Michael Bronstein

Michael Bronstein
University of Lugano | USI · Faculty of Informatics

PhD

About

261
Publications
60,982
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,086
Citations
Additional affiliations
February 2012 - present
Intel
Position
  • Researcher
November 2010 - present
University of Lugano
Position
  • Professor (Assistant)
December 2008 - April 2009
Stanford University
Position
  • Visiting lecturer
Education
January 2005 - March 2007
Technion - Israel Institute of Technology
Field of study
  • Computer Science

Publications

Publications (261)
Preprint
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most prominent form of subgraph methods, which employs nod...
Preprint
Dynamical systems minimizing an energy are ubiquitous in geometry and physics. We propose a gradient flow framework for GNNs where the equations follow the direction of steepest descent of a learnable energy. This approach allows to explain the GNN evolution from a multi-particle perspective as learning attractive and repulsive forces in feature sp...
Preprint
Physical interactions between proteins are essential for most biological processes governing life. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic, and structural data grows. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-p...
Preprint
Full-text available
Strategic interactions between a group of individuals or organisations can be modelled as games played on networks, where a player's payoff depends not only on their actions but also on those of their neighbours. Inferring the network structure from observed game outcomes (equilibrium actions) is an important problem with numerous potential applica...
Preprint
A bstract Small molecules have been the preferred modality for drug development and therapeutic interventions. This molecular format presents a number of advantages, e.g. long half-lives and cell permeability, making it possible to access a wide range of therapeutic targets. However, finding small molecules that engage “hard-to-drug” protein target...
Preprint
Full-text available
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain. Two prominent examples are molecule property prediction and brain connectome analysis. Importantly, recent works have shown that considering relationships between input data samples have a positive regularizing effect for...
Preprint
Full-text available
Cellular sheaves equip graphs with "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the char...
Preprint
Full-text available
Selecting optimal drug repurposing combinations for further preclinical development is a challenging technical feat. Due to the toxicity of many therapeutic agents (e.g., chemotherapy), practitioners have favoured selection of synergistic compounds whereby lower doses can be used whilst maintaining high efficacy. For a fixed small molecule library,...
Preprint
We propose Graph-Coupled Oscillator Networks (GraphCON), a novel framework for deep learning on graphs. It is based on discretizations of a second-order system of ordinary differential equations (ODEs), which model a network of nonlinear forced and damped oscillators, coupled via the adjacency structure of the underlying graph. The flexibility of o...
Article
Over the past decade, deep learning has had a revolutionary impact on a broad range of fields such as computer vision and image processing, computational photography, medical imaging and speech and language analysis and synthesis etc. Deep learning technologies are estimated to have added billions in business value, created new markets, and transfo...
Preprint
Full-text available
Most graph neural networks (GNNs) use the message passing paradigm, in which node features are propagated on the input graph. Recent works pointed to the distortion of information flowing from distant nodes as a factor limiting the efficiency of message passing for tasks relying on long-distance interactions. This phenomenon, referred to as 'over-s...
Preprint
Full-text available
We propose a novel class of graph neural networks based on the discretised Beltrami flow, a non-Euclidean diffusion PDE. In our model, node features are supplemented with positional encodings derived from the graph topology and jointly evolved by the Beltrami flow, producing simultaneously continuous feature learning and topology evolution. The res...
Preprint
Message-passing neural networks (MPNNs) are the leading architecture for deep learning on graph-structured data, in large part due to their simplicity and scalability. Unfortunately, it was shown that these architectures are limited in their expressive power. This paper proposes a novel framework called Equivariant Subgraph Aggregation Networks (ES...
Article
Full-text available
Standard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running inference with a previously-trained model. The potential benefits are multifold: inference is typically...
Preprint
Can we use machine learning to compress graph data? The absence of ordering in graphs poses a significant challenge to conventional compression algorithms, limiting their attainable gains as well as their ability to discover relevant patterns. On the other hand, most graph compression approaches rely on domain-dependent handcrafted representations...
Article
Full-text available
Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets — amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic wi...
Article
We propose a novel approach for the approximation and transfer of signals across 3D shapes. The proposed solution is based on taking pointwise polynomials of the Fourier‐like Laplacian eigenbasis, which provides a compact and expressive representation for general signals defined on the surface. Key to our approach is the construction of a new ortho...
Preprint
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach -- such as computer vision, playing Go, or protein folding -- are in fact feasible with appropriate computational scale. Remarkably, th...
Preprint
Full-text available
Existing surface registration methods focus on fitting in-sample data with little to no generalization ability and require both heavy pre-processing and careful hand-tuning. In this paper, we cast the registration task as a surface-to-surface translation problem, and design a model to reliably capture the latent geometric information directly from...
Preprint
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non-rigid deformations and only partial views are available, the problem becomes ve...
Conference Paper
We introduce a simple and effective network architecture for monocular 3D hand pose estimation consisting of an image encoder followed by a mesh convolutional decoder that is trained through a direct 3D hand mesh reconstruction loss. We train our network by gathering a large-scale dataset of hand action in YouTube videos and use it as a source of w...
Preprint
While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Lehman (WL) graph isomorphism test, from which th...
Preprint
3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than...
Article
Full-text available
Predicting interactions between proteins and other biomolecules solely based on structure remains a challenge in biology. A high-level representation of protein structure, the molecular surface, displays patterns of chemical and geometric features that fingerprint a protein’s modes of interactions with other biomolecules. We hypothesize that protei...
Preprint
Drug repositioning is an attractive cost-efficient strategy for the development of treatments for human diseases. Here, we propose an interpretable model that learns disease self-representations for drug repositioning. Our self-representation model represents each disease as a linear combination of a few other diseases. We enforce the proximity bet...
Preprint
Full-text available
This paper focuses on spectral graph convolutional neural networks (ConvNets), where filters are defined as elementwise multiplication in the frequency domain of a graph. In machine learning settings where the dataset consists of signals defined on many different graphs, the trained ConvNet should generalize to signal on graphs unseen in the traini...
Article
Intel® RealSense™ SR300 is a depth camera capable of providing a VGA-size depth map at 60 fps and 0.125mm depth resolution. In addition, it outputs an infrared VGA-resolution image and a 1080p color texture image at 30 fps. SR300 form-factor enables it to be integrated into small consumer products and as a front facing camera in laptops and Ultrabo...
Preprint
Full-text available
Predicting interactions between proteins and other biomolecules purely based on structure is an unsolved problem in biology. A high-level description of protein structure, the molecular surface, displays patterns of chemical and geometric features that fingerprint a protein's modes of interactions with other biomolecules. We hypothesize that protei...
Preprint
Social media are nowadays one of the main news sources for millions of people around the globe due to their low cost, easy access and rapid dissemination. This however comes at the cost of dubious trustworthiness and significant risk of exposure to 'fake news', intentionally written to mislead the readers. Automatically detecting fake news poses ch...
Article
We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the...
Preprint
Full-text available
The question whether one can recover the shape of a geometric object from its Laplacian spectrum (`hear the shape of the drum') is a classical problem in spectral geometry with a broad range of implications and applications. While theoretically the answer to this question is negative (there exist examples of iso-spectral but non-isometric manifolds...
Preprint
We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the...
Preprint
Full-text available
Tasks involving the analysis of geometric (graph- and manifold-structured) data have recently gained prominence in the machine learning community, giving birth to a rapidly developing field of geometric deep learning. In this work, we leverage graph neural networks to improve signal detection in the IceCube neutrino observatory. The IceCube detecto...
Preprint
Full-text available
In recent years, there has been a surge of interest in developing deep learning methods for non-Euclidean structured data such as graphs. In this paper, we propose Dual-Primal Graph CNN, a graph convolutional architecture that alternates convolution-like operations on the graph and its dual. Our approach allows to learn both vertex- and edge featur...
Preprint
Full-text available
Deep learning systems have become ubiquitous in many aspects of our lives. Unfortunately, it has been shown that such systems are vulnerable to adversarial attacks, making them prone to potential unlawful uses. Designing deep neural networks that are robust to adversarial attacks is a fundamental step in making such systems safer and deployable in...
Article
Full-text available
In this paper, we consider the problem of information transfer across shapes and propose an extension to the widely used functional map representation. Our main observation is that in addition to the vector space structure of the functional spaces, which has been heavily exploited in the functional map framework, the functional algebra (i.e., the a...
Article
Full-text available
Deep learning on graphs and in particular, graph convolutional neural networks, have recently attracted significant attention in the machine learning community. Many of such techniques explore the analogy between the graph Laplacian eigenvectors and the classical Fourier basis, allowing to formulate the convolution as a multiplication in the spectr...
Article
Full-text available
Point clouds provide a flexible and scalable geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. Hence, the design of intelligent computational models that act directly on point clouds is critical, especially when efficiency considerations or noise...
Chapter
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo nonrigid deformations and only partial views are available, the problem becomes ver...
Article
Full-text available
The availability of affordable and portable depth sensors has made scanning objects and people simpler than ever. However, dealing with occlusions and missing parts is still a significant challenge. The problem of reconstructing a (possibly non-rigidly moving) 3D object from a single or multiple partial scans has received increasing attention in re...
Conference Paper
Notions of similarity and correspondence between geometric shapes and images are central to many tasks in geometry processing, computer vision, and computer graphics. The goal of this course is to familiarize the audience with a set of recent techniques that greatly facilitate the computation of mappings or correspondences between geometric dataset...
Article
Full-text available
We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex funct...
Article
The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topologic...
Article
Full-text available
The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain con...
Article
Full-text available
Performance of fingerprint recognition depends heavily on the extraction of minutiae points. Enhancement of the fingerprint ridge pattern is thus an essential pre-processing step that noticeably reduces false positive and negative detection rates. A particularly challenging setting is when the fingerprint images are corrupted or partially missing....
Article
Full-text available
We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model shape correspondence as a labelling problem, where each point of a query shape receives a label identifying a point on some reference domain; the correspondence is then constructed a posteriori by composing the label...
Article
Full-text available
Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local sta...
Conference Paper
Notions of similarity and correspondence between geometric shapes and images are central to many tasks in geometry processing, computer vision, and computer graphics. The goal of this course is to familiarize the audience with a set of recent techniques that greatly facilitate the computation of mappings or correspondences between geometric dataset...
Article
Full-text available
Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and rec...
Article
Many signal processing problems involve data whose underlying structure is non-Euclidean, but may be modeled as a manifold or (combinatorial) graph. For instance, in social networks, the characteristics of users can be modeled as signals on the vertices of the social graph. Sensor networks are graph models of distributed interconnected sensors, who...