTA group has many other valuable applications, including surface immobilization of (His)6-tagged proteins and the attachment of chromophores and fluorophores to His6-tagged proteins. Here...
Article
The experiments described here demonstrate ways in which DNA length can be used as an experimental variable for the characterization of positively cooperative, sequence nonspecific DNA binding. Examples are drawn from recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with duplex DNAs (Melikishvili et al. (2008). Int...
Article
Full-text available
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O 6-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe AT...
Article
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein co...
Data
Full-text available
Supplementary Information is linked to the online version of the paper at www.nature.com/nature.
Article
Full-text available
The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding b...
Article
Full-text available
Accurate partial-specific volume ([Formula: see text]) values are required for sedimentation velocity and sedimentation equilibrium analyses. For nucleic acids, the estimation of these values is complicated by the fact that [Formula: see text] depends on base composition, secondary structure, solvation and the concentrations and identities of ions...
Article
Full-text available
Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an...
Article
O(6)-alkylguanine-DNA alkyltransferase (AGT) is a ubiquitous enzyme with an amino acid sequence that is conserved in Eubacteria, Archaea, and Eukarya. It repairs O(6)-alkylguanine and O(4)-alkylthymine adducts in single-stranded and duplex DNAs. In performing these functions, AGT must partition between adduct-containing sites and the large excess o...
Article
Full-text available
HNF4α (hepatocyte nuclear factor 4α) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic β-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4α is a culprit gene product for a monogenic and dom...
Article
Full-text available
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a member of the nuclear receptor superfamily that plays a central role in organ development and metabolic functions. Mutations on HNF4alpha cause maturity-onset diabetes of the young (MODY), a dominant monogenic cause of diabetes. In order to understand the molecular mechanism of promoter recognition...
Preprint
Full-text available
Co-Authored Manuscript from Graduate School at the University of Kentucky
Article
The equilibrium association constant observed for many DNA-protein interactions in vitro (K(obs)) is strongly dependent on the salt concentration of the reaction buffer ([MX]). This dependence is often used to estimate the number of ionic contacts between protein and DNA by assuming that release of cations from the DNA is the dominant involvement o...
Article
Full-text available
The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures...
Article
Full-text available
The O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. Here we characterize the binding of AGT to single-stranded DNAs ranging in length from 5 to 78 nucleotides (nt). Binding is moderately cooperative (37.9 ± 3.0 ≤ ω ≤ 89.8 ± 8.9), resulting in an all-or-nothing associ...
Article
Treatment of an N-terminal-containing His6-tagged insulysin (His6-IDE) with proteinase K led to the initial cleavage of the His tag and linker region. This was followed by C-terminal cleavages resulting in intermediate fragments of approximately 95 and approximately 76 kDa and finally a relatively stable approximately 56 kDa fragment. The approxima...
Article
Full-text available
Ferritin, normally considered a cytoplasmic iron-storage protein, is also found in cell nuclei. It is an established fact that H-ferritin is the major form of nuclear ferritin, but little is known about the roles of ferritin in nuclei or about the mechanisms that control its appearance within the nuclear volume. In the present study, we show that,...
Article
Full-text available
The active site glutamate (Glu(111)) and the active site histidine (His(112)) of insulin-degrading enzyme (IDE) were mutated. These mutant enzymes exhibit, in addition to a large decrease in catalytic activity, a change in the substrate-velocity response from a sigmoidal one seen with the native enzyme (Hill coefficient > 2), to a hyperbolic respon...
Article
Full-text available
It has been reported previously that ATP inhibits the insulysin reaction (Camberos, M. C., Perez, A. A., Udrisar, D. P., Wanderley, M. I., and Cresto, J. C. (2001) Exp. Biol. Med. 226, 334-341). We report here that with 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl as substrate, ATP and other nucleotides increase the rate >20-fold in T...
Article
Full-text available
Ferritin, normally considered a cytoplasmic iron-storage protein, is also found in the nuclei of some cells. There is no current agreement about its function(s) in this environment. Proposals include DNA protection, provision of iron to nuclear enzymes, and regulation of transcription initiation, but evidence for these functions is scanty. We have...
Article
O(6)-alkylguanine-DNA alkyltransferase (AGT) repairs pro-mutagenic O(6)-alkylguanine and O(4)-alkylthymine lesions in DNA. The alkylated form of the protein is not reactivated; instead, it is rapidly ubiquitinated and degraded. Here, we show that alkylation destabilizes the native fold of the protein by 0.5-1.2 kcal/mole and the DNA-binding functio...
Article
Full-text available
The amino-terminal domain of yeast TATA-binding protein has been proposed to play a crucial role in the self-association mechanism(s) of the full-length protein. Here we tested the ability of this domain to self-associate under a variety of solution conditions. Escherichia coli two-hybrid assays, in vitro pull-down assays, and in vitro cross-linkin...
Article
Full-text available
The mutagenic and cytotoxic effects of many endogenous and exogenous alkylating agents are mitigated by the actions of O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans this protein protects the integrity of the genome, but it also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we report properties of...
Article
A recent crystallographic study of recombinant human O(6)-alkylguanine-DNA alkyltransferase (hAGT) revealed a previously unknown zinc atom [Daniels et al., (2000) EMBO J. 19, 1719-1730]. The effects of zinc on the properties of hAGT are reported here. In bacterial expression systems, recombinant hAGT was produced in increasingly larger quantities w...
Article
This chapter explores the large numbers of proteins participating in the assemblies that regulate and catalyze transcription. Among methods available for characterizing their interactions, sedimentation equilibrium (SE) ultracentrifugation stands out as a direct and rigorous means of determining molecular masses, interaction stoichiometries, associ...
Article
Full-text available
The osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If...
Article
Ferritin is traditionally considered a cytoplasmic iron-storage protein, but recent reports indicate that it is also found in cell nuclei. Nuclear ferritin has been proposed to be involved in both the protection of DNA and the exacerbation of iron-induced oxidative damage to DNA. We demonstrate that H-rich ferritin is present in the nucleus of huma...
Article
Full-text available
Sedimentation equilibrium studies show that the Escherichia coli cyclic AMP receptor protein (CAP) and RNA polymerase holoenzyme associate to form a 2:2 complex in vitro. No complexes of lower stoichiometry (1:1, 2:1, 1:2) were detected over a wide range of CAP and RNA polymerase concentrations, suggesting that the interaction is highly cooperative...
Article
The importance of the left-handed polyproline II (PPII) helical conformation has recently become apparent. This conformation generally is involved in two important functions: protein-protein interactions and structural integrity. PPII helices play vital roles in a variety of processes including signal transduction, transcription, and cell motility....
Article
Full-text available
Gene activity in a eukaryotic cell is regulated by accessory factors to RNA polymerase II, which include the general transcription factor complex TFIID, composed of TBP and TBP-associated factors (TAFs). Three TAFs that contain histone fold motifs (yTAF17, yTAF60 and yTAF61) are critical for transcriptional regulation in the yeast Saccharomyces cer...
Article
Full-text available
Sedimentation equilibrium studies show that theEscherichia coli cyclic AMP receptor protein (CAP) and lactose repressor associate to form a 2:1 complex in vitro. This is, to our knowledge, the first demonstration of a direct interaction of these proteins in the absence of DNA. No 1:1 complex was detected over a wide range of CAP concentrations, sug...
Article
Plasma factor XIII is the zymogen of the transglutaminase factor XIIIa. This enzyme catalyzes the formation of isopeptide cross-links between fibrin molecules in nascent blood clots that greatly increase the mechanical stability of clots and their resistance to thrombolytic enzymes. We have characterized the solution interactions of factor XIII wit...
Article
Plasma factor XIII is the zymogen of the transglutaminase factor XIIIa, This enzyme catalyzes the formation of isopeptide cross-links between fibrin molecules in nascent blood clots that greatly increase the mechanical stability of clots and their resistance to thrombolytic enzymes. We have characterized the solution interactions of factor XIII wit...
Article
The association of monomeric TATA binding protein with promoter DNA is an essential first step in many current models of eukaryotic transcription initiation. This step is followed by others in which additional transcription factors, and finally RNA polymerase, assemble at the promoter. Here we characterize the quaternary interactions of the Sacchar...
Article
Equilibrium analytical ultracentrifugation has been used to determine the stoichiometry and energetics of the self-assembly of the TATA-binding protein of Saccharomyces cerevisiae at 30 degreesC, in buffers ranging in salt concentration from 60 mM KCl to 1 M KCl. The data are consistent with a sequential association model in which monomers are in e...
Article
Under favorable conditions, native gel electrophoresis allows the resolution of protein-DNA complexes that differ in stoichiometry, identities of occupied DNA sequences (configuration), and macromolecular conformation. This technique provides a unique opportunity to analyze, in thermodynamic terms, the molecular interactions that govern the equilib...
Chapter
The interaction of proteins with specific DNA sites is a principal step in the control of many cellular processes. Over the past 20 years, our knowledge of protein-DNA interactions has grown geometrically. This growth has been facilitated by the availability of fast, reproducible assays for binding. Most popular of these is the electrophoresis mobi...
Article
The osmotic stress technique was used to measure the changes in macromolecular hydration that accompany binding of the Escherichia coli CAP protein to its transcription-regulatory site (C1) in the lactose promoter and that accompany the transfer of CAP from site C1 to nonspecific genomic DNA. Formation of the C1 complex is accompanied by the net re...
Article
The gel electrophoresis mobility shift assay is widely used for both qualitative and quantitative characterization of protein-nucleic acid interactions. Often it is found that protein-nucleic acid complexes persist within gels for much longer than would be expected on the basis of their free solution lifetimes. Excluded volume and matrix-interactio...
Article
The gel electrophoresis mobility shift assay is widely used for qualitative and quantitative characterization of protein complexes with nucleic acids. Often it is found that complexes persist within electrophoresis gels for much longer than expected on the basis of their free-solution lifetimes. Volume exclusion, direct interaction with gel matrice...
Article
O6-Alkylguanine-DNA alkyltransferase (AGT) is an important cellular defense against the mutagenic effects of DNA alkylating agents. In humans this defense can contribute to the ability of some tumors to resist the effects of chemotherapeutic agents that act through DNA alkylation. We report here studies that characterize the interaction of AGT with...
Article
In eukaryotes, there is a universal requirement for the TA 1 A binding pio tent, TBP, in transcriptional initiation. Although its roles in tranrriptiouaJ initiation are becoming well-defined, very little is known about the physicochemical basis of TBP interactions with other macromolecules. As a first step in this direction, we have started to char...
Article
The cyclic AMP receptor protein (CAP) and lactose repressor bind their regulatory sites in the lactose promoter with moderate cooperativity (omega C101 = 11.8(+/- 3.7)). This cooperativity is significantly reduced by the removal of DNA located upstream of the CAP binding site or by substitution of the dimeric lacI-18 mutant repressor for the wild-t...
Article
The salt concentration dependences of the observed association constants (Kobs) for the binding of wild-type lac repressor tetramer and the dimeric lacI-18 mutant repressor to lactose operator DNA were compared. For both proteins, the data are consistent with a class of linkage models in which ion binding by the protein is driven by differences in...
Article
The gel electrophoresis mobility shift assay is widely used for qualitative and quantitative characterization of protein complexes with nucleic acids. Often it is found that complexes that are short-lived in free solution (tfrac; of the order of minutes) persist for hours under the conditions of gel electrophoresis. We have investigated the influen...
Article
Transcription in E. coli is often controlled by the binding of specific gene-regulatory proteins. Binding of these proteins to their specific DNA binding sites occurs in the presence of a large excess of "nonspecific" genomic DNA. Binding to a specific DNA site thus depends on the concentration of regulatory protein, on its affinities for specific...
Article
The equilibrium association constant observed for many DNA/protein interactions in vitro (K(obs)) is strongly dependent on the salt concentration of the reaction buffer ([MX]). This dependence is often used to estimate the number of ionic contacts between protein and DNA by assuming that displacement of cations from the DNA is the predominant form...
Article
The gel electrophoresis mobility shift assay is a technique for the qualitative and quantitative analysis of protein-DNA complexes. The ability to resolve reactants, reaction intermediates and products makes this method particularly well-suited for the measurement of the assembly and dissociation rates of protein-nucleic acid complexes. Here we ide...
Article
The DNA binding affinities of several gene-regulatory proteins, restriction endonucleases and the Escherichia coli RNA polymerase have previously been found to be dependent on the nature of the dominant buffer anion. To discover whether the E. coli cAMP receptor protein (CAP) exhibits a similar dependency, we measured its affinity for its primary l...
Article
Enzymatic assays for tartrate-sensitive acid phosphatase and beta-glucuronidase, and radio-immunoassay for prostate-specific antigen, were modified for application to fine-needle aspirate samples from benign and malignant human prostates. When compared to samples from benign prostates, the ratio of acid phosphatase to beta-glucuronidase activities...
Article
The lactose promoter-operator region of Escherichia coli contains two binding sites for cyclic AMP receptor protein (CAP), two for the lactose repressor, and two for RNA polymerase. The high density of binding sites makes cooperative interactions between these proteins likely. In this study, we used the gel electrophoresis mobility shift assay and...
Article
The catabolite gene activator protein (CAP) and the lac repressor regulate the transcriptional activity of the lactose operon. An early step in the regulatory functions of these proteins is their binding to specific DNA sequences within the lac promoter-operator region. Using the gel electrophoresis mobility-shift technique, we have found that the...

Network

Cited By