Michael Behrisch

Michael Behrisch
Harvard University | Harvard · Area of Computer Science

PhD, Dr. rer nat.

About

51
Publications
9,483
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
964
Citations
Additional affiliations
May 2017 - present
Harvard University
Position
  • PostDoc Position
December 2011 - present
Universität Konstanz
Position
  • PhD Student

Publications

Publications (51)
Article
Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network t...
Article
The increasing use of artificial intelligence (AI) technologies across application domains has prompted our society to pay closer attention to AI's trustworthiness, fairness, interpretability, and accountability. In order to foster trust in AI, it is important to consider the potential of interactive visualization, and how such visualizations help...
Preprint
Full-text available
We present PSEUDo, an adaptive feature learning technique for exploring visual patterns in multi-track sequential data. Our approach is designed with the primary focus to overcome the uneconomic retraining requirements and inflexible representation learning in current deep learning-based systems. Multi-track time series data are generated on an unp...
Data
In this screencast, we demonstrate and introduce the Scalable Insets technique.
Article
Full-text available
We present Scalable Insets, a technique for interactively exploring and navigating large numbers of annotated patterns in multiscale visualizations such as gigapixel images, matrices, or maps. Exploration of many but sparsely-distributed patterns in multiscale visualizations is challenging as visual representations change across zoom levels, contex...
Article
Matrix representations are one of the main established and empirically proven to be effective visualization techniques for relational (or network) data. However, matrices—similar to node-link diagrams—are most effective if their layout reveals the underlying data topology. Given the many developed algorithms, a practical problem arises: “ Which mat...
Preprint
Matrix representations are one of the main established and empirically proven to be effective visualization techniques for relational (or network) data. However, matrices —similar to node-link diagrams— are most effective if their layout reveals the underlying data topology. Given the many developed algorithms, a practical problem arises: “Which ma...
Preprint
The detection of interesting patterns in large high-dimensional datasets is difficult because of their dimensionality and pattern complexity. Therefore, analysts require automated support for the extraction of relevant patterns. In this paper, we present FDive, a visual active learning system that helps to create visually explorable relevance model...
Preprint
Full-text available
We present Scalable Insets , a technique for interactively exploring and navigating large numbers of annotated patterns in multiscale visualizations such as gigapixel images, matrices, or maps. Exploration of many but sparsely-distributed patterns in multiscale visualizations is challenging as visual representations change across zoom levels, conte...
Article
Neural sequence-to-sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work with a five-stage blackbox pipeline that begins with encoding a source sequence to a vector space and then decoding out to a new target sequence. This p...
Conference Paper
Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algori...
Conference Paper
Full-text available
We present SMARTEXPLORE, a novel visual analytics technique that simplifies the identification and understanding of clusters, correlations, and complex patterns in high-dimensional data. The analysis is integrated into an interactive table-based visualization that maintains a consistent and familiar representation throughout the analysis. The visua...
Conference Paper
Full-text available
Many visualizations have proven to be effective in supporting various software related tasks. Although multiple media can be used to display a visualization, the standard computer screen is used the most. We hypothesize that the medium has a role in their effectiveness. We investigate our hypotheses by conducting a controlled user experiment. In th...
Article
Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the orig...
Preprint
Full-text available
Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algori...
Article
The visualization community has developed to date many intuitions and understandings of how to judge the quality of views in visualizing data. The computation of a visualization's quality and usefulness ranges from measuring clutter and overlap, up to the existence and perception of specific (visual) patterns. This survey attempts to report, catego...
Article
Urban planning and intelligent transportation management are facing key challenges in today's ever more urbanized world. Providing the right tools to city planners is crucial to cope with these challenges. Data collected from citizens' mobile communication can be used as the foundation for such tools. These kind of data can facilitate various analy...
Article
Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings of...
Article
Named entity recognition (NER) denotes the task to detect entities and their corresponding classes, such as person or location, in unstructured text data. For most applications, state of the art NER software is producing reasonable results. However, as a consequence of the methodological limitations and the well-known pitfalls when analyzing natura...
Article
Finding interesting patterns in large scatter plot spaces is a challenging problem and becomes even more difficult with increasing number of dimensions. Previous approaches for exploring large scatter plot spaces like e.g., the well-known Scagnostics approach, mainly focus on ranking scatter plots based on their global properties. However, often lo...
Article
Full-text available
This survey provides a description of algorithms to reorder visual matrices of tabular data and adjacency matrix of networks. The goal of this survey is to provide a comprehensive list of reordering algorithms published in different fields such as statistics, bioinformatics, or graph theory. While several of these algorithms are described in public...
Article
In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or MAGNOSTICS), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according...
Conference Paper
The quality assessment of results of clustering algorithms ischallenging as different cluster methodologies lead to differentcluster characteristics and topologies. A further complicationis that in high-dimensional data, subspace clustering addsto the complexity by detecting clusters in multiple differentlower-dimensional projections. The quality a...
Conference Paper
Performance-analysis tools are indispensable for understanding and optimizing the behavior of parallel programs running on increasingly powerful supercomputers. However, with size and complexity of hardware and software on the rise, performance data sets are becoming so voluminous that their analysis poses serious challenges. In particular, the sea...
Conference Paper
Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature s...
Article
Full-text available
The extraction of relevant and meaningful information from multivariate or high-dimensional data is a challenging problem. One reason for this is that the number of possible representations, which might contain relevant information, grows exponentially with the amount of data dimensions. Also, not all views from a possibly large view space, are pot...
Article
Full-text available
We present a visualisation prototype for the support of a novel approach to clustering called TRIAGE. TRIAGE uses aggregation functions which are more adaptable and flexible than the weighted mean for similarity modelling. While TRIAGE has proven itself in practice, the use of complex similarity models makes the interpretation of TRIAGE clusterings...
Conference Paper
Full-text available
In recent years, the quantity of time series data generated in a wide variety of domains grown consistently. Thus, it is difficult for analysts to process and understand this overwhelming amount of data. In the specific case of time series data another problem arises: time series can be highly interrelated. This problem becomes even more challengin...
Conference Paper
Full-text available
Visual analytics (VA) system development started in academic research institutions where novel visualization techniques and open source toolkits were developed. Simultaneously, small software companies, sometimes spin-offs from academic research institutions, built solutions for specific application domains. In recent years we observed the followin...

Projects