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Abstract. Image templates, or atlases, play a critical role in imaging
studies by providing a common anatomical coordinate system for anal-
ysis of shape and function. It is now common to estimate an atlas as a
deformable average of the very images being studied, in order to provide
a representative example of the particular population, imaging hardware,
protocol, etc. However, when imaging data is aggregated across multiple
sites, estimating an atlas from the pooled data fails to account for the
variability of these factors across sites. In this paper, we present a hierar-
chical Bayesian model for diffeomorphic atlas construction of multi-site
imaging data that explicitly accounts for the inter-site variability, while
providing a global atlas as a common coordinate system for images across
all sites. Our probabilistic model has two layers: the first consists of
the average diffeomorphic transformations from the global atlas to each
site, and the second consists of the diffeomorphic transformations from
the site level to the individual input images. Our results on multi-site
datasets, both synthetic and real brain MRI, demonstrate the capability
of our model to capture inter-site geometric variability and give more
reliable alignment of images across sites.

1 Introduction

Recent years have seen a movement towards combining neuroimaging data col-
lected across multiple sites. Such multi-site data has the potential to accelerate
scientific discovery by providing increased sample sizes, broader ranges of par-
ticipant demographics, and publicly available data. Different approaches include
large, coordinated multi-site neuroimaging studies, such as the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) [7], as well as data sharing initiatives that
combine multiple independent single-site studies, such as the Autism Brain Imag-
ing Data Exchange (ABIDE) [3]. Larger sample sizes are especially critical in
genome-wide association studies (GWAS), in order to provide sufficient statis-
tical power to test millions of genetic variants. This requires aggregation across
a broad range of neuroimaging studies, such as those involved in the Enhanc-
ing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium [10].



Analysis using these multi-site data sets, however, is not straightforward. Styner
et al. [9] compared intra- and inter-site variability by analyzing variability of
tissue and structural volumes of the same subject imaged twice at each of five
sites. This analysis showed that, regardless of segmentation approach, there was
always higher inter-site variability, most notably when those sites used different
brands of MRI scanner. In large multi-site studies, there are possibly multiple
confounding factors across sites, including different MRI scanners, protocols,
populations, and diagnosis techniques.

A common first step in neuroimage analysis is to register all images to a
common coordinate system, or atlas, often generated as an unbiased deformable
average of the input images themselves. When dealing with multi-site image
data, one possibility is to pool the images from all of the sites and estimate an
atlas. However, treating multi-site data as a single, homogeneous dataset fails to
account for the variability across sites, which can be detrimental to the statisti-
cal power and counteract the gains made by increasing the sample size. Another
option is to carry out individual image processing and statistical analyses at
each site, and combine the statistical results in a post hoc meta-analysis. While
this can be an effective way to combine statistical tests of low-dimensional sum-
mary measures, it is not applicable to problems on high-dimensional data, such
as images, without first learning and establishing a common coordinate frame
between the pooled datasets.

We present a hierarchical Bayesian model to estimate atlases on multi-site
imaging data, which controls for the inter-site variability, while providing a com-
mon coordinate system for analysis. This builds on methods presented in [12],
where the large deformation diffeomorphic metric mapping (LDDMM) problem
is formulated as a probabilistic model, and the transformations between the at-
las and individual images are considered random variables. To build an atlas
from multi-site image data, we propose to add an additional layer in this prob-
abilistic model to account for systematic geometric differences between imaging
sites, resulting in concatenated transformations, one site-specific, one subject-
specific, which describe the deformation of a subject’s image to the estimated
atlas. Bayesian inference is performed through an iterative, maximum a poste-
riori (MAP) estimate of the random variables until convergence conditions are
met. We demonstrate that the resulting model reduces the confounding inter-site
variability, and results in improved statistical power in a statistical analysis of
brain shape.

2 Background

Single Site Bayesian Atlas Building We will work within the framework of
large deformation diffeomorphic metric mapping (LDDMM) [1], as it provides a
rigorous setting for defining a distance metric on deformations between images.
The atlas building problem in LDDMM can be phrased as a minimization of the
sum-of-squared distances function from the atlas to the input images. Images
are treated as L2 functions on a compact image domain Ω. The diffeomorphism
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registering the atlas image A ∈ L2(Ω,R) to the input image Ik ∈ L2(Ω,R)
will be denoted φk ∈ Diff(Ω). It is given by the flow of a time-varying velocity
field, vk(t) ∈ C∞(TΩ). In the geodesic shooting framework, this velocity field is
governed by the geodesic shooting equation on Diff(Ω). As such, it is sufficient
to represent a geodesic by its velocity at t = 0. Thus, we will simplify notation
by excluding the time variable, and write vk = vk(0). Given this setup, the atlas
building problem seeks to minimize the energy

E(vk, A) =

N∑
k=1

(Lvk, vk)− 1

σ2

N∑
k=1

‖A ◦ φ−1k − Ik‖
2
L2 , (1)

where L is a Riemannian metric on velocities, given by a self-adjoint differential
operator that controls the regularity of the transformations, and σ2 is the image
noise variance.

Zhang et al. [12] describe a Bayesian interpretation of this diffeomorphic
atlas building problem, where the initial velocities, vk, become latent random
variables. In the Bayesian setting, the regularization term on vk is the log-prior
and the image match term is the log-likelihood. We will adopt this probabilistic
interpretation, as it allows us to define a hierarchical Bayesian model for multi-
site atlas building.

Geodesic Shooting of Diffeomorphisms In the interest of space, we will give
a very brief description of geodesic shooting in the space of diffeomorphisms.
Given an initial velocity v ∈ C∞(TΩ), the evolution of the velocity along a
geodesic path is given by the Euler-Poincaré equations (EPDiff) [6],

∂v

∂t
= −K ad∗vm = −K

[
(Dv)Tm+Dmv +mdiv v

]
, (2)

where D denotes the Jacobian matrix, and K = L−1. The operator ad∗ is the
dual of the negative Lie bracket of vector fields,

adv w = −[v, w] = Dvw −Dwv.

The EPDiff equation (2) results in a time-varying velocity vt : [0, 1]→ V , which
is integrated in time by the rule (dφt/dt) = vt ◦φt to arrive at the geodesic path,
φt ∈ Diffs(Ω).

3 Hierarchical Bayesian Model

We now present our hierarchical Bayesian model for multi-site atlas estimation.
The input are images Iik, where i = 1, . . . , S represents the site index and
k ∈ 1, . . . , Ni represents the subject index at site i. The goal is to estimate a
common atlas image for all sites, A ∈ L2(Ω,R), and simultaneously capture
the geometric differences between sites. We represent the inter-site variability as
a set of site-specific deformations, φi, which, when composed with A, describe
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Fig. 1. The hierarchical Bayesian model for multi-site atlas estimation.

site-specific atlases, A ◦ φ−1i . The site-specific atlas is then deformed by the
individual-level diffeomorphism, ψik, to arrive at the final registration of the
atlas, A ◦ φ−1i ◦ ψ

−1
ik , to the input image Iik. As above, we will use the initial

geodesic velocity to capture a diffeomorphism: denote ui for the intial velocity
of φi and vik for that of ψik. This approach gives rise to a hierarchical Bayesian
model, shown in Figure 1, which decomposes the diffeomorphic transformation
from the atlas A to the individual image Iik into the site-specific initial velocity,
ui, and the subject-specific initial velocity, vik.

In order to estimate the ui, vik in the Bayesian setting, we need to define
priors on our random variables:

ui ∼ N(0, L−1)

vik ∼ N(0, L−1),

where L = (−α∆+ I)c, the same value discussed in Section 2.
Our model assumes i.i.d. Gaussian image noise, yielding the likelihood:

p(Iik|vik, ui, A) ∼
∏
k∈Ni

N(A ◦ φ−1i ◦ ψ
−1
ik , σ

2). (3)

While it is not readily apparent that vik, ui are related in the priors, these two
variables are conditionally dependent, as seen in the head-to-head nature of the
sub-model involving vik, Iik, ui. When Iik are also random variables, vik and ui
are independent; when Iik is observed, this introduces a link between vik, ui and
they are now dependent in their respective posterior distributions:

ln p(vik|Iik, A, ui;σ) ∝ −(Lvik, vik)− 1

2σ2
‖A ◦ φ−1i ◦ ψ

−1
ik − Iik‖

2, (4)

ln p(ui|Iik, A, vik;σ) ∝ −(Lui, ui)−
1

2σ2

Ni∑
k=1

‖A ◦ φ−1i − Iik ◦ ψik‖
2|Dψik|. (5)

Performing Bayesian inference on the system described above could be done
in several ways. We have chosen a maximum a posteriori (MAP) optimization
that alternates between maximizing the posterior equations given in (4) and (5)
over vik, ui, and the closed-form maximization for A given in (6). Alternatively,
we could sample the vik, ui using Gibbs sampling on the posteriors in a Monte
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Carlo expectation maximation (MCEM) procedure. However, the MAP estimate
is a mode approximation to the full EM algorithm and sufficient to show the
utility of our hierarchical Bayesian model for estimating multi-site image atlases.

We compute the MAP estimates through a gradient ascent procedure in
which we alternate between updating the vik and the ui, then updating the
atlas, A, using an adaptation of the closed form MAP update derived in [12]:

A =

∑
i∈S
∑
k∈Ni

(Iik ◦ ψik ◦ φi)|D(ψik ◦ φi)|∑
i∈S
∑
k∈Ni

|D(ψik ◦ φi)|
. (6)

This is done iteratively until the energy, E(vik, ui, A) converges within rea-
sonable tolerance. In our model, we fix the parameters σ = 0.05, α = 3 and c = 3.
To compute the gradient w.r.t. the initial velocity vik, we follow the geodesic
shooting algorithm and reduced adjoint Jacobi fields from Bullo [2]. We first for-
ward integrate the geodesic evolution equation (2) along time points t ∈ [0, 1],
and generate the diffeomorphic deformations by (d/dt)φ(t, x) = v(t, φ(t, x)). The
gradient at t = 1 is computed as

∇vik ln p(vik|Iik, A, ui;σ) = −K
[

1

σ2
(A ◦ φ−1i ◦ ψ

−1
ik − Iik) · ∇(A ◦ φ−1i ◦ ψ

−1
ik )

]
.

We then integrate the gradient above backward to time point t = 0 by reduced
adjoint Jacobi fields to update the gradient w.r.t. the initial velocity vik. Simi-
larly for ui, we compute the gradient at t = 1 by

∇ui ln p(ui|Iik, A, vik;σ) = −K
[

1

σ2
(A ◦ φ−1i − Iik ◦ ψik) · |Dψik| · ∇(A ◦ φ−1i )

]
.

4 Results

We present results from a multi-site neuroimaging dataset as a demonstration of
the hierarchical model’s ability to capture inter-site variability. Furthermore, we
show that controlling for this inter-site variability results in improved statistical
characterization of the underlying shape variability due to factors of interest,
such as age and diagnosis.

Data The Autism Brain Imaging Data Exchange (ABIDE) database is an online
consortium of MRI and resting-state fMRI data from 17 international sites,
resulting in brain imaging data for 539 individuals with an autism spectrum
disorder (ASD) and 573 typically developing (TD) controls [3]. These sites vary in
scanner type and imaging protocol, among many other variables. From three sites
with different scanner brands, we selected 45 age and group matched subjects
(15 from each site), including 27 TD and 18 ASD subjects. The MRIs for these
subjects were then skull stripped, motion corrected, bias field corrected, rigidly
registered, and intensity normalized prior to analysis.
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Fig. 2. Axial slices of the estimated atlases: pooled (top left), multi-site (top right),
site-specific (middle) and the site-specific atlases overlaid with the log-determinant
Jacobian of the site-specific deformations (bottom). A negative value (blue) denotes
shrinkage and positive value (red) denotes expansion from the site level to the estimated
atlas.

Statistical Comparison We compared our hierarchical multi-site atlas to a
single atlas computed from the pooled data. The results are shown in Figure 2.
Notice that the top-level atlas A estimated in the multi-site model is similar to
the single atlas from the pooled data. However, our model captures differences
between the site-specific atlases, as can be seen in the log-determinant Jacobian
maps of the site-specific diffeomorphisms. Similar analysis was performed on
the pooled results, using the estimated initial velocities within each site for the
estimated pooled atlas to generate the site deformations. This analysis showed
that just pooling the data and estimating site-specific deformations yields smaller
differences across sites in terms of magnitude and average deformation.

In order to focus on biological shape variability, we can control for the con-
founding inter-site variability by “removing” the estimated site-specific trans-
formations from our multi-site approach. We do this by adjoint transport of the
initial velocity fields, vik, from the site atlas back to the top-level atlas coordi-
nates, giving transported velocities, ṽik = Adφ−1

i
vik.
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Fig. 3. The cumulative age and group variance (blue, red) or age, group and site (gold)
accounted for by each PLS component of the velocity fields.

To test if our multi-site atlas is better able to capture age-related and diagnosis-
related shape variability, we use partial least squares (PLS) regression on the
diagnosis (ASD or TD) and age versus the initial velocity fields ṽik. PLS seeks
to predict a set of dependent variables from a set of independent variables, yield-
ing, among other analyses, what percentage of the variance with respect to the
independent variables is accounted for by the dependent variables [11]. In our
case, the dependent variables for analyzing the multi-site method are age and
diagnosis, and for the pooled method are age, diagnosis and site versus the initial
velocity fields. Figure 3 shows that variance in the multi-site velocity field data is
able to explain age and diagnosis in fewer PLS components than in the velocities
estimated by pooling the data, even when site is included as a dependent vari-
able. Of course with enough dimensions, both methods are able to fully explain
the responses, but our hierarchical model explains the variance more efficiently.
Additionally, the total variance of the system described by PLS on the multi-site
data was nearly 14% lower than the total variance on pooled data, for totals of
1129056 and 1305985 respectively. This shows that our proposed hierarchical
model is able to more efficiently capture biological variability in shape of the
multi-site ABIDE dataset by reducing the overall inter-site variance.

5 Conclusion

We have presented a novel approach to the problem of multi-site atlas estimation
and shown its utility in reducing the variability of high-dimensional, multi-site
imaging data. Our hierarchical Bayesian model captures inter-site variability
in site-specific diffeomorphisms which, when composed with diffeomorphisms
at the individual level, achieve the final diffeomorphic transformations between
the atlas and input images. Our multi-site model was able to reduce overall
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variability and capture the relevant variability of the data, i.e., that due to age
or diagnosis, in fewer PLS components than its pooled atlas counterpart.

We chose to compare our approach to a single atlas on the pooled data due
to the prevalence of this approach in the literature, e.g., [4, 8]. An alternative
comparison would be to use a multi-atlas [5] on the pooled data to determine if
our decrease in variance is due solely to the fact that we are estimating multiple
atlases. The difference is that our multi-site atlas directly models and controls
for the inter-site variance. We leave comparison to a multi-atlas as future work.
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