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Abstract—Orthogonal frequency division multiplexing with in-
dex modulation (OFDM-IM) is a recently developed transmission
technique that extends the principle of spatial modulation to
OFDM subcarriers. In this paper, the performance of OFDM-
IM is studied in terms of the achievable rate assuming an M -ary
constellation and that channel state information is available at
the receiver. A closed-form lower bound is derived, based on
which an interleaved grouping method is proposed for the use of
subcarriers. In comparison with the existing grouping method,
the proposed one can better benefit from the diversity effects
over frequency-selective fading channels, especially when the
spacing of any two subcarriers within a subcarrier group is larger
than the coherence bandwidth. Through numerical results, it is
revealed that OFDM-IM with interleaved grouping outperforms
classical OFDM for small M and certain ranges of signal-to-noise
ratio. Finally, the effects of modulation types on the performance
of OFDM-IM are studied. It is found that the superiority of
OFDM-IM over classical OFDM is greater for phase-shift keying
than for quadrature amplitude modulation.

Index Terms—Spatial modulation, OFDM, index modulation,
achievable rate, capacity.

I. INTRODUCTION

As a member of the single-radio-frequency (RF) large-
scale multiple-input multiple-output (MIMO) family, spatial
modulation (SM) has been receiving significant attention re-
cently due to its potential to strike an attractive tradeoff
between the spectral efficiency and the energy efficiency of a
wireless network [1]–[6]. The basic idea of SM is to activate
a subset of antennas to transmit information symbols and
meanwhile use indices of the active antennas to implicitly
convey information. SM is also well known for its special
case, space shift keying (SSK), which transmits information by
antenna activation only [7]–[9]. Several experimental studies
have substantiated the potential benefits of SM [10]–[12], and
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it has been widely acknowledged that SM is an alternative
to the well-known MIMO solutions, such as Vertical Bell
Laboratories Layered Space-Time (V-BLAST) and space-time
coding [3]. Orthogonal frequency division multiplexing (OFD-
M) is another promising technique, which has been already
integrated into modern wireless communication standards,
such as 3GPP Long Term Evolution (LTE) [13]. OFDM is
favorable for broadband wireless communications since it
has high spectral efficiency and can effectively combat the
intersymbol interference caused by the frequency-selective
fading channel.

Attentive to the potential of SM and OFDM, researchers
have devoted significant recent effort to their combination.
Generally, these existing work can be classified into two cat-
egories. In the first category, SM is simply applied to OFDM
transmission (SM-OFDM) [14]–[16]. In particular, SM-OFDM
groups the OFDM subcarriers occupying the same frequency
band at all transmit antennas so that SM can operate on those
subcarriers subject to independent fading due to sufficient
spacing between antennas. Thereafter, all transmit antennas are
activated to transmit the generated OFDM signals following
the conventional MIMO-OFDM process. The performance of
SM-OFDM has been theoretically studied and some positive
results have been found [14]–[16]. In the second category,
the principle of SM is extended to subcarrier activation in
OFDM. The first scheme that exploited this idea was called
subcarrier index modulation OFDM (SIM-OFDM) [17]. In
SIM-OFDM, half of the subcarriers are activated according to
the incoming information bits and some other subcarriers are
dedicated to signaling. However, SIM-OFDM assumes perfect
detection of the signaling at the receivers and suffers from bit
error propagation. To solve this problem, an enhanced SIM-
OFDM (ESIM-OFDM) scheme was later proposed in [18].
Unlike SIM-OFDM, ESIM-OFDM uses one bit to control two
adjacent subcarriers such that only one subcarrier is activated
at a time. At the receiver, the detection of the state of any
subcarrier can be easily accomplished by comparing the power
with that of its adjacent subcarrier. However, the spectral
efficiency of ESIM-OFDM tends to be much smaller than that
of classical OFDM when a high-order modulation is assumed
for the symbols carried on the active subcarriers since the
number of active subcarriers is fixed. The authors in [18]
raised the idea of relaxing this limitation by allowing more
subcarriers to be active. Unfortunately, no further attempt at
practical implementation has been found.

The aforementioned incomplete work in [18] was carried
out independently in [19], where the new scheme is named
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OFDM with index modulation (OFDM-IM). Specifically, to
reduce the complexity lying in the selection of active subcar-
riers, the authors proposed an efficient one-to-one mapping
that relates the incoming information bits with the active
subcarrier indices based on combinatorial number theory.
Moreover, a log-likelihood ratio (LLR) detector was also
proposed to determine the active subcarriers and the modulated
symbols, achieving not only near maximum likelihood (ML)
performance but also identical computational complexity to
that of the classical OFDM detector. More recently, further
efforts on the theoretical analysis of the uncoded bit error
rates (BERs) under perfect and imperfect channel estimation
as well as the implementation of OFDM-IM with terminal
mobility were made by the same authors in [20]. It is shown
in [19] and [20] that since the transmit power of each active
subcarrier is enhanced and the information bits conveyed by
subcarrier activation can be used to compensate for the size of
the signal constellation, OFDM-IM can achieve significantly
better uncoded BER performance than classical OFDM.

The superior performance of OFDM-IM in terms of BER
motivated our work. In this paper, we investigate the (ergod-
ic) achievable rate of OFDM-IM assuming slowly varying
Rayleigh fading channels and channel state information at the
receiver (CSIR). We mainly focus on the analysis under an M -
ary constellation constraint considering that a finite-alphabet
input makes more practical sense [21]–[25], and briefly study
the asymptotic case in which the constellation size tends
to infinity. A closed-form lower bound on the constellation-
constrained achievable rate is derived, which tracks very well
the trend of the exact values as signal-to-noise ratio (SNR)
increases and can be used to estimate many important param-
eters, such as the optimal number of (in)active subcarriers in
maximizing the achievable rate. The contributions of this paper
are summarized as follows.

• We propose a new subcarrier grouping method for
OFDM-IM, which applies interleaved mapping [26]. The
idea is motivated by the fact that interleaved group-
ing can better benefit from frequency-selective fading,
which brings frequency diversity gain to OFDM-IM. An
analytical proof and numerical results are presented to
validate the superiority of the interleaved grouping over
the existing localized grouping. We find that OFDM-IM
with interleaved grouping can achieve SNR gain over
classical OFDM under a low-order alphabet input. This
improvement, however, becomes smaller as the alphabet
size gets larger and is even lost when it increases further.

• We investigate the achievable rate of OFDM-IM with
subcarrier activation only, which is a special case of
OFDM-IM. We show that since the coding gain from
subcarrier activation cannot compensate for the loss of
spectral efficiency, OFDM-IM with subcarrier activation
only exhibits poor performance. We also discuss the
effects of modulation types on the achievable rate of
OFDM-IM. It is found that the superiority of OFDM-
IM over classical OFDM is greater for phase-shift keying
(PSK) than for quadrature amplitude modulation (QAM).

The rest of this paper is outlined as follows. Section II

describes the system model for OFDM-IM. In Section III, the
achievable rates of OFDM-IM under constellation constraint
and Gaussian inputs are derived, followed by the discussion
of OFDM-IM with subcarrier activation only. Section IV
proposes the interleaved grouping approach for OFDM-IM.
Numerical results are presented in Section V. Finally, Section
VI concludes the paper.

Notation: Upper and lower case boldface letters denote
matrices and column vectors, respectively. Superscripts T , H ,
and −1 stand for transpose, Hermitian transpose, and inversion
operations, respectively. The (a, b)-th entry of matrix X is
denoted by [X]a,b. Tr{X} stands for the trace of matrix X.
diag{x} creates a diagonal matrix whose diagonal elements
are x. Re (·) and Im (·) denote the real and the imaginary parts
of a complex number, respectively. |·| denotes the absolute val-
ue if applied to a complex number or the cardinality if applied
to a set. det (·) denotes the determinant of a matrix. Ex [·] and
Ex [·] represent the expectations over a random variable (RV)
x and a random vector x, respectively. C(n, k) denotes the
binomial coefficient. The probability density function (PDF)
and the probability of an event are denoted by f (·) and Pr (·),
respectively. IL and 0L represent the L × L identity and
zero matrices, respectively. H(·), h (·), and I (·, ·) denote the
entropy, the differential entropy, and the mutual information,
respectively. S = {s1, . . . , sM} denotes a complex signal set
of cardinality M and unit power. ∅ denotes the empty set. If
Ωj (r) = i, then Ω−1

j (i) = r.
∑

p(n) =
∑M

p1=1 · · ·
∑M

pn=1 .

II. SYSTEM MODEL

Suppose that the system bandwidth is BT , which is occu-
pied by a total of N OFDM subcarriers, i.e., the subcarrier
spacing is BS = BT /N . In OFDM-IM, the N subcarriers
are split into G = N/L groups, each of which consists of L
subcarriers. For group g, the subcarrier indices are given by

Ψg = {βg
1 , . . . , β

g
L} (1)

where βg
l ∈ {1, . . . , N} with g = 1, . . . , G and l = 1, . . . , L.

Note that Ψg1 ∩ Ψg2 = ∅ and Ψ1 ∪ · · · ∪ ΨG = {1, . . . , N},
where g1, g2 ∈ {1, . . . , G} and g1 ̸= g2. It is assumed
that both the transmitter and the receiver have agreed on the
subcarrier grouping in (1). The reason why subcarrier grouping
is employed in OFDM-IM will be clarified in the sequel.

Fig. 1 depicts the OFDM-IM baseband transmitter structure.
The source bits are equally split into G blocks, each of
which consists of two parts. The bits associated with bit block
g determine the states of all subcarriers and modulate the
symbols carried on the active subcarriers within subcarrier
group g. Specifically, m out of L subcarriers within the
subcarrier group are set to be inactive according to the bits
of the first part and the remaining (L−m) subcarriers are
activated to transmit (L−m) M -ary PSK/QAM modulated
symbols according to the bits of the second part. Note that
given L and m, there are in total C(L,m) combinations of
active/inactive subcarrier indices. Take L = 4 and m = 2 for
example. All C(4, 2) = 6 combinations for subcarrier group
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Fig. 1. Baseband transmitter structure of OFDM-IM with arbitrary grouping.

g are listed as follows:

Ωg
1 = {βg

1 , β
g
2}
(
Ω

g

1 = {βg
3 , β

g
4}
)
,

Ωg
2 = {βg

1 , β
g
3}
(
Ω

g

2 = {βg
2 , β

g
4}
)
,

Ωg
3 = {βg

1 , β
g
4}
(
Ω

g

3 = {βg
2 , β

g
3}
)
,

Ωg
4 = {βg

2 , β
g
3}
(
Ω

g

4 = {βg
1 , β

g
4}
)
,

Ωg
5 = {βg

2 , β
g
4}
(
Ω

g

5 = {βg
1 , β

g
3}
)
,

Ωg
6 = {βg

3 , β
g
4}
(
Ω

g

6 = {βg
1 , β

g
2}
)

where Ωg
j represents the j-th combination of the active subcar-

rier indices for subcarrier group g and Ω
g

j is the complement
of Ωg

j with respect to the set Ψg , which therefore denotes
the j-th combination of the inactive subcarrier indices for
subcarrier group g. The way to select one out of C(L,m)
combinations of active/insubcarrier indices according to ran-
dom bits has been provided in [20], which is omitted here for
brevity. Assume that the output of the index selector for active
subcarriers is

xg
c ∈

{
Ωg

1, . . . ,Ω
g
C(L,m)

}
. (2)

Now, it is clear that subcarrier grouping is necessary for
OFDM-IM since without it we have L = N and C(N,m)
can take very large values, which makes the implementation
complexity of OFDM-IM high. On the other hand, assume
that the vector of the modulated symbols at the output of the
M -ary modulator is given by

xg
s ∈ SL−m. (3)

Denote the total transmit power of the system as PT . By
taking into account xg

c and xg
s for all g and concatenating

G subcarrier groups, the frequency-domain OFDM symbol is
created as

x = [x1, . . . , xN ]
T (4)

where xi ∈ {0,
√
PG/ (L−m)x1

s, . . . ,
√
PG/ (L−m)xG

s }
with PG = PT /G representing the total transmit power within
each subcarrier group and i = 1, . . . , N . Note that as the

transmitter has no knowledge of the channel state information
(CSI), it is wise to allocate active subcarriers with equal
power. Also note that the power allocated to each active
subcarrier is PG/ (L−m) for OFDM-IM rather than PG/L
for classical OFDM in order to balance the total transmit
power. This policy is the so-called power reallocation in [17].
Before transmission, the inverse fast Fourier transform (IFFT)
is applied to (4), yielding

x̆k =
1√
N

N∑
i=1

xie
2
√

−1π(i−1)(k−1)
N , k = 1, . . . , N (5)

and a length-Q cyclic prefix (CP) of samples
[x̆N−Q+1, . . . , x̆N ]T is appended to the beginning of
the time-domain main OFDM symbol x̆ = [x̆1, . . . , x̆N ]T .

Consider a slowly time-varying multipath Rayleigh fading
channel with channel impulse response

h̆ =
[
h̆1, . . . , h̆D

]T
(6)

where D is the number of channel taps, and h̆d (d = 1, . . . , D)
is circularly symmetric complex Gaussian distributed with
Eh̆d

[|h̆d|2] = δ2d and Eh̆[h̆
H h̆] =

∑D
d=1 δ

2
d = 1. Suppose that

the CP length Q is no smaller than D−1. After the removal of
the CP and the application of the FFT, the frequency-domain
received signal on the i-th subcarrier is given by

yi = xihi + wi, i = 1, . . . , N (7)

where hi =
∑D

d=1 h̆de
−2

√
−1π(i−1)(d−1)/N is the channel

coefficient and wi is additive white Gaussian noise (AWGN) of
power σ2 at the i-th subcarrier, whose vector representations
are given by h and w, respectively. Note that as the power de-
lay profile is normalized, it follows that Eh

[
hHh

]
= N . Also

note that σ2 = N0BS , where N0 is the power spectral density
of the AWGN. Finally, from (7), the active/inactive subcarrier
indices and the modulated symbols for each subcarrier group
can be jointly detected [20].

From the principle of OFDM-IM described above, one can
discover that the index modulation always works efficiently
even if all subcarriers are faded completely correlatively, i.e.,
h1 = · · · = hN , thanks to the IFFT at the transmitter and
the FFT at the receiver. This is quite different from the SM
technique, which fails when the channels between different
transmit antennas are highly correlated. Note that though we
did not specify in (1) how to choose the subcarrier indices, a
manner has been suggested in [20], which is

Ψg = {βg
1 , . . . , β

g
L} = {L(g − 1) + 1, . . . , Lg} (8)

with βg
l = L(g−1)+ l, where g = 1, . . . , G and l = 1, . . . , L.

This means each set of L adjacent subcarriers forms a subcar-
rier group, as shown in Fig. 2. As this manner is similar to the
localized mapping in LTE systems [26], it is termed localized
grouping in this paper.

Since OFDM-IM is in essence a kind of OFDM transmis-
sion technique, we are interested in its performance behavior
and the comparison with classical OFDM. Specifically, we
aim at answering the following questions from an information-
theoretic perspective in this paper:
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• Q1: Is there a better subcarrier grouping method than
localized grouping for OFDM-IM?

• Q2: Can OFDM-IM outperform classical OFDM in the
case of L = M?

• Q3: How does the special case of OFDM-IM, i.e.,
OFDM-IM with subcarrier activation only, perform?

• Q4: What is the optimal subcarrier activation strategy for
OFDM-IM in the case of L = M?

• Q5: How does the performance superiority of OFDM-
IM over classical OFDM behave for different modulation
types?

Note that the condition in Q2 and Q4 is of particular interest
since given M -ary constellation input OFDM-IM shares the
same entropy at the channel input with classical OFDM by
inactivating one out of L subcarriers [28].

III. ANALYSIS OF ACHIEVABLE RATE

In this section, we investigate the (ergodic) achievable rate
of OFDM-IM assuming CSIR. For fair comparison between
OFDM-IM and classical OFDM, we resort to a unified defi-
nition of SNR as γ = PT /N0BT = PG/Lσ

2. The achievable
rate of OFDM-IM is defined as [29]

ROFDM−IM (γ) =
1

BT
(BSEh [I (x;y|h)])

=
1

N
Eh [I (x;y|h)]. (9)

Note that (9) is exactly the spectral efficiency of OFDM-
IM, measured in bits per second per Hertz (bps/Hz) [30]. For
simplicity, we restrict our analysis to the OFDM-IM system
with regular subcarrier grouping, which implies that the fre-
quency correlation is the same for all subcarrier groups, though
it can be easily extended to arbitrary subcarrier grouping.
An example for regular subcarrier grouping is the existing
localized grouping, since under this method the (a, b)-th entry
of the covariance matrix of hg , defined as Σ = Ehg [hg(hg)

H
],

equals [ΣLG]a,b =
∑D

d=1 δ
2
de

−2
√
−1π(a−b)(d−1)/N with a, b =

1, . . . , L, which does not depend on g. Now, under the as-
sumption of regular subcarrier grouping and based on the fact
that the encoding and decoding processes associated with each
subcarrier group are identical and statistically independent, (9)
can be simplified as

ROFDM−IM (γ) =
1

N

G∑
g′=1

Ehg′

[
I
(
xg′

;yg′
|hg′

)]
=

1

L
Ehg [I (xg

s ,x
g
c ;y

g|hg)] , ∀g ∈ {1, . . . , G}. (10)

According to (10), in the sequel we will only focus on one
subcarrier group for achievable rate analysis. For brevity, we
omit the superscript g for all variables defined above. In
addition, we let βl = l for notational simplicity such that all
subcarriers within the subcarrier group will be indexed from
{1, . . . , L}. Note that with the above notation, we will refer
to the i-th subcarrier simply as the βi-th subcarrier of OFDM
signals unless otherwise specified.

A. Finite constellation input

In this subsection, xs is considered to be a finite signal set,
i.e., M is finite. However, for practical interests, we restrict the
signal set to be a discrete constellation, such as M -ary PSK
or QAM, where the constellation points are equiprobable.
Proposition 1: The achievable rate of OFDM-IM is given by

ROFDM−IM (γ) =
L−m

L
log2 (M) +

log2 (C (L,m))

L
− (log2 (e)− 1)− λ (γ) (11)

with

λ (γ) =
1

LML−mC(L,m)

C(L,m)∑
j=1

∑
p(L−m)

× Ev,h

log2
C(L,m)∑

j′=1

∑
p′(L−m)

L∏
i=1

ξ (vi, hi, γ)

 (12)

where ξ (vi, hi, γ) is given in (13), shown at the top of the next
page, and v = [v1, . . . , vL]

T is a complex Gaussian random
vector with covariance IL.

Proof: From (10), the achievable rate of OFDM-IM is
given by

ROFDM−IM (γ) = 1
L [H (xs,xc)−Eh [H (xs,xc|y,h)]] (14a)

= L−m
L log2 (M)+ log2(C(L,m))

L − 1
LEh [H (xs,xc|y,h)] (14b)

where (14a) is derived according to the definition of mutual
information [31] and (14b) holds due to the independence
between symbol modulation and subcarrier activation. Toward-
s computing (10), we turn to calculate Eh[H (xs,xc|y,h)]
in favor of (14b). First, let us express H(xs,xc|y,h) ac-
cording to its definition [31] as (15), shown at the top of
the next page, where s = [sp1 , . . . , spL−m

]T ∈ SL−m,
Pr (xc = Ωj ,xs = s) = 1/C(L,m)ML−m,

f (y|xc = Ωj ,xs = s,h) =
1

(πσ2)
L

m∏
i=1

e−

∣∣∣∣yΩ̄j(i)

∣∣∣∣2
σ2

×
L−m∏
i=1

e−

∣∣∣∣∣yΩj(i)
−hΩj(i)

√
PG

L−m
spi

∣∣∣∣∣
2

σ2 (16)

and

f (y|h) =
(
πσ2

)−L

C(L,m)ML−m

C(L,m)∑
j′=1

∑
p′(L−m)

m∏
i′=1

e−

∣∣∣∣∣yΩ̄j′ (i
′)

∣∣∣∣∣
2

σ2

×
L−m∏
i′=1

e−

∣∣∣∣∣yΩj′ (i
′)

−h
Ω
j′ (i

′)

√
PG

L−m
s
p′

i′

∣∣∣∣∣
2

σ2 . (17)

Then, changing the integral variables in (15) by

vi =

{
(yi − hixi) /σ, i ∈ Ωj

yi/σ, i ∈ Ω̄j
(18)

(15) can be reformulated as (19), shown at the top of the next
page, where v = [v1, . . . , vL]

T and f (v) = π−Le−∥v∥2

from
(18). Since extracting the coefficient 1/2 from the first term
at the right hand side of (19) yields −L and the integral in
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ξ (vi, hi, γ) =



2e
−

∣∣∣∣∣∣vi+hi

√
γL

L−m

sp
Ω
−1
j

(i)
−sp′

Ω
−1
j′

(i)

∣∣∣∣∣∣
2

, i ∈ Ωj ∩ Ωj′

2e
−

∣∣∣∣∣vi+hi

√
γL

L−m sp
Ω
−1
j

(i)

∣∣∣∣∣
2

, i ∈ Ωj ∩ Ωj′

2e
−

∣∣∣∣∣∣vi−hi

√
γL

L−m sp′
Ω
−1
j′

(i)

∣∣∣∣∣∣
2

, i ∈ Ωj ∩ Ωj′

2e−|vi|2 , i ∈ Ωj ∩ Ωj′

(13)

H(xs,xc|y,h) =−
C(L,m)∑
j=1

∑
p(L−m)

∫
y

Pr (xc = Ωj ,xs = s) f (y|xc = Ωj ,xs = s,h)

× log2

(
Pr (xc = Ωj ,xs = s) f (y|xc = Ωj ,xs = s,h)

f (y|h)

)
dy (15)

H(xs,xc|y,h) =
1

ML−mC(L,m)

C(L,m)∑
j=1

∑
p(L−m)

∫
v

f (v) log2

C(L,m)∑
j′=1

∑
p′(L−m)

L∏
i=1

ξ (vi, hi, γ)

2

 dv

+
1

ML−mC(L,m)

C(L,m)∑
j=1

∑
p(L−m)

∫
v

f (v) log2

(
1

f (v)

)
dv − L log2 (π) (19)

the second term gives the differential entropy of v, h (v) =
L log2 (πe), we have

1

L
Eh [H (xs,xc|y,h)] = log2 (e)− 1 + λ (γ) . (20)

Finally, substituting (20) into (14b) completes the proof.
Remark 1: For the case that OFDM-IM has full subcarrier-
correlations, i.e., h1 = · · · = hL, the expectation over h in
(11) is simplified to an expectation over a single random vari-
able. However, it should be noted that the resulting achievable
rate is larger than log2(M)(L − m)/L at high SNR, which
will be validated in the following Corollary 1. Also note that
unlike classical OFDM, for a given channel realization the
received signals on different subcarriers become dependent in
OFDM-IM. This is true as f (y|h) ̸=

∏L
i=1 f (yi|hi), where

f (yi|hi) =
1

πσ2

L−m

LM

∑
∀s∈S

e−

∣∣∣∣∣yi−hi

√
PG

L−m
s

∣∣∣∣∣
2

σ2 +
m

L
e−

|yi|2
σ2


(21)

with i = 1, . . . , L.
Corollary 1: When SNR approaches 0 and +∞, the achiev-
able rates of OFDM-IM tend to

lim
γ→0

ROFDM−IM (γ) = 0 (22)

and

lim
γ→+∞

ROFDM−IM (γ)

=
L−m

L
log2 (M) +

log2 (C (L,m))

L
(23)

respectively.
Proof: First, consider γ → 0. In this case, we have

lim
γ→0

ξ (vi, hi, γ) = 2e−|vi|2 from (13) and

lim
γ→0

λ (γ) =
1

LML−mC (L,m)

C(L,m)∑
j=1

∑
p(L−m)

× Ev

[
log2

(
2Le−∥v∥2

C(L,m)ML−m
)]

=
L−m

L
log2 (M) +

log2 (C (L,m))

L
− (log2 (e)− 1)

(24)

from (12). Then, substituting (24) into (11) yields (22).
Second, consider γ → +∞. Let µ (j, j′,p,p′) =
|j − j′| + ∥p− p′∥, where p = [p1, . . . , pL−m]T and p′ =
[p′1, . . . , p

′
L−m]T . Then, (12) can be rewritten as (25), shown

at the top of the next page. Since for µ (j, j′,p,p′) ̸= 0 we al-
ways have at least an element, i, which belongs to (Ωj ∩ Ωj′)∪(
Ωj ∩ Ω̄j′

)
∪
(
Ω̄j ∩ Ωj′

)
, satisfying lim

γ→+∞
ξ (vi, hi, γ) = 0

from (13), the second term inside the logarithmic function in
(25) approaches zero for γ → +∞. Therefore, it follows that
lim

γ→+∞
λ (γ) = 1− log2 (e), which, when substituted into (11),

makes (23) valid.
Remark 2: Corollary 1 is intuitive. When SNR is very small,
the transmitted information is seriously contaminated by noise
and thus no rate can be guaranteed by the channel. On the
contrary, when SNR is very large, all transmitted information
can be transferred through the channel with an arbitrarily low
probability of error and thus the achievable rate is limited to
the entropy at the channel input.
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λ (γ) =
Mm−L

LC (L,m)

C(L,m)∑
j=1

∑
p(L−m)

Ev,h

log2
2Le−∥v∥2

+

C(L,m)∑
j′=1

∑
p′(L−m)︸ ︷︷ ︸

µ(j,j′,p,p′) ̸=0

L∏
i=1

ξ (vi, hi, γ)



. (25)

To the best of our knowledge, no closed-form result exists
for (11). Consequently, we have to calculate it based on the
Monte-Carlo method, which, however, need not guarantee
accuracy [27]. Note that besides Monte-Carlo simulations, one
can also obtain an approximation of (11) by following the
method proposed in [25]. However, extensive computations
are needed to estimate the gradient of (11).

1) Lower bound: To circumvent the above problems, we
derive a closed-form lower bound in the sequel.
Proposition 2: The achievable rate of OFDM-IM is lower
bounded by

RL
OFDM−IM (γ)

∆
=
L−m

L
log2 (M) +

log2 (C (L,m))

L

− (log2 (e)− 1)− 1

LC(L,m)

× 1

ML−m

C(L,m)∑
j=1

∑
p(L−m)

log2

C(L,m)∑
j′=1

×
∑

p′(L−m)

1

det (IL +ΣΛj,j′)

 (26)

where Λj,j′ is an L×L diagonal matrix whose i-th diagonal
element is given by

[Λj,j′ ]i,i =



γL
L−m

∣∣∣∣∣∣spΩ−1
j

(i)
−sp′

Ω
−1
j′

(i)

∣∣∣∣∣∣
2

2 , i ∈ Ωj ∩ Ωj′

γL
L−m

∣∣∣∣∣spΩ−1
j

(i)

∣∣∣∣∣
2

2 , i ∈ Ωj ∩ Ωj′

γL
L−m

∣∣∣∣∣∣sp′Ω−1
j′

(i)

∣∣∣∣∣∣
2

2 , i ∈ Ωj ∩ Ωj′

0, i ∈ Ωj ∩ Ωj′

(27)
with i = 1, . . . , L.

Proof: The proof is somewhat similar to that in [37,
Appendix B]. Thus, we only provide some intermediate steps
toward the result. Since log2 (·) is a concave function, applying
Jensen’s inequality to (12) gives

λ (γ) ≤ 1

LML−mC(L,m)

C(L,m)∑
j=1

∑
p(L−m)

log2

C(L,m)∑
j′=1

×
∑

p′(L−m)

Eh

[
L∏

i=1

Evi [ξ (vi, hi, γ)]

] (28)

where we have resorted to the property that v is independent
of h. Thanks to the integral result in [32, Eq. (3.323.2)],

the inner expectation in (28) can be solved as (29), shown
at the top of this page. Then, introducing the matrix Λj,j′ ,
we can express

∏L
i=1 Evi [ξ (vi, hi, γ)] according to (29) as

e−hHΛj,j′h. Finally, the expectation over h in (28) can be
solved in closed form as

Eh

[
L∏

i=1

Evi [ξ (vi, hi, γ)]

]
=

π−L

det (Σ)

∫
h

e−hH(Σ−1+Λj,j′)hdh

=
1

det (IL +ΣΛj,j′)
(30)

which, when substituted into (28) and then into (11), proves
(26).
Corollary 2: When all subcarriers within a subcarrier group
are faded completely correlatively, the proposed lower bound
becomes

RL
OFDM−IM−FC (γ)

∆
=
L−m

L
log2 (M) +

log2 (C (L,m))

L

− (log2 (e)− 1)− 1

LC(L,m)

× 1

ML−m

C(L,m)∑
j=1

∑
p(L−m)

log2

C(L,m)∑
j′=1

×
∑

p′(L−m)

1

1 + Tr {Λj,j′}

 . (31)

Proof: In the case of h1 = · · · = hL, Σ becomes an all-
ones matrix and det (IL +ΣΛj,j′) = 1 + Tr {Λj,j′}, which,
when substituted into (26), proves (31).
Corollary 3: When SNR approaches 0 and +∞, the proposed
lower bounds tend to

lim
γ→0

RL
OFDM−IM (γ) = − (log2 (e)− 1) (32)

and

lim
γ→+∞

RL
OFDM−IM (γ)

=
L−m

L
log2 (M) +

log2 (C (L,m))

L
− (log2 (e)− 1)

(33)

respectively.
Proof: For γ → 0, we have Λj,j′ → 0L. Therefore, (32)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, ACCEPTED FOR PUBLICATION 7

Evi [ξ (vi, hi, γ)] =



e−
γL

L−m

|hi|2
∣∣∣∣∣∣∣∣spΩ−1

j
(i)

−s
p′

Ω
−1
j′

(i)

∣∣∣∣∣∣∣∣
2

2 , i ∈ Ωj ∩ Ωj′

e−
γL

L−m

|hi|2
∣∣∣∣∣∣spΩ−1

j
(i)

∣∣∣∣∣∣
2

2 , i ∈ Ωj ∩ Ωj′

e−
γL

L−m

|hi|2
∣∣∣∣∣∣∣∣sp′Ω−1

j′
(i)

∣∣∣∣∣∣∣∣
2

2 , i ∈ Ωj ∩ Ωj′

1, i ∈ Ωj ∩ Ωj′

. (29)

holds from (26). On the other hand, for γ → +∞, we have

lim
γ→+∞

C(L,m)∑
j′=1

∑
p′(L−m)

1

det (IL +ΣΛj,j′)

= 1 + lim
γ→+∞

C(L,m)∑
j′=1

∑
p′(L−m)︸ ︷︷ ︸

µ(j,j′,p,p′ )̸=0

1

det (IL +ΣΛj,j′)

= 1. (34)

Therefore, (33) holds from (26).
Remark 3: From Corollary 1 and Corollary 3, a constan-
t gap, i.e., − (log2 (e)− 1), between ROFDM−IM (γ) and
RL

OFDM−IM (γ) will be expected in both low and high SNR
regions. However, as we will see in Section V, this does
not apply to the remaining SNR region. In other words,
approximating the exact value by shifting the lower bound
by (log2 (e)− 1) as [24] suggested does not work well to
our case. Despite this, it will be shown in Section V that
RL

OFDM−IM (γ) tracks very well the trend of ROFDM−IM (γ)
with the increase of SNR and can be used to estimate some
parameters of practical interest with satisfactory accuracy.

From (26), it is clear that the achievable rate of OFDM-
IM not only depends on the channel correlation, which is
controlled by Σ, but also on the modulation type, which
determines Λj,j′ . An example for the former issue has been
presented in Corollary 2. In the subsequent sections, both
issues will be discussed in more detail.

2) Special case with M = 1: When only subcarrier acti-
vation is applied in OFDM-IM [19], the resulting achievable
rate can be expressed as (35), shown at the top of the next
page, which follows from (11) by setting M = 1. Also, a
closed-form lower bound exists by letting M = 1 in (26):

RL
OFDM−IM−SC (γ) =

log2 (C (L,m))

L
− (log2 (e)− 1)

− 1

LC(L,m)

C(L,m)∑
j=1

log2

C(L,m)∑
j′=1

1

|IL +ΣΓj,j′ |


(36)

where Γj,j′ is an L× L diagonal matrix whose i-th diagonal
element is

[Γj,j′ ]i,i =

{
0, i ∈ (Ωj ∩ Ωj′) ∪

(
Ω̄j ∩ Ω̄j′

)
γL

2(L−m) , i ∈
(
Ω̄j ∩ Ωj′

)
∪
(
Ωj ∩ Ω̄j′

)
(37)

with i = 1, . . . , L.
Recalling that on-off keying (OOK) transmits information

by the intensity of the signal [33], we can readily determine
that the OFDM-IM with subcarrier activation only is in fact an
application of OOK modulation to OFDM subcarriers. Simi-
larly, we can also apply OOK modulation to each subcarrier
independently, thus generating a new scheme called OOK-
OFDM. In Section V, we will compare the performance of
the two aforementioned schemes.

B. Infinite constellation input

In this subsection, xs is considered to be an infinite signal
set, i.e., M is infinite. However, we restrict the signal set to be
Gaussian, since it enables OFDM-IM to reach the supremum
of all achievable rates [31], [34].

To begin with the derivation for the ergodic capacity of
OFDM-IM, we first look into the conditional capacity of
OFDM-IM on the channel, which can be expressed according
to the chain rule for mutual information [31] as

COFDM−IM (γ) =
1

L
I (xs,xc;y|h)

=
1

L
[I (xs;y|xc,h) + I (xc;y|h)] . (38)

In (38), the first term at the right hand side is given by

I (xs;y|xc,h)

L
=

1

L

C(L,m)∑
j=1

Pr (xc = Ωj) I (xs;y|xc = Ωj ,h)

=
1

LC (L,m)

C(L,m)∑
j=1

∑
i∈Ωj

log2

(
1 +

γ|hi|2L
L−m

)

=
L−m

L2

L∑
i=1

log2

(
1 +

γ|hi|2L
L−m

)
(39)

where the last equality follows from the fact that each sub-
carrier is activated with probability (L−m) /L. It is clear
from (39) that the degrees of freedom associated with OFDM-
IM reduce to (L−m) as opposed to L associated with
classical OFDM, but OFDM-IM contributes a power gain
of L/(L−m) > 1. From (38), we see that in addition
to this power gain, OFDM-IM also introduces a portion of
information rate from subcarrier activation, i.e., the second
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ROFDM−IM−SC (γ) =
log2 (C (L,m))

L
− (log2 (e)− 1)− 1

LC(L,m)

C(L,m)∑
j=1

Ev,h

log2
C(L,m)∑

j′=1

×
∏

i∈(Ωj∩Ωj′)∪(Ω̄j∩Ω̄j′)

2e−|vi|2
∏

i∈Ωj∩Ω̄j′

2e
−
∣∣∣vi+hi

√
γL

L−m

∣∣∣2 ∏
i∈Ω̄j∩Ωj′

2e
−
∣∣∣vi−hi

√
γL

L−m

∣∣∣2

 (35)

term at the right hand side:

1

L
I (xc;y|h) =

1

LC(L,m)

C(L,m)∑
j=1

∫
y

f (y|xc = Ωj ,h)

× log2

(
f (y|xc = Ωj ,h)

f (y|h)

)
dy (40)

where

f (y|xc = Ωj ,h) =
1

(πσ2)
L

∏
i∈Ωj

1

1 + γ|hi|2L/ (L−m)

× e
− |yi|2

σ2[1+γ|hi|2L/(L−m)]
∏
i∈Ω̄j

e−
|yi|2
σ2 (41)

and

f (y|h) =
C(L,m)∑
j=1

Pr (xc = Ωj) f (y|xc = Ωj ,h)

=
1

C (L,m) (πσ2)
L

C(L,m)∑
j=1

∏
i∈Ωj

1

1 + γ|hi|2L/ (L−m)

× e
− |yi|2

σ2[1+γ|hi|2L/(L−m)]
∏
i∈Ω̄j

e−
|yi|2
σ2 . (42)

According to the above analysis, one can expect that the
instantaneous capacity of OFDM-IM will be smaller than that
of the classical OFDM at high SNR due to the reduction in
degrees of freedom. However, as OFDM-IM benefits from
a power gain and additional information rate transferred via
subcarrier activation, it is not clear whether OFDM-IM can
outperform classical OFDM or not at low-to-medium SNR.
The answer is given in the following proposition.
Proposition 3: The instantaneous capacity of OFDM-IM is
smaller than that of classical OFDM over the entire SNR
region:

COFDM−IM (γ) < COFDM (γ) , ∀m > 0 (43)

where

COFDM (γ) =
1

L

L∑
i=1

log2

(
1 + γ|hi|2

)
(44)

denotes the instantaneous capacity of classical OFDM [29],
[30].

Proof: Under Gaussian input, the PDF of the received
signal on the i-th subcarrier conditioned on the channel is

given by

f (yi|hi) =
1

πσ2

[
(L−m)

2

L

1

L−m+ γ|hi|2L

× e
− (L−m)|yi|2

σ2(L−m+γ|hi|2L) +
m

L
e−

|yi|2
σ2

 (45)

where i = 1, . . . , L. In light of (45), it can be readily proved
that the mean of yi conditioned on hi is zero and its variance
yields

Eyi|hi

[
|yi|2

]
=

L−m

L
σ2

(
1 +

γ|hi|2L
L−m

)
+

m

L
σ2

=
|hi|2PG

L
+ σ2. (46)

Since the differential entropy of a zero-mean non-Gaussian
RV is always smaller than that of a zero-mean Gaussian RV
of the same variance [31], it follows that

h (yi|hi) ≤ log2

(
πeσ2

(
γ|hi|2 + 1

))
(47)

with equality iff m = 0 which corresponds to the classical
OFDM case. Then, according to [31, Theorem 9.6.2], i.e.,

h (y|h) ≤ h (y1|h1) + · · ·+ h (yL|hL) (48)

with equality iff the received signals at all subcarriers condi-
tioned on the channel are independent, and I (xs,xc;y|h) =
h (y|h) − Llog2

(
πeσ2

)
, we arrive at (43), completing the

proof.
Remark 4: In OFDM-IM, the power of the received signal
on each subcarrier remains the same as that of classical
OFDM. The distribution of the received signal, however, is
not Gaussian. This differs from classical OFDM, thus leading
to a smaller instantaneous capacity.

Having the conditional capacity of OFDM-IM in (38), we
can then calculate the ergodic capacity of OFDM-IM, denoted
by COFDM−IM (γ), by averaging the channel realizations.
Numerical results will be presented in Section V. From Propo-
sition 3, it is expected that the ergodic capacity of OFDM-IM
will always be smaller than that of classical OFDM. This can
be explained alternatively by the fact that the parallel channels
resulting from OFDM-IM are rank-reduced, while the ergodic
capacity of a vector Gaussian channel is achieved if and only
if the channel has full rank.
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Fig. 2. Localized grouping vs. interleaved grouping.

IV. INTERLEAVED GROUPING

In this section, we answer Q1 raised in Section II.
Motivated by the derived lower bound on the achievable

rate of OFDM-IM in Section III, which reveals that the corre-
lation among channel coefficients on the subcarriers within a
subcarrier group plays a key role, we propose a new subcarrier
grouping approach for OFDM-IM to improve the performance
of OFDM-IM. Unlike the previous OFDM-IM scheme, in
which the subcarrier grouping is performed in a localized
manner [18]–[20], we suggest grouping the subcarriers in
an interleaved manner, as shown in Fig. 2. After interleaved
grouping, the set of subcarrier indices for subcarrier group g
will be given by

Ψg = {βg
1 , . . . , β

g
L} = {g, . . . , g + (L− 1)G} (49)

with βg
l = g + (l − 1)G, where g = 1, . . . , G and l =

1, . . . , L. Note that when interleaved grouping is employed
at the transmitter, it should be followed at the receiver. It
is evident that applying either subcarrier grouping rule, i.e.,
localized grouping or interleaved grouping, leads to the same
overall system complexity. Also note that from (49), it is
clear that interleaved grouping is a kind of regular subcarrier
grouping approaches since the (a, b)-th entry of the covariance
matrix of hg is [ΣIG]a,b =

∑D
d=1 δ

2
de

−2
√
−1π(a−b)(d−1)/L

with a, b = 1, . . . , L, which does not depend on g. Therefore,
the analysis conducted in Section III also applies to interleaved
grouping. The reason for adopting interleaved grouping is
clarified in the following proposition.
Proposition 4: OFDM-IM with interleaved grouping achieves
the highest information rate in both low and high SNR regions
when the spacing of any two subcarriers within a subcarrier
group is no smaller than the coherence bandwidth of the
channel.

Proof: When SNR is either low or high, it follows from

[23] that

ROFDM−IM (γ) ≈L−m

L
log2 (M) +

log2 (C (L,m))

L

− 1

LC (L,m)

1

ML−m

C(L,m)∑
j=1

∑
p(L−m)

× log2

C(L,m)∑
j′=1

∑
p′(L−m)

1

det (IL +ΣΛj,j′)

 (50)

where Λj,j′ is defined in (26). Note that it is straightforward
to have (50) according to Corollary 1 and Corollary 3. From
(50), the optimal Σ∗, which maximizes the achievable rate of
OFDM-IM, lies in the following:

Σ∗ =argmin
∀Σ

C(L,m)∑
j=1

∑
p(L−m)

× log2

C(L,m)∑
j′=1

∑
p′(L−m)

1

det (IL +ΣΛj,j′)

. (51)

To solve (51), let us assume that the diagonal elements of
Λj,j′ are all positive. In this case, from [31, Theorem 16.8.2]
(i.e., Hadamard’s inequality), we have

1

det (IL +ΣΛj,j′)
=

1

det
(
Λ−1

j,j′ +Σ
)
det (Λj,j′)

≥
L∏

i=1

1

1 + [Λj,j′ ]i,i
(52)

with equality iff Σ = IL, which represents the case in which
hg is a fully independent random vector. Since the logarithmic
function is monotonically increasing, we obtain Σ∗ = IL.

However, the above assumption does not hold since, as
shown in (27), there is at least one zero among the diagonal
elements of Λj,j′ . Despite this, we will see that the solution,
i.e., Σ∗ = IL, is still valid. To show this, first assume that
only one diagonal element of Λj,j′ , e.g., [Λj,j′ ]k,k, equals
zero. In this case, we can eliminate the k-th row as well as
the k-th column of Σ and Λj,j′ , yielding updated Σ̃ and Λ̃j,j′ .
Consequently, it follows from [31, Theorem 16.8.2] that

1

det (IL +ΣΛj,j′)
=

1

det
(
Λ̃−1

j,j′ + Σ̃
)
det
(
Λ̃j,j′

)
≥

L∏
i=1,i ̸=k

1

1 + [Λj,j′ ]i,i

=
L∏

i=1

1

1 + [Λj,j′ ]i,i
(53)

with equality iff Σ̃ = IL−1. Since for different j, j′ ∈
{1, . . . ,C (L,m)}, the location of the zero in the diagonal
elements of Λj,j′ spans from 1 to L, we achieve that Σ∗ = IL.
In analogy with the above analysis, the same conclusion can
be drawn when more diagonal elements of Λj,j′ equal zero.

In order to achieve the maximum rate of OFDM-IM, the
subcarriers within a subcarrier group should be spaced apart
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in frequency as far as possible to benefit from the independent
fading. It is easy to see that interleaved grouping meets this
requirement most perfectly, thus completing the proof.
Remark 5: For double check, let us consider the special case
in which the elements of hg are highly correlated, which usu-
ally happens to the localized grouping method when the band-
width spanned by the L continuous subcarriers is smaller than
the coherence bandwidth of the channel. From Corollary 2 and
the identity (1 + Tr {Λj,j′})−1 >

∏L
i=1(1 + [Λj,j′ ]i,i)

−1, it is
easy to verify that the resulting achievable rate is smaller than
that of the independent case.
Remark 6: In practical systems, the condition in Proposition
4 can be satisfied. Take LTE systems for example. In a
macrocell, the coherence bandwidth is on the order of 1
MHz [13]. Therefore, for a system bandwidth of 20 MHz,
the subcarriers within each subcarrier group after interleaved
grouping will experience independent fading provided that
L < 20. Since as will be disclosed in Section V, the superiority
of OFDM-IM over classical OFDM narrows as the alphabet
size of the signal input grows, L < 20 is advantageous for
OFDM-IM.
Remark 7: Since COFDM−IM (γ) is dominated by the expec-
tation of I (xs;y|xc,h) over h with xs being a Gaussian signal
set (especially as SNR gets higher), which is independent of
the channel correlation as (39) implies, the gap between the re-
sulting ergodic capacity of localized grouping and interleaved
grouping will be very small. Furthermore, considering that
Gaussian input is unfavorable to OFDM-IM with respect to
classical OFDM as analyzed earlier, we do not evaluate the
aforementioned gap in this paper.
Remark 8: From (26) and the proof for Proposition 4, we
see that the lower bound on the achievable rate of OFDM-
IM achieves its maximum when Σ = IL, i.e., subcarriers
within a subcarrier group are faded independently. Therefore,
we expect that the interleaved grouping will also perform
better than the localized grouping in the moderate SNR region
for PSK/QAM-constrained input. This will be validated in the
following section.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results are presented to validate
the analysis and make comparisons between classical OFDM
and OFDM-IM. The achievable rate is chosen as the perfor-
mance metric.

A. Localized grouping vs. interleaved grouping

In this subsection, we answer Q1, Q2 raised in Section II.
In the numerical calculations, the total number of sub-

carriers is chosen as N = 64 and the channel is assumed
to have an exponentially decaying power delay profile with
δ2d = e−(d−1)/

∑D
u=1 e

−(u−1) and D = 10 taps, where
d = 1, . . . , D. The results are shown in Figs. 3 and 4, where
the parameters are chosen as: L = 2, m = 1, and BPSK in
Fig. 3(a); L = 4, m = 1, and QPSK in Fig. 3(b); L = 8,
m = 1, and 8-PSK in Fig. 4(a); L = 16, m = 1, and 16-PSK
in Fig. 4(b). To see how OFDM-IM compares with classical
OFDM, the performance of classical OFDM employing the
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same alphabet for symbol modulation as OFDM-IM is also
depicted. It is noted that the OFDM-IM with L = 2, m = 1,
and localized grouping is exactly the ESIM-OFDM scheme
[18]. Also note that the OFDM-IM and the classical OFDM
in Figs. 3 and 4 share the same entropy at the channel input.
As seen from the figures, unlike classical OFDM for which
the grouping type is irrelevant to performance, OFDM-IM
with interleaved grouping can achieve up to 3 dB, 2 dB, 0.5
dB, and 0.2 dB SNR gains over OFDM-IM with localized
grouping at achievable rates equal to 0.95 bps/Hz in Fig. 3(a),
1.85 bps/Hz in Fig. 3(b), 2.6 bps/Hz in Fig. 4(a), and 2.8
bps/Hz in Fig. 4(b), respectively. This is expected because the
independence of channel fading makes the different subcarrier
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Fig. 5. Performance comparison between classical OFDM with BPSK, OOK-
OFDM, and OFDM-IM with subcarrier activation only.

activation types easier to differentiate, which in turn improves
the coding gain from index modulation. On the other hand, at
those achievable rates, OFDM-IM with interleaved grouping
outperforms classical OFDM with an SNR gain of up to 3 dB.
From the figures, we also see that the resulting achievable
rates by interleaved grouping from the practical channel model
match the ultimate ones derived by assuming fully independent
fading, perfectly. This is in consistent with Proposition 3 as
in those cases the interleaved grouping ensures the channel
coefficients on subcarriers within a subcarrier group are ap-
proximately statistically independent.

Since as validated above the ultimate performance of
OFDM-IM is available by adopting interleaved grouping in
practice, in the following subsections we will simply let the
subcarriers within each subcarrier group experience indepen-
dent fading in order to examine the ultimate performance of
OFDM-IM and avoid channel particularity.

B. Performance of OFDM-IM with subcarrier activation only

In this subsection, we answer Q3 raised in Section II.
With the aid of (35) and (36), we compute the achievable

rates of OFDM-IM with subcarrier activation only, classical
OFDM with BPSK, and OOK-OFDM, in Fig. 5. To examine
the constant-shifted method mentioned in Section III.A, we
add log2 (e) − 1 to the lower bound on the achievable rate
of OFDM-IM with subcarrier activation only. As seen from
the figure, this constant-shifted lower bound overestimates
the exact value in the moderate SNR region, though it
achieves a perfect approximation at both low and high SNRs.
Therefore, this method is infeasible in practice. Regarding
the performance of these three schemes, we can conclude
from Fig. 5 that classical OFDM with BPSK outperforms the
other two schemes while OFDM-IM with subcarrier activation
only performs worse in general though it exhibits similar
performance to OOK-OFDM in the very low SNR region. The

0 6 12 18 24 30 36 42

1

1.5

2

2.5

3

SNR (dB)

R
at

e 
(b

p
s/

H
z)

 

 

 

 

Classical OFDM, exact

OFDM−IM, exact

 m = 1,2,3,4,5

Fig. 6. Comparison between classical OFDM and OFDM-IM with L = 8
and 8-PSK.

positive result associated with classical OFDM with BPSK can
be accounted for its 3 dB larger minimum Euclidean distance
than OOK-OFDM and its double entropy at the channel input
over OFDM-IM with subcarrier activation only. The behavior
of OFDM-IM with subcarrier activation only in the very low
SNR region can be attributed to the coding gain from index
modulation.

C. Performance of different subcarrier activation strategies

In this subsection, we answer Q4 raised in Section II.
In Figs. 3 and 4, we observe interestingly that OFDM-

IM with m = 1 surpasses classical OFDM significantly
under the finite constellation constraints. However, since the
decoding reliability of the modulated symbol varies with
the constellation order under a power constraint and that of
different subcarrier activation types varies with the parameters
L and m, different phenomena will be observed for different
system parameters.

To show this, we present an example with L = 8 and
8-PSK in Fig. 6, where m varies from 1 to 5. As can be
seen, besides m = 1, in which case OFDM-IM and classical
OFDM have the same entropy at the channel input, OFDM-
IM with m = 2 and m = 3 also have the potential to
outperform classical OFDM despite smaller input entropy.
For m = 4 and 5, the input entropies are too small to
exploit the channel, thus leading to a smaller achievable rate
than classical OFDM. Therefore, an intriguing question may
arise: what is the optimal m in maximizing the achievable
rate for a given SNR. For the above example, answers are
given in Fig. 7, where SNRs equal to 0 dB, 6 dB, and 12
dB are considered, and the corresponding lower bounds are
also plotted. It is shown that there exists an optimal non-
zero m (marked with a circle) which may vary for different
SNR values. However, we expect in general that when SNR
becomes very high the optimal m is more likely to be 1 since
the entropy at the channel input is the largest. On the other
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hand, it is clear from Fig. 7 that the proposed lower bound
can also point out the same solutions for its potential to trace
the exact values as the increase of SNR well (see Fig. 5 for
more evidences). Therefore, for computational tractability, the
use of the proposed lower bound is more advisable in the
determination of the optimal m. It is worth noting that under
a finite-alphabet input, the achievable rates of all schemes
will always saturate at their corresponding uncoded transmitted
information rates at very high SNR.

D. PSK vs. QAM

In this subsection, we answer Q5 raised in Section II.
An example for the comparison between 16-PSK and 16-

QAM inputs is shown in Fig. 8, where the simulation pa-
rameters are L = 16 and (a) m = 1; (b) m = 2. For

16-PSK 16-QAM

Fig. 9. Differences in the minimum Euclidean distances associated with
classical OFDM and OFDM-IM for 16-PSK and 16-QAM constrained inputs,
where the black and blue points, respectively, belong to the constellations
of classical OFDM and OFDM-IM, and the red lines give the minimum
Euclidean distances.

figure clarity, the lower bounds are omitted. Different from
the conclusion drawn in spatial modulation that PSK may
be better than QAM [35], [36], from the figure we see that
QAM is always more favorable than PSK for OFDM-IM in
the sense of higher achievable rate. On the other hand, we
see that OFDM-IM with m = 1 and m = 2 shows an SNR
gain of nearly 1 dB over classical OFDM for a large SNR
range when both employ 16-PSK modulation whereas very
little gain is found when both employ 16-QAM modulation.
Reasons can be found by comparing the minimum Euclidean
distances of the overall constellations of classical OFDM and
OFDM-IM with 16-PSK and 16-QAM in Fig. 9. As seen from
the figure, the overall constellations of OFDM-IM are different
from those of classical OFDM. Particularly, in OFDM-IM,
one more constellation point is located at the origin, which is
introduced from the inactive state, and meanwhile a power gain
of L/ (L−m) is shared by all conventional 16-PSK and 16-
QAM constellation points. Therefore, the minimum Euclidean
distance of the overall constellation of OFDM-IM with 16-
PSK will still be determined by the two adjacent 16-PSK
constellation points of enhanced power while that with 16-
QAM will be determined by the origin point and its nearest
16-QAM constellation point of enhanced power. It should
be noted that since in OFDM-IM the origin point appears
with probability m/L while each 16-PSK/QAM constellation
point appears with probability (L−m) /ML, the comparison
through measuring the Euclidean distance directly need not
guarantee absolute accuracy. However, this can be adopted as
a general principle to foresee the comparison result when a
larger alphabet, such as 64-PSK/QAM is considered.

E. Effects of Gaussian input

In this subsection, we compare the performance of OFDM-
IM with classical OFDM under Gaussian input.

With L = 8 and m spanning from 1 to 7, the comparison
in terms of ergodic capacity is illustrated in Fig. 10. The
expectation of (39) over channels, which accounts for the
portion of ergodic capacity contributed by symbol modulation,
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Fig. 10. Comparison between classical OFDM and OFDM-IM with L = 8
in terms of ergodic capacity.

is also depicted. As seen from the figure, the contribution
of subcarrier activation to the ergodic capacity, which equals
the gap between the black and blue dashed curves, cannot be
neglected. Take m = 4 for example. At SNR equal to 27 dB,
the ergodic capacity of OFDM-IM is about 5.3 bps/Hz and
the portion contributed by symbol modulation is about 4.6
bps/Hz. Therefore, the other portion contributed by subcarrier
activation is about 5.3 − 4.6 = 0.7 bps/Hz, resulting in the
ratio between the portions of the ergodic capacity contributed
by subcarrier activation and symbol modulation as high as
0.7/4.6 = 15.2%. On the other hand, it is clear that the
figure substantiates our conclusion presented in Section III.B
that OFDM-IM performs worse than classical OFDM under
Gaussian input.

VI. CONCLUSIONS

With the transmitted signal being drawn from a finite
constellation, the achievable rate of OFDM-IM with CSIR
has been studied and a lower bound in closed form has been
derived. It has been verified that the derived lower bound can
be used to predict the optimal subcarrier activation strategy
which maximizes the superiority of OFDM-IM over classical
OFDM. In addition, an interleaved grouping has been proposed
and shown to outperform the existing localized grouping.
Finally, the effects of modulation types on the performance
of OFDM-IM have been studied.
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