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Abstract——Depression is caused by a change in
neural activity resulting from an increase in glutamate
that drives excitatory neurons and may be responsible
for the decline in the activity and number of the
GABAergic inhibitory neurons. This imbalance between
the excitatory and inhibitory neurons may contribute to
the onset of depression. At the cellular level there is an
increase in the concentration of intracellularCa2+within
the inhibitory neurons that is driven by an increase in
entry through the NMDA receptors (NMDARs) and
through activation of the phosphoinositide signaling
pathway that generates inositol trisphosphate (InsP3)
that releases Ca2+ from the internal stores. The impor-
tance of these two pathways in driving the elevation of
Ca2+ is supported by the fact that depression can be

alleviated by ketamine that inhibits the NMDARs and
scopolamine that inhibits the M1 receptors that drive
InsP3/Ca2+ pathway. This increase in Ca2+ not only
contributes to depression but it may also explain why
individuals with depression have a strong likelihood of
developing Alzheimer’s disease. The enhanced levels of
Ca2+ may stimulate the formation of Ab to initiate the
onset and progression of Alzheimer’s disease. Just how
vitamin D acts to reduce depression is unclear. The
phenotypic stability hypothesis argues that vitamin D
acts by reducing the increased neuronal levels of Ca2+

that are driving depression. This action of vitamin D
depends on its function tomaintain the expression of the
Ca2+ pumps and buffers that reduce Ca2+ levels, which
mayexplainhow it acts to reduce theonset of depression.

I. Introduction

There are two forms of depression, unipolar depres-
sion and bipolar depression (BPD). In the case of BPD,
there are alternating episodes of depression and mania.
The depressive state in BPD resembles that in unipolar
depression in that they both respond to antidepressants
such as ketamine and the mood-stabilizer lithium (Li+),
but it is still unclear whether they are caused by the
same genetic and pathophysiological defects. In this
review, it will be assumed that there are similarities in
the depressive state that occurs in both BPD and
unipolar depression such as major depressive disorder
(MDD). Vitamin D deficiency has been linked to both

forms of depression but just how this occurs at the
cellular level is unclear.

To describe how vitaminD functions, it is necessary to
understand the properties of the vitamin D signaling
pathway (Fig. 1). The active form of vitamin D is 1a,25-
dihydroxy vitamin D3 [1a,25(OH)2D3], which is formed
by a series of reactions that take place in a number of
different tissues. Sunlight acting on the skin initiates
the formation of vitamin D3 (cholecalciferol) through
the photolysis of 7-dehydrocholesterol (Holick et al.,
1980). The vitamin D3 enters the blood and is trans-
ferred to the liver where a hydroxyl group is added to
the C-25 position by a vitamin D-25 hydroxylase (encoded
by the CYP27A1 gene) to form 25-hydroxyvitamin
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D3 [25(OH)D3] that is the immediate precursor for active
vitamin D. This 25(OH)D3 is carried in the blood to enter
multiple cell types where a 25(OH)D3-1a-hydroxylase
(encoded by the CYP27B1 gene) adds another hydroxyl
group to the 1 position to form the active 1,25(OH)2D3,
which enters the nucleus to activate a large number of
genes (Fig. 1). In this review, I will use the term vitamin
D with the understanding that it refers to the vitamin D
signaling pathway that contains a number of related
components.
To understand the pathophysiology of depression and

how vitamin D may act to prevent depression, it is
necessary to explore what causes the alterations in
neural function responsible for the change in mood. To
explore how vitamin D might act to prevent depression,
it is necessary to formulate a working hypothesis to
explain the nature of the dysfunctional intracellular
neuronal signaling systems. The hypothesis that is
developed in the subsequent sections proposes that an
increase in neuronal Ca2+ levels is a major factor
responsible for driving the onset of depression. Vitamin
D normally acts to maintain Ca2+ homeostasis
(Berridge, 2015a,b), which suggest that the persistent
increase in Ca2+ caused by vitamin D deficiency may
contribute to the onset of depression.

II. Dysfunctional Neural Circuits in Depression

There is increasing evidence that depression occurs
from alterations in the way different brain regions
communicate with each other (Fitzgerald et al., 2008).
Individuals with depression have a decline in neural
activity in the frontal and temporal cortex and the
insula. In addition, there is a decrease in activity in the
cerebellum, subcortical, and limbic regions. This com-
munication between brain regions is very dependent on
the fact that neurons oscillate in synchrony with each
other. An example of such oscillatory activity is the fast
gamma oscillations (20–80Hz). Such synchronous brain
rhythms depend on an intimate mutual interaction
between the excitatory and inhibitory neurons. Excit-
atory neurons release glutamate that not only excites
its target neuron, but they also have collateral endings
that activate the local inhibitory neurons, which release
g-aminobutyric acid (GABA) that then feeds back to
inhibit the excitatory neurons. These tightly regulated
feedback interactions between the excitatory and in-
hibitory neurons is an essential feature of neuronal
communication within the brain, which may be altered
in depression as a result of a change in the contribu-
tion of the inhibitory neurons. In individuals with

depression, there is a decline in GABA levels
(Sanacora et al., 2004, Hasler et al., 2007) and this
may be explained by the fact that the size and the
number of inhibitory GABAergic neurons is reduced in
the dorsal prefrontal cortex (Rajkowska et al., 2007)
and in the occipital cortex (Maciag et al., 2010).
These GABAergic inhibitory interneurons, which
have an important role in coordinating the activity of
the pyramidal neurons to generate brain rhythms
(Klausberger et al., 2003) are altered in depression
(Croarkin et al., 2011; Luscher et al., 2011; Ren et al.,
2016). Such a deficit in the GABA-dependent inhibitory
pathway may be responsible for the onset of major
depressive disorder (MDD) (Levinson et al., 2010). The
decline in the GABAergic neurons may be driven by an
increase in the activity of the glutamatergic signaling
pathway that occurs in depression (Deutschenbaur
et al., 2016; Zhang et al., 2016a). For example, there is
an increase in glutamate levels in various brain areas
such as the anterior cingulate/medial prefrontal corti-
cal region in patients with BPD (Paul and Skolnick
2003; Frye et al., 2007; Hashimoto et al., 2007; Gigante
et al., 2012; Niciu et al., 2014; Zhang et al., 2016a). In
individuals with depression, there is a decline in GABA
levels (Sanacora et al., 2004; Hasler et al., 2007), and
this may be explained by the fact that the size and the
number of GABAergic neurons is reduced in the dorsal
prefrontal cortex (Rajkowska et al., 2007) and in the
occipital cortex (Maciag et al., 2010). High levels of
glutamate will increase the intracellular level of Ca2+,
resulting in two consequences. First, it will enhance the
tonic excitatory drive responsible for regulating neuro-
nal activity. Second, the elevated levels of Ca2+ reduce
protein synthesis, which may account for the decline in
the function and number of GABAergic neurons as
described later. There is increasing evidence that the
onset and progression of depression may depend on an
increase in Ca2+ in neuronal cells.

III. Tonic Excitatory Drive and Depression

Abnormal activation of the tonic excitatory drive that
functions to regulate neuronal activity may contribute
to the elevation of Ca2+ that occurs in depression. The
rhythmical neuronal oscillations that occur synchro-
nously in the brain have varied frequencies during the
sleep/wake cycle. During the wake period there are fast
gamma (20–80 Hz) and theta (4–10 Hz) oscillations,
which then decline to the much slower delta (1–4 Hz)
and slow oscillations (,1 Hz) that occur during sleep
(Berridge, 2014a,b). This range of frequencies is

ABBREVIATIONS: ACh, acetylcholine; AD, Alzheimer’s disease; BPD, bipolar depression; E-I, excitation-inhibition; ER, endoplasmic re-
ticulum; GABA, g-aminobutyric acid; GSH, glutathione; 5-HT, 5-hydroxytryptamine; InsP3, inositol 1,4,5-trisphosphate; Li

+, lithium; MDD,
major depressive disorder; mGluR, metabotropic glutamatergic receptor; M1, muscarinic acetylcholine receptor; NCS-1, neuronal calcium
sensor 1; NCX1, Na+/Ca2+ exchanger 1; NMDAR, NMDA receptor; PMCA, plasma membrane Ca2+-ATPase; PtdIns4,5P2, phosphatidylinositol
4,5-bisphosphate; ROS, reactive oxygen species; RYRs, ryanodine receptors; TNF-a, tumor necrosis factor-a.
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regulated by the ascending arousal system that consists
of a number of different neurons located mainly in the
brain stem, midbrain, basal forebrain, and hypothala-
mus. In addition to arousing the brain from sleep, it also
is responsible for maintaining the wake state and can
adjust the frequency of the oscillating neural circuits as
they participate in different types of behavior. This
ascending arousal system regulates the sleep/wake
cycle by releasing transmitters such as acetylcholine
(ACh), dopamine, histamine, noradrenaline, orexin,
and serotonin. Some of these transmitters such as
serotonin, dopamine, and acetylcholine feature signifi-
cantly in depression (Manji et al., 2003).
The serotonergic neurons in the dorsal raphe, which

synthesize serotonin [5-hydroxytryptamine (5-HT)], ex-
tend throughout the brain to release serotonin in the
hippocampus, prefrontal cortex, substantia nigra, nu-
cleus accumbens, amygdala, and lateral habenula. The
serotonin hypothesis, which was one of the first at-
tempts to explain depression, proposed that depression
may result from a deficiency in serotonin (Schildkraut
1965; Jacobsen et al., 2012). The selective serotonin
reuptake inhibitors such as fluoxetine, paroxetine, and
citalopram, relieve the symptoms of depression by

bringing about an increase in serotonin levels that have
two important actions in the brain (Kobayashi et al.,
2008; Thompson et al., 2015). First, the elevated
serotonin activates neurogenesis by increasing the pro-
liferation of progenitor cells in the hippocampal dentate
gyrus (Malberg et al., 2000) and is the basis of the
neurogenesis hypothesis that proposes that a decrease
in neurogenesis causes the onset of depression (Jacobs
et al., 2000; Miller and Hen, 2015).

Neurogenesis is a process whereby new functional
neurons are generated from precursor cells (Ming and
Song 2011; Kempermann et al., 2015). Second, seroto-
nin controls excitatory synaptic transmission in the
hippocampus and prefrontal cortex (Cai et al., 2013;
Thompson et al., 2015), perhaps operating through the
tonic excitatory drive. The decline in serotonin may be
caused by inflammation that is associated with de-
pression as described later. A reduction in serotonin
levels thus seems to be one of the causes of depression as
described later.

The transmitters, such as serotonin and acetylcholine
(ACh) discussed above, are released globally and are
responsible for activating the tonic excitatory drive
using a variety of signaling mechanisms to control the

Fig. 1. The role of Ca2+ signaling in depression. Increased glutamate that occurs during depression enhances Ca2+ through the activation of NMDAR
Ca2+ channels and by activation of the metabotropic glutamatergic receptor 5 (mGluR5) that is coupled to phospholipase C (PLC) to hydrolyze
phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) to form inositol 1,4,5-trisphosphate (InsP3) that releases Ca2+ from the endoplasmic reticulum
(ER). Acetylcholine acting through the muscarinic 1 (M1) receptor also stimulates the formation of InsP3. The hydrolysis of PIP2, which normally acts
to open the Kv7 2/3 channels that hyperpolarizes the neuronal membrane, acts to close these K+ channels and the membrane depolarizes, resulting in
enhanced neuronal excitability. Vitamin D acts to reduce Ca2+ signaling by acting through the vitamin D receptor (VDR) to increase the expression of
the Ca2+ buffer calbindin and it increases expression of the plasma membrane Ca2+ pump (PMCA) and the sodium/Ca2+ exchanger 1 (NCX1). Vitamin
D also reduces the level of Ca2+ by reducing the expression of the L-type CaV1.2 channel.
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activity of the excitatory and inhibitory neurons that
interact with each other to generate the synchronous
brain rhythms (Berridge, 2014a,b). For example, ACh
acts through M1 receptors to stimulate phosphatidyli-
nositol 4,5-bisphosphate (PtdIns4,5P2) hydrolysis,
which contributes to depolarization by decreasing the
permeability of Kv7.2 and Kv7.3 that are delayed
rectifier potassium channels that regulate neuronal
excitability by controlling the M current (Fig. 1). In
addition, the inositol 1,4,5-trisphosphate (InsP3) re-
leased after the hydrolysis of PtdIns4,5P2 promotes
the release of Ca2+ that stimulates the Ca2+-activated
nonselective cation current. The importance of ACh has
been highlighted by the fact that scopolamine, which
inhibits muscarinic receptors, functions as an antide-
pressant (Furey and Drevets, 2006; Drevets et al., 2013;
Navarria et al., 2015). In the hippocampal CA1 region,
the GABAergic interneurons respond to serotonin
through 5-HT2A receptors (5-HT2ARs) that stimulate
phospholipase Cb that hydrolyzes PtdIns4,5P2, result-
ing in closure of the hyperpolarizing M current. Seroto-
nin also inducesmembrane depolarization by producing
InsP3 to increase Ca2+ that stimulates the Ca2+-acti-
vated nonselective cation current, resulting in mem-
brane excitability (Wyskiel and Andrade, 2016).
Dopamine acts through both the D1 and D2 receptors
to regulate the formation of cyclic AMP, which also
regulates neuronal excitability. Inactivation of the D2
receptors in the dorsolateral prefrontal cortex is pre-
vented by neuronal calcium sensor 1 (NCS-1). It is of
interest, therefore, to find that the levels of NCS-1 are
markedly elevated in BPD (Koh et al., 2003). It is also of
interest that NCS-1 enhances the release of Ca

2+
by the

InsP3 receptor 1 (InsP3R1), which explains how NCS-1
may contribute to the elevation in Ca2+ that occurs in
depression (Schlecker et al., 2006). The antimanic drug
lithium (Li+) inhibits this stimulatory action of NCS-1,
further supporting the concept that an elevation in the
InsP3/Ca

2+ signaling pathway contributes to depression
pathology (Schlecker et al., 2006).
Another reason for considering a possible role for

changes in the tonic excitatory drive in BPD, is the
finding that two of the genes that have consistently been
linked to BPD play a role in regulating neuronal
activity. One of these genes is CACNA1C, which
encodes the a subunit of the CaV1.2 L-type voltage-
sensitive Ca2+ channels (Ferreira et al., 2008; Tesli
et al., 2013; Heyes et al., 2015; Kabir et al., 2016).
Opening of this channel generates a Ca2+ signal that
contributes to the tonic excitatory drive by activating
the HCN channel. Neuronal Ca2+ levels are enhanced
by an increase in the activity of this CaV1.2 L-type
voltage-sensitive Ca2+ channel, which is encoded by the
CACNA1C gene. Polymorphisms located within the
CACNA1C gene, which is associated with both depres-
sion and bipolar disorder (Zhang et al., 2013), result in
an increase in the level of Ca2+ (Perrier et al., 2011; Ou

et al., 2015; Uemura et al., 2015; Harrison 2016). Such
an increase in the activity of the CaV1.2 L-type
channels is of interest because it may help to explain
the relationship between vitamin D deficiency and
depression as described later. This role of enhanced
CaV1.2 L-type Ca2+ channels causing depression has led
to a proposal that the inhibition of these channels may
act to improve mood disorders (Boal et al., 2016). Such a
possibility is supported by the observation that the Ca2+

channel blocker isradipine is able to treat bipolar
depression (Ostacher et al., 2014). The other gene is
ANK3 that encodes ankyrin-G, which plays a role in
positioning the KV7.2/KV7.3 channels to the correct
location in the neuronal membrane. Kv7.2 and Kv7.3
are delayed rectifier channels that contribute to the
regulation of neuronal excitability by controlling the M
current (Fig. 1).

An important feature of this tonic excitatory drive is
that it normally is applied equally to both the excitatory
and inhibitory neurons and this excitation-inhibition
(E-I) balance is essential for proper brain function (Tao
et al., 2014). Through a process of homeostatic plastic-
ity, the excitatory and inhibitory neurons adjust their
synaptic strength so as to maintain this E-I balance
(McClung and Nestler, 2008; Turrigiano 2008; Ren
et al., 2016). The idea that depression may be caused
by an E-I imbalance is supported by the observation
that depression is associated with a decline in the
number of the GABAergic inhibitory interneurons
(Klausberger et al., 2003), which may be driven by the
increase in the glutamatergic signaling pathway that
occurs in BPD (Paul and Skolnick, 2003; Frye et al.,
2007; Gigante et al., 2012). For example, there is an
increase in glutamate levels in various brain areas such
as the anterior cingulate/medial prefrontal cortical
region in patients with depression (Frye et al., 2007;
Gigante et al., 2012). In addition to distorting the E-I
balance, this increase in glutamate levels could also
contribute to the increase in the levels of both Ca2+ and
reactive oxygen species (ROS) levels that are associated
with depression as described below.

Depression seems to occur as a result of a decline in
both the number and connectivity of spine synapses
particularly in the GABAergic neurons (Duman and
Duman, 2015; Calabrese et al., 2016). Ketamine, which
inhibits the Ca2+ entry through the NMDARs, and
scopolamine that inhibits muscarinic receptors can
restore this decline in synaptogenesis that occurs
during depression (Duman and Aghajanian, 2012;
Raab-Graham et al., 2016; Ren et al., 2016; Wohleb
et al., 2017). This restoration of normal synaptic
connections may be mediated through the ability of
ketamine to reduce the elevated levels of Ca2+ that are a
feature of depression. Similarly, the antidepressant
action of scopolamine (Furey and Drevets, 2006;
Drevets et al., 2013; Navarria et al., 2015) may depend
on its ability to reduce Ca2+ levels by inhibiting the
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muscarinic receptors that act through the InsP3/Ca
2+

signaling pathway. Thismay explain why the activation
of KCNQ channels, which will hyperpolarize the mem-
brane to reduce neuronal hyperactivity and intracellu-
lar Ca2+ levels, can also alleviate depression (Friedman
et al., 2016). High levels of calcium that occur in
depression activate eukaryotic elongation factor 2 ki-
nase, which phosphorylates and inhibits eukaryotic
elongation factor 2, resulting in less dendritic protein
synthesis and negatively affecting synapse formation
(Sutton et al., 2007). The persistent elevation in Ca2+

may thus be a key pathologic factor responsible for the
decline is synapses that occur during depression.

IV. Enhanced Neuronal Ca2+ Signaling
in Depression

A number of mechanisms contribute to the abnormal
elevation of neuronal Ca2+ that seems to be responsible
for the onset of depression (Berridge. 2012; 2014b).
Again a key aspect of depression appears to be an
elevation in glutamate that will elevate Ca2+ by acting
on both ionotropic and metabotropic receptors (Fig. 1).
For example, the NMDA receptor (NMDAR) is an
ionotropic channel that responds to glutamate by in-
creasing the entry of external Ca2+. The antidepressant
drug ketamine acts by inhibiting the NMDARs, thus
reducing the influx of external Ca2+ (Miller et al., 2014).
One of the consequences of ketamine acting to reduce
the intracellular level of Ca2+ is to promote the protein
synthesis necessary to restore the synaptic connections
that are reduced in depression as described above
(Sutton et al., 2007).
The enhanced glutamate levels may also contrib-

ute to the elevation in Ca2+ by activating metabo-
tropic glutamatergic receptors such as the mGluR2/3
and mGluR5 (Chaki et al., 2013; Pałucha-Poniewiera
et al., 2013; Newell and Matosin, 2014). The function
of mGluR5 is facilitated by the protein S100A10 (p11)
that binds to the cytoplasmic tail of this receptor (Lee
et al., 2015). Knockout of p11 in GABAergic neurons
has an antidepressant effect supporting the idea that
the function of the mGluR5s is closely related to p11.
The significance of the mGluRs is also supported by
studies on the scaffolding protein Homer, which has
three members Homer1, Homer2, and Homer3. An
alteration in the function of these Homer proteins
has been implicated in a number of neurologic
diseases (Szumlinski et al., 2006; Luo et al., 2012).
Genome-wide association studies have established
that single nucleotide polymorphisms in Homer1 are
linked to major depression (Rietschel et al., 2010).
In the medial prefrontal cortex, the expression of
Homer1a is increased by various antidepressant
treatments, whereas a decrease in its expression
increased depressive-like behavior (Serchov et al.,
2015; 2016).

One of the primary locations of Homer1 is in the
postsynaptic density where it acts as an adaptor protein
to regulate a number of Ca2+ signaling components
(Serchov et al., 2016). For example, Homer1 functions to
link the NMDA receptor (NMDAR) to the metabotropic
receptors (mGluR1 and mGluR5) (Bertaso et al., 2010).
The interaction between these two receptors is func-
tionally important in that there is a reciprocal inhibi-
tion operating between the NMDAR and mGluR5
receptors (Perroy et al., 2008). This would imply that
if Homer1 is defective then the two receptors would
separate andwould becomemore active to enhance Ca2+

signaling. This is of interest in that the mGluR5 and
NMDARs have been implicated in the pathophysiol-
ogy of depression (Newell and Matosin 2014). The
significance of NMDARs in depression is evident by
the fact that ketamine, which is a potent inhibitor of this
receptor, has antidepressant effects (Miller et al., 2014).
Homer proteins also provide a link between metabo-
tropic glutamate receptors (mGluRs), which generate
InsP3, and the underlying InsP3Rs (Tu et al., 1998).
Antidepressant responses have been observed after
inhibition of metabotropic glutamate receptors
(mGluRs) such as mGluR2 and mGluR5 (Krystal
et al., 2010). Homer can also provide a link between
the InsP3Rs in the endoplasmic reticulum (ER) and the
TRPC1 Ca2+ channels in the plasma membrane,
thereby promoting an increase in the entry of external
Ca2+ (Yuan et al., 2003). The activity of ryanodine
receptors (RYRs), which can contribute to depression
by releasing Ca2+ from the internal stores (Galeotti
et al., 2008a,b), can also be regulated byHomer proteins
(Feng et al., 2002; Hwang et al., 2003; Pouliquin and
Dulhunty, 2009).

The mGluRs act by stimulating the phosphoinositide
signaling pathway, which generates the InsP3 that
releases Ca2+ from internal stores and thus contributes
to the increase in neuronal Ca2+ levels. Such a mecha-
nism could account for the elevated levels of Ca2+ that
have been described in a large number of cell types
taken from patients with BPD (Dubovsky et al., 1992;
Warsh et al., 2004). Lithium (Li+) reduces this increase
in phosphoinositide signaling by reducing the supply of
inositol as described in the inositol depletion hypothesis
(Berridge et al., 1989). This inositol depletion hypoth-
esis is based on the idea that depression arises through
overactive phosphoinositide signaling pathways (as de-
scribed above) that can be corrected by drugs such as Li+

and valproate. The excessive phosphoinositide signal-
ing may contribute to depression by increasing the
intracellular level of Ca2+ by altering the tonic excit-
atory drive that alters the E-I balancewithin the central
nervous system. The inositol depletion hypothesis
emerged from the observation that Li+ is a potent
inhibitor of the inositol monophosphatase responsible
for hydrolyzing inositol monophosphates (Ins1P, Ins3P,
and Ins4P) to free inositol. By inhibiting the formation
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of inositol, Li+ reduces the supply of the free inositol
required to resynthesize the PtdIns necessary to pro-
vide the PtdIns4,5P2 required for this signaling path-
way. There is now considerable support for this inositol
depletion hypothesis (Lubrich and van Calker, 1999;
Harwood, 2005; Deranieh and Greenberg, 2009; Kim
and Thayer, 2009). Further support for the hypothesis
comes from the observation that Li+ can inhibit the
sodium myo-inositol transporter-1 (SMIT1) responsible
for taking up inositol from the plasma (Lubrich and van
Calker, 1999). This inositol depletion hypothesis was
strengthened further when it was discovered that
valproate has a similar action in that it too will deplete
internal inositol (Eickholt et al., 2005) by inhibiting
both the uptake of external inositol by SMIT and by
inhibiting the inositol synthase responsible for the de
novo synthesis of inositol from glucose 6-phosphate.
The inositol depletion hypothesis suggests that de-

pression may arise through excessive elevation of the
neuronal phosphoinositide signaling pathway that al-
ters the tonic excitatory drive. Such a conclusion is
supported by the observation that the levels of G alpha
q/11 and phospholipase C (PLC)-beta 1, which are key
components of the phosphoinositide signaling pathway,
are elevated in the occipital cortex from patients with
BPD (Mathews et al., 1997). The consequence of this
change will depend on whether this increase in signal-
ing is functionally important in either the excitatory or
inhibitory neurons. Changes in the activity of either the
excitatory or inhibitory neurons result in subtle alter-
ations in the neuronal circuits that control behavior.
The basic idea is that the periodic switching between
depression and mania, which is a characteristic feature
of BPD (Salvadore et al., 2010), is caused by an
alteration in the E-I balance that controls neuronal
activity. During the generation of brain rhythms, it is
essential for the excitatory and inhibitory neurons to be
activated equally.
The onset of both BPD and major depressive disorder

(MDD) has also been linked to dysfunction of the mito-
chondria (Kato, 2007; Andreazza et al., 2010;2013; Jou
et al., 2009; Clay et al., 2011; Callaly et al., 2015; Morris
and Berk, 2015; Bansal and Kuhad, 2016). There is a
decline in the nuclear mRNA molecules and proteins
that contribute to mitochondrial respiration (Scaini
et al., 2016; Kim et al., 2014). In particular, there is a
decline in the function of complex I of the electron
transport chain responsible for ATP formation. A de-
cline in the efficiency of this electron transport chain
also results in an increase in the formation of reactive
oxygen species (ROS) that induces oxidative stress.
Such oxidative stress arising from increased levels of
ROS plays an important role in the pathophysiology of
BPD (Steckert et al., 2010; Andreazza et al., 2013;
Brown et al., 2014; Callaly et al., 2015). The elevation of
ROS is enhanced by the fact that neurons from patients
with depression have much reduced antioxidants such

as glutathione (GSH) (Gawryluk et al., 2011; Kulak
et al., 2013). The Ca2+ buffering role of themitochondria
is also compromised, resulting in an increase in the
intracellular level of Ca2+, which is a feature of neurons
in both BPD and MDD.

A particularly interesting aspect of this decrease in
mitochondrial function in depression is that it may
result from a decline in vitamin D. Vitamin D acts to
maintain the normal mitochondrial control of cellular
bioenergetics (Calton et al., 2015). Vitamin D regulates
the activity of the mitochondrial respiratory chain
(Consiglio et al., 2015). In skeletal muscle, fatigue and
a decline in muscle strength are alleviated by vitamin D
acting to enhance mitochondrial respiration and oxida-
tive phosphorylation, thereby increasing the formation
of ATP (Bouillon and Verstuyf, 2013; Sinha et al., 2013;
Ryan et al., 2016). Vitamin D regulates mitochondrial
function through two actions. First, it acts on the
nucleus to increase the expression of many of the
components responsible for mitochondrial function.
Second, the VDR enters the mitochondrion where it
may act directly to regulate mitochondrial function, but
exactlywhat it does is still not clear. In human platelets,
the VDR is located in the mitochondria (Silvagno et al.,
2010). In keratinocytes, the VDR enters the mitochon-
dria through the permeability transition pore (Silvagno
et al., 2013). The role of vitamin D in maintaining
normal mitochondria may be one explanation for the
link between vitamin D deficiency and depression.
When vitamin D is low, mitochondrial function will be
compromised, resulting in an elevation of ROS and a
reduction in the formation of ATP, which will have a
major impact on Ca2+ homeostasis. The formation of
ROS facilitates the release of Ca2+ from the ER by the
InsP3Rs and the RYRs, whereas the decline in ATP will
reduce the ability of neurons to extrude Ca2+ from the
cell. Both these effects will contribute to the abnormal
elevation in neuronal Ca2+ levels that have been linked
to the onset of depression as described earlier.

Hyperactivity of the InsP3/Ca
2+ pathway contributes

to BPD. This is supported by studies showing that
depression is associated with single nucleotide poly-
morphisms in the Bcl-2 gene, which reduce Bcl-2
expression that results in an increase in InsP3-induced
Ca2+ release (Machado-Vieira et al., 2011; Uemura
et al., 2011;2015; Soeiro-de-Souza et al., 2013). This
Ca2+ release by InsP3 is normally suppressed by Bcl-2
(Fig. 1) (Distelhorst and Bootman, 2011). One of the
actions of the antidepressant drug Li+ is to increase the
expression of Bcl-2 (Chen et al., 1999; Manji et al., 2000;
Corson et al., 2004). Studies on mice have revealed that
the blockade of both InsP3Rs and RyRs, through in-
hibition or deletion, induces an antidepressant-like
effect (Galeotti et al., 2006). An antidepressive state in
mice was obtained by either inhibiting the RYRs or by
deleting them (Galeotti et al., 2008a). A similar decline
in depression was observed when the InsP3Rs were
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either inhibited or deleted (Galeotti et al., 2008b). On
the other hand, depressant-like responses were ob-
served upon stimulation of these Ca2+-mobilizing chan-
nels, thus confirming the hypothesis outlined earlier
that an elevation of Ca2+ plays a role in depression. An
increase in the activity of the CaV1.2 L-type Ca2+

channel also contributes to this dysregulation of Ca2+

as described earlier (section III).
All this evidence suggests that an increase in neuro-

nal Ca2+ may be a primary driver of depression. This
conclusion may also explain the close relationship
between inflammation and depression as described
below.

V. Inflammation and Depression

There is a close association between inflammation
and depression (Maes, 1995; 2011; Dantzer et al., 2008;
Miller et al., 2009; Barbosa et al., 2014a,b; Swardfager
et al., 2016; Berk et al., 2013b; Najjar et al., 2013; Brites
and Fernandes, 2015; Wohleb et al., 2016). The bi-
directional link between inflammation and depression
has emerged from studies showing that major depres-
sive disorders are associated with individuals with
chronic inflammation and with diseases such as cardio-
vascular diseases, type 2 diabetes, and rheumatoid
arthritis. The proinflammatory cytokines interleukin-
1a and b , tumor necrosis factor-a (TNF-a), and
interleukin-6 have been implicated in the onset of
depression (Maes, 2011; Dantzer et al., 2008; Najjar
et al., 2013; Swardfager et al., 2016; Zhang et al.,
2016b). The TNF-a protein levels were significantly
increased in those areas of the brain such as the
dorsolateral prefrontal and anterior cingulate cortex
that play a significant role in regulating both mood and
cognition (Dean et al., 2013). The microglia plays a
major role in releasing these cytokines within the brain
(Barbosa et al., 2014b). A part of the therapeutic action
of Li+, which is used to treat BPD, is to reduce
inflammation by altering the expression of a number
of cytokines (Nassar and Azab, 2014).
One of the consequences of inflammation is a decline

in the plasma level of tryptophan, which is an essential
amino acid that is transported into the brain where
it functions in the synthesis of serotonin (Catena-
Dell’Osso et al., 2011). Depression is associated with
a decline in the level of serotonin. Interleukin-6
appears to be one of the major cytokines associated
with depression (Sukoff Rizzo et al., 2012; Money et al.,
2016). Depression induced by cytokinesmay also result
from changes in the activity of the hippocampus,
extended amygdala, and hypothalamus. In patients
suffering from depression, there is an increased acti-
vation of microglia in the anterior cingulate cortex,
prefrontal cortex, and insula (Swardfager et al., 2016).
The alterations in neural function during depression
are also reflected in alterations in sleep patterns

(Turek, 2005; Franzen and Buysse, 2008; Bower
et al., 2010).

There are a number of ways whereby inflammation
might act to alter the neural activity responsible for
depression. An increase in the formation of reactive
oxygen species (ROS), which can exert a profound effect
on neuronal function, has been observed in depression
(Kunz et al., 2008; Wang et al., 2009; Leonard andMaes
2012; Berk et al., 2013b; Najjar et al., 2013; Barbosa
et al., 2014b). Much of the ROS is generated by
mitochondria (Zorov et al., 2014) and there is evidence
that depression is associated with an increase in mito-
chondrial function (Berk et al., 2013b). This evidence is
supported by the fact that mood disorders have been
linked to genetically mediated alterations in mitochon-
drial function (Anglin et al., 2012). A role for ROS is
supported by the observation that the level of glutathi-
one (GSH), which is one of the major antioxidants in
neurons (Dean et al., 2009), is depleted in depression
(Gawryluk et al., 2011; Berk et al., 2013a). The mood-
stabilizing drug Li+ may reduce oxidative damage by
increasing the expression of genes (GCL and GST)
that are responsible for generating GSH (Cui et al.,
2007; Shao et al., 2008). In addition, treatment with
N-acetylcysteine, which acts to restore neuronal GSH
levels, is also proving to be an effective treatment of
depression (Dean et al., 2011; Berk et al., 2013a).

The increase in ROS that occurs during inflammation
may induce depression through a number of mecha-
nisms such as an alteration in the formation of key
transmitters such as serotonin and an increase in Ca2+

signaling. One of the actions of cytokines and the
associated increase in ROS formation is inhibition of
serotonin synthesis (Catena-Dell’Osso et al., 2011;
Leonard and Maes, 2012), which is a component of the
serotonin hypothesis of depression described earlier.
Tumor necrosis factor a (TNF-a), which is one of the
cytokines, that contributes to depression, acts through
the specificity protein 1 to increase the transcription of
InsP3Rs that will enhance Ca2+ signaling (Park et al.,
2009; Xia et al., 2012). There is a crosstalk between Ca2+

and redox signaling in that ROS enhances Ca2+, which
then feeds back to enhance ROS (Hidalgo and Donoso,
2008; Paula-Lima et al., 2014: Berridge 2015b). An
important action of ROS is to enhance Ca2+ signaling by
increasing the sensitivity of the inositol 1,4,5-trisphos-
phate receptors (InsP3Rs) (Fig. 1) (Missiaen et al., 1991;
Bootman et al., 1992; Bird et al., 1993; Bánsághi et al.,
2014) and ryanodine receptors (RYRs) (Terentyev et al.,
2008; Donoso et al., 2011) to increase the release of Ca2+

from the endoplasmic reticulum (ER). The increase of
ROS can also elevate intracellular Ca2+ levels by
inhibiting the PMCA pump on the plasma membrane
(Lock et al., 2011).

One of the important actions of vitamin D is to reduce
inflammation (Hewison, 2010; Berk et al., 2013b) (Fig. 2).
One way it does this is to reduce the expression of
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inflammatory cytokines (Beilfuss et al., 2012; Grossmann
et al., 2012; Wei and Christakos, 2015), which is a
prominent feature of how inflammatory responses lead
to depression.

VI. Vitamin D and Depression

There is increasing evidence to show that vitamin D
deficiency is associated with depression. Individuals
with normal levels of vitamin D have a much lower
probability of developing depression (Hoogendijk et al.,
2008; Stewart and Hirani, 2010; Chan et al., 2011;
Gracious et al., 2012; Anglin et al., 2013; Black et al.,
2014; Grudet et al., 2014; von Känel et al., 2015; Kerr
et al., 2015; Brouwer-Brolsma et al., 2016; Moy et al.,
2016). In patients with heart failure and cancer, de-
pression has been associated with vitamin D deficiency
(Björkhem-Bergman and Bergman, 2016; Johansson
et al., 2016). Depression in the young has also been
linked to vitamin D deficiency (Polak et al., 2014; Kerr
et al., 2015). There are indications that depression in
younger people has increased in the United Kingdom.
Because this may be caused by a deficiency in vitamin
D, there is an imperative to measure the levels of

vitamin D in school children. A deficiency in vitamin
D is also a risk factor for late-life depression (Okereke
and Singh, 2016). It has been suggested that vitamin D
deficiency may set the stage for both the onset and the
progression of depression by acting synergistically with
other factors (Cui et al., 2015). The risk of developing
depression is reduced in those individuals that have
high serum vitamin D levels (Jääskeläinen et al., 2015).
Mood symptoms in depression were improved after
treatment with vitamin D (Sikoglu et al., 2015; Stokes
et al., 2016). There is increasing evidence that one of the
main functions of vitamin D is to maintain Ca2+

homeostasis as outlined in the phenotypic stability
hypothesis (Fig. 2).

The phenotypic stability hypothesis attempts to
explain how vitamin D functions to maintain healthy
cells to prevent the onset of themany diseases that have
been linked to vitamin D deficiency such as depression
(Berridge, 2014b; 2015a,b). One of the primary func-
tions of vitamin D is to regulate the expression of those
Ca2+ signaling toolkit components that function to
maintain low cytosolic resting levels of Ca2+ (Fig. 2).
The phenotypic stability hypothesis explains how
vitamin D acts to maintain both Ca2+ and redox

Fig. 2. Vitamin D prevents the onset of depression by activating a number of processes that are critical to maintain normal healthy neurons. Vitamin
D enters the nucleus where it associates with the retinoid X receptor (RXR) and then binds to the vitamin D response element (VDRE), which is located
on a large number of genes. It maintains Ca2+ homeostasis by inducing the expression of calbindin, parvalbumin, Na+/Ca2+ exchanger 1 (NCX1), and
the plasma membrane Ca2+-ATPase (PMCA) pump. It also regulates Ca2+ by reducing the expression of the CaV1.2 calcium channel. It activates
expression of many antioxidant genes such as the nuclear factor-erythroid-2-related factor 2 (NRF2), g-glutamyl transpeptidase (g-GT), glutamate
cysteine ligase (GCLC), glutathione reductase (GR), glutathione peroxidase (Gpx). It controls the formation of serotonin by increasing the level of
tryptophan hydroxylase 2 (TPH2) while repressing tryptophan hydroxylase1 (TPH1). It reduces inflammation by reducing the expression of
inflammatory cytokines. It regulates the expression of many mitochondrial proteins that maintain normal mitochondrial respiration. Finally, it
regulates the epigenetic landscape by promoting the expression of DNA demethylases such as Jumonji domain-containing protein 1A and 3 (JMJD1A,
JMJD3) and lysine-specific demethylase 1 and 2 (LSD1, LSD2).
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homeostasis (Berridge, 2015a,b). For example, vita-
min D can increase expression of the plasma mem-
brane Ca2+-ATPase (PMCA) and Na+/Ca2+ exchanger
1 (NCX1) that extrude Ca2+ and the calbindin D-9k,
calbindin D-28k, and parvalbumen that buffer Ca2+ (de
Viragh et al., 1989; Alexianu et al., 1998; Perez et al.,
2008; Wasserman, 2004). Both the calbindins and
parvalbumin are significant Ca2+ buffers in the cyto-
plasm of neurons. Vitamin D can also reduce the
expression of the L-type CaV1.2 and CaV1.3 channels
in hippocampal (Brewer et al., 2001) and cortical
neurons (Gezen-Ak et al., 2011). If vitamin D is de-
ficient, the expression of the CaV1.2 and CaV1.3
channels will be increased and the Ca2+ pumps and
buffers will be reduced and these changes will contrib-
ute to the elevated levels of Ca2+ that occur in BPD. Ca2+

channel blockers can reduce depression (Dubovsky
1993) and there is increasing interest in the possibility
that such Ca2+ channel antagonists could be developed
to treat depression (Cipriani et al., 2016).
Another important function of vitamin D is to control

the formation of serotonin and this is another feature of
the link between vitamin D deficiency and depression
(Patrick and Ames, 2015). It has been shown that one of
the actions of vitamin D is to induce the expression of
the serotonin-synthesizing gene tryptophan hydroxy-
lase 2 while repressing the expression of tryptophan
hydroxylase 1 (Fig. 2). Both tryptophan hydroxylase
1 and tryptophan hydroxylase 2 play a role in serotonin
synthesis. Vitamin D may thus prevent depression by
maintaining normal serotonin levels.
The basis of the phenotypic stability hypothesis is

that vitamin D controls the expression of those genes
that are responsible for maintaining both Ca2+ and
reactive oxygen species (ROS) homeostasis. There is
evidence that vitamin D may prevent depression by
reducing neural Ca2+ levels (Kalueff et al., 2004). The
elevation in both Ca2+ and ROS levels in neuronal cells
that occurs during vitamin D deficiency (Berridge,
2015b) may explain the link to depression. Another
important function of vitamin D is to prevent the
hypermethylation of gene promotors (Fig. 2). Such
epigenetic alterations that lead to a decline in the
expression of key signaling proteins are a feature of
many neural diseases including depression (Tsankova
et al., 2007; Guidotti et al., 2011; Dogra et al., 2016;
Saavedra et al., 2016). One of the main functions of
vitamin D is to maintain the expression of the DNA
demethylases (Fig. 2), such as Jumonji domain-
containing protein 1A and 3 (JMJD1A, JMJD3) and
lysine-specific demethylase 1 and 2 (LSD1, LSD2) that
act to prevent the hypermethylation of promoter regions
that are responsible for reducing gene transcription
(Pereira et al., 2012). Some of these genes play an
important role in the function of GABAergic neurons
(Guidotti et al., 2011), whichmay account for the decline
in the size and number of GABAergic neurons that

occurs during depression (Rajkowska et al., 2007;
Maciag et al., 2010).

VII. Depression and Alzheimer’s Disease

Older adults that suffer from depression, especially
when associated with mild cognitive impairment, have
a strong risk of developing Alzheimer’s disease (AD)
(Van der Mussele et al., 2014; Mourao et al., 2016; Kaup
et al., 2016; Kida et al., 2016; Mirza et al., 2016).What is
interesting about both depression and AD is that they
both display an increase in Ca2+ that has been linked to
vitaminD deficiency (Darwish et al., 2015). There also is
evidence that a deficiency in vitamin D is linked to a
decline in cognition (Annweiler, 2016). Such a decline in
cognition is often associated with depression (Dong
et al., 2016). Such vitamin D deficiency will result in
an elevation of Ca2+ that not only induces the decline in
cognition and the onset of depression, but it may also set
the stage for the initiation of AD. The onset of AD may
occur in those individuals who are deficient in vitaminD
and thus have abnormally elevated levels of Ca2+ that
may induce the formation of the pathologic Ab oligo-
mers that then initiates the onset of AD (Berridge
2016a). Such a possibility is based on the fact that Ca2+

acts to stimulate the formation of Ab (Querfurth and
Selkoe, 1994; Green and LaFerla, 2008; Itkin et al.,
2011). Such a mechanism would explain how the in-
crease in Ca2+ that occurs in depression may trigger the
formation of Ab and thus initiate the onset and progres-
sion of AD. In addition to AD, depression may also be
associated with the onset of other neurodegenerative
diseases such as Parkinson’s disease (PD), Huntington’s
disease, and amyotrophic lateral sclerosis (Réus et al.,
2016) that are induced by a dysregulation of Ca2+

signaling (Berridge, 2016b).

VIII. Conclusion

Depression arises through a change in neural activ-
ity. Normal brain function depends on a fine balance
between the activity of the excitatory and inhibitory
neurons (E-I balance). There are indications that there
is an increase in the levels of glutamate that results in
an increase in the activity of the excitatory neurons,
whereas there is a decline in the activity and number of
the GABAergic inhibitory neurons. This alteration in
neural activity is associated with a marked increase
in the intracellular level of Ca2+, which may account
for the decline in the inhibitory neurons through
the inhibition of protein synthesis in the synapses.
The increase in glutamate levels may contribute to the
increase in Ca2+ levels in that glutamate activates both
the ionotropic NMDARs that gate Ca2+ and the meta-
botropic glutamatergic receptors such as the mGluR5s
and the muscarinic M1 receptors that are coupled to the
phosphoinositide signaling pathway that generates
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InsP3 that releases Ca2+ from the internal stores. The
significance of these two pathways is supported by the
fact that depression can be alleviated by ketamine that
inhibits the NMDARs and scopolamine that inhibits the
M1 receptors. The increase in Ca2+ may also help to
explain why depression is such a strong risk factor for
the onset of Alzheimer’s disease (AD). It is conceivable
that the increase in Ca2+ that occurs in depression may
act to trigger the activation of amyloid formation that
then initiates the onset of AD.
A role for this increase in neuronal Ca2+ levels in

driving depression may also explain why vitamin D
deficiency is a risk factor for depression. Vitamin D
functions normally to maintain low intracellular Ca2+

levels, but when vitamin D levels decline the levels of
Ca2+ begin to rise within the cell and this may enhance
the onset of depression. This elevation of Ca2+ is en-
hanced by the fact that vitamin D plays an important
role in maintain normal mitochondrial respiration. In
addition, vitamin D acts to reduce inflammation, it
maintains the synthesis of serotonin, and it induces the
expression of DNA demethylases that controls the
epigenetic landscape, thus enabling gene transcription
to continue to maintain normal neuronal activity and to
prevent depression.
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