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Abstract. Computing a concise representation of the anatomical vari-
ability found in large sets of images is an important first step in many
statistical shape analyses. In this paper, we present a generative Bayesian
approach for automatic dimensionality reduction of shape variability rep-
resented through diffeomorphic mappings. To achieve this, we develop a
latent variable model for principal geodesic analysis (PGA) that provides
a probabilistic framework for factor analysis on diffeomorphisms. Our key
contribution is a Bayesian inference procedure for model parameter es-
timation and simultaneous detection of the effective dimensionality of
the latent space. We evaluate our proposed model for atlas and principal
geodesic estimation on the OASIS brain database of magnetic resonance
images. We show that the automatically selected latent dimensions from
our model are able to reconstruct unseen brain images with lower error
than equivalent linear principal components analysis (LPCA) models in
the image space, and it also outperforms tangent space PCA (TPCA)
models in the diffeomorphism setting.

1 Introduction

Diffeomorphic image registration plays an important role in understanding anatom-
ical shape variability in medical image analysis. For example, analysis of diffeo-
morphic shape changes can be linked to disease processes and changes in cog-
nitive and behavioral measures. In this setting, the high dimensionality of the
deformations, combined with the relatively small sample sizes available, make
statistical analysis challenging. However, the intrinsic dimensionality of brain
shape variability is much lower. Extracting these intrinsic dimensions before fur-
ther statistical analysis can improve the statistical power and interpretability of
results.

Motivated by Bayesian reasoning, current approaches in diffeomorphic atlas
building [6, 12, 14] are formulated as maximum a posteriori (MAP) optimization
problems. A set of input images are registered to a template, which is simultane-
ously estimated with the unknown deformations in an alternating optimization
strategy. In these approaches, the likelihood is defined by an image match term
which is a sum squared distance function between deformed atlas and input im-
age, and a prior on transformations that enforces smoothness. Allassonnière et
al. [1] proposed a fully generative Bayesian model of elastic deformation in which
estimation proceeds by marginalization over the latent image transformations.



Ma et al. [7] introduced a Bayesian formulation of the diffeomorphic image atlas
problem by adding fixed hypertemplate information. Simpson et al. [10] inferred
the level of regularization in small deformation registration by a hierarchical
Bayesian model. Zhang et al. [18] develop a generative model for diffeomorphic
atlas formulation and regularization parameter estimation by using a Monte
Carlo Expectation Maximization (MCEM) algorithm.

Beyond estimation of an atlas, or mean image, several dimensionality reduc-
tion methods have been proposed for modeling shape variability in the diffeo-
morphism setting. Vaillant et al. [13] compute a PCA in the tangent space to
the atlas image. Later, Qiu et al. [9] used TPCA as an empirical shape prior
in diffeomorphic surface matching. Gori et al. [5] formulate a Bayesian model
of shape variability using diffeomorphic matching of currents. Their model in-
cludes estimation of a covariance matrix of the deformations, from which they
then extract PCA modes of shape variability. Even though these methods for-
mulate the atlas and covariance estimation as probabilistic inference problems,
the dimensionality reduction is done after the fact, i.e., as a singular value de-
composition of the covariance as a second stage after the estimation step. We
propose instead to treat the dimensionality reduction step as a probabilistic in-
ference problem on discrete images, in a model called Bayesian principal geodesic
analysis (BPGA), which jointly estimates the image atlas and principal geodesic
modes of variation. This Bayesian formulation has two advantages. First, com-
puting a PCA after the fact in the tangent space does not explicitly optimize the
fit of the principal modes to the data (this is due to the nonlinearity of the space
of diffeomorphisms), whereas we explicitly optimize this criteria intrinsically in
the space of diffeomorphisms, resulting in better fits to the data. Second, by
formulating dimensionality reduction as a Bayesian model, we can also infer the
inherent dimensionality directly from the data.

Our work is inspired by the Bayesian PCA model introduced in Euclidean
space by Bishop (BPCA) [2]. Recently, Zhang and Fletcher [17] introduced a
probabilistic principal geodesic analysis (PPGA) to finite-dimensional manifolds
based on PGA [3]. This work goes beyond the PPGA model by introducing the
automatic dimensionality reduction, as well as extending from finite-dimensional
manifolds to the infinite-dimensional case of diffeomorphic image registration.
We also mention the relationship of our work to manifold learning approaches
to dimensionality reduction [4]. The main advantage of the Bayesian approach
we present is that it is fully generative, and the principal modes of variation
can reconstruct shape deformation of individuals, information that is lost when
mapping to a Euclidean parameter space in manifold learning. We show ex-
perimental results of principal geodesics and parameters estimated from OASIS
brain dataset. To validate the advantages of our model, we reconstruct images
from our estimation and compare the reconstruction errors with TPCA of dif-
feomorphisms and LPCA based on image intensity. Our results indicate that
intrinsic modeling of the principal geodesics, estimated jointly with the image
atlas, provides a better description of brain image data than computing PCA in
the tangent space after atlas estimation.



2 Background

We define a generative probabilistic model for principal geodesic analysis in
the setting of diffeomorphic atlas building. Before introducing our model, we
first briefly review the mathematical background of diffeomorphic atlas building
and its computations for geodesic shooting [11, 15, 16]. We use vector-valued
momenta [11], which unlike scalar momenta, decouple the deformations from
the atlas, leading to more efficient and stable estimation procedures.

In this framework, given input images I1, . . . , IN ∈ L2(Ω,R), a minimiza-
tion problem is solved to estimate the template image and the diffeomorphic
transformations between the template and each input image as

E(vk, I) =

N∑
k=1

1

2σ2

∥∥I ◦ (φk)−1 − Ik
∥∥2 +

∫ 1

0

(Lvkt , v
k
t ) dt. (1)

Here σ2 represents noise variance, and the vk ∈ L2([0, 1], V ) are time-varying
velocity fields in a reproducing kernel Hilbert space, V , equipped with a metric,
L : V → V ∗, a positive-definite, self-adjoint, differential operator, mapping to
the dual space, V ∗. The dual to the vector vk is a momentum,mk ∈ V ∗, such that
mk = Lvk and vk = Kmk. The operator K is the inverse of L. The notation
(mk, vk) denotes the pairing of a momentum vector mk ∈ V ∗ with a tangent
vector vk ∈ V . The deformation φk is defined as the integral flow of vk, that
is, (d/dt)φk(t, x) = vk(t, φk(t, x)). We use subscripts for the time variable, i.e.,
vt(x) = v(t, x), and φt(x) = φ(t, x). When the energy above is minimized over
the initial momenta mk, the geodesic path φk is constructed via integration of
the following EPDiff equation [8]:

∂mk

∂t
= −ad∗

vkm
k = −(Dvk)Tmk −Dmk vk −mk div(vk), (2)

where D denotes the Jacobian matrix, and the operator ad∗ is the dual of the
negative Lie bracket of vector fields, advw = −[v, w] = Dvw −Dwv.

3 Bayesian Principal Geodesic Analysis

3.1 Probability Model

We formulate the random momentum for the kth individual as mk = Wxk,
where W is a matrix with q columns of principal initial momenta, x ∈ Rq is a
latent variable that lies in a low-dimensional space, with x ∼ N(0, I). Our noise
model is i.i.d. Gaussian at each image voxel, with likelihood given by

p(Ik |W, I, σ) =
1

(2π)M/2σM
exp

(
−‖I ◦ (φk)−1 − Ik‖2

2σ2

)
, (3)

where M is the number of voxels, and the norm inside the exponent is the
L2(Ω,R) norm. Note that for a continuous domain, this is not a well-defined



probability distribution due to its infinite measure on images. Therefore, we
consider the input images as well as diffeomorphisms to be defined on a finite
discretized grid.

The prior on W is given by the combination of a multivariate Gaussian dis-
tribution on the initial momenta m that guarantees smoothness of the geodesic
shooting path, and a Gaussian distribution on W to suppress small principal ini-
tial momenta to zero. This second term is analogous to the automatic relevance
determination (ARD) prior used in BPCA [2], with the difference that we use
the natural Hilbert space norm for the momenta. This prior induces sparsity in
the columns of W and automatically selects the dimensionality. The formulation
is given by

p(W |x, γ) ∝

(
q∏
i=1

( γi
2π

) d
2

)
exp

(
−1

2

N∑
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‖mk‖2K −
q∑
i=1

γi
2
‖Wi‖2K

)
, (4)

where i denotes the ith principal initial momentum, and γi is a hyperparameter
which controls the precision of the corresponding Wi. Estimating γi induces
sparsity so that if it has a large value, then the corresponding Wi will become
small, and will be effectively removed in the latent space. In this work, we use
a metric of the form K = (−α∆+ βI)−2, where ∆ is the discrete Laplacian. In
this operator, α controls the smoothness of diffeomorphisms, and β is a small
positive number to ensure that the K operator is nonsingular.

3.2 Inference

After defining the likelihood (3) and prior (4) in the previous section, we now
arrive at the log joint posterior for the diffeomorphisms as

log
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k=1

p
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W | Ik; I, σ2, γ

)
∝ − 1

2
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‖mk‖2K −
1
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2
log σ −
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2
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2
‖xk‖2.

(5)

We use MAP estimation to determine the model parameters θ = I, σ. In order
to treat the xk as latent random variables with log posterior given by (5), we
would ideally integrate out the latent variables, which is intractable in closed
form. Instead, we use a mode approximation to the posterior distribution. Next,
we introduce a gradient ascent scheme to estimate W,xk, θ = (I, σ) and γ
simultaneously.

Gradient Ascent for W,xk: We need to compute the gradient with respect to
initial momentum mk of the diffeomorphic image matching problem in (1), and
then apply the chain rule to obtain the gradient term w.r.t. W and xk. Following
the optimal control theory approach in [15], we add Lagrange multipliers to



constrain the kth diffeomorphism φk(t) to be a geodesic path. The following
equations are equivalent for the geodesic paths of each of the subjects, so for
notational simplicity, we drop the subject index k from the notation momentarily.
This is done by introducing time-dependent adjoint variables, m̂, Î and v̂, and
writing the augmented energy

Ẽ(m) =E(Km, I, Ik) +

∫ 1

0

[
〈m̂, ṁ+ ad∗

vm〉+ 〈Î , İ +∇I · v〉+ 〈v̂,m− Lv〉
]
dt,

where E is the diffeomorphic image matching energy from (1), and the other
terms correspond to Lagrange multipliers enforcing: a) the geodesic constraint,
which comes from the EPDiff equation (2), b) the image transport equation,
İ = −∇I · v, and c) the constraint that m = Lv, respectively.

The optimality conditions form, I, v are given by the following time-dependent
system of ODEs, termed the adjoint equations:

− ˙̂m+ advm̂+ v̂ = 0, − ˙̂
I −∇ · (Îv) = 0, −ad∗

m̂m+ Î∇I − Lv̂ = 0,

subject to initial conditions m̂(1) = 0, Î(1) = 1
σ2 (I(1) − Ik). Finally, after inte-

grating these adjoint equations backwards in time to t = 0, the gradient of Ẽ
with respect to the initial momentum is ∇mẼ = Km− m̂.

Applying the chain rule, the gradient term of (5) for updating W is

∇W Ẽ = −
N∑
k=1

(Kmk − m̂k)[xk]T −KWγ,

where γ is a diagonal matrix with diagonal element γi. The gradient with respect
to xk is

∇xkẼ = −WT (Kmk − m̂k)− xk.

Closed-form solution for θ, γ: We now derive the maximization for updating
the parameters θ. This turns out to be a closed-form update for the atlas I,
noise variance σ2, and dimensionality control parameter γ. For updating the
atlas image I, we set the derivative of the log posterior with respect to I to zero.
The solution for I, σ2 gives an update

I =

∑N
k=1 Ik ◦ φk|Dφk|∑N

k=1 |Dφk|
, σ2 =

1

MN

N∑
k=1

‖I ◦ (φk)−1 − Ik‖2.

We use the similar approximation on ARD prior in BPCA [2] to get a closed-form
update for γi, as γi = q/‖Wi‖2K .

4 Results

To demonstrate the effectiveness of our proposed model and MAP estimation,
we applied our BPGA model to a set of axial slices of brain magnetic resonance



Fig. 1: Top to bottom: shooting atlas by the first, second and third princi-
pal modes. Left to right: BPGA model of image variation evaluated at ai =
−3,−1.5, 0, 1.5, 3.

images (MRI) from the OASIS brain database. The data consists of MRI from
40 healthy subjects between the age of 60 to 95. The MRI have resolution 108×
128 × 128 and are skull-stripped, intensity normalized, and co-registered with
rigid transforms. We use α = 0.8, β = 0.4 estimated using the procedure in [18]
with 15 time-steps in geodesic shooting, and initialize the template I as the
average of image intensities, while W as the matrix of principal components
from TPCA.

The proposed BPGA model automatically determined that the latent di-
mensionality of the data was three. Figure 1 displays the automatic estimated
modes, i = 1, 2, 3, of the brain MRI variation. We forward shoot the constructed
atlas, I, by the estimated principal momentum aiWi along geodesics. For vi-
sualization purpose, here we demonstrate the brain variation from the atlas by
ai = −3,−1.5, 0, 1.5, 3. The first mode of variation clearly shows that ventricle
size change is a dominant source variability in brain shape. The algorithm also
jointly estimated the image noise standard deviation parameter as σ = 0.04.

Image registration accuracy We validated the image registration accuracy
of our BPGA model. After estimating the principal initial momenta and param-
eters from the training subjects above, we used these estimates to reconstruct
another 20 testing subjects from the same OASIS database that were not in-
cluded in the training. We then measured the discrepancy between the recon-
structed images and the testing images. Note that our reconstruction only used
the first three principal modes, which were automatically selected by our algo-
rithm. We also compared our model with LPCA and TPCA, also using the first
three dimensions. Examples of the reconstructed images from these models are
shown in Figure 2. Table 1 shows the comparison of the registration accuracy
as measured by the average and standard deviation of the mean squared error



(a) Observed (b) LPCA (c) TPCA (d) BPGA

Fig. 2: Left to right: original data, reconstruction by LPCA, TPCA, and BPGA.

(MSE). It indicates that our model outperforms both LPCA and TPCA in the
diffeomorphic setting.

LPCA TPCA BPGA

Average MSE 2.8 × 10−2 1.6 × 10−2 1.1 × 10−2

Std of MSE 7.5 × 10−3 2.3 × 10−3 2.0 × 10−3

Table 1: Comparison of mean squared reconstruction error between LPCA,
TPCA and BPGA models. Average and standard deviation over 20 test images.

5 Conclusion

We presented a generative Bayesian model of principal geodesic analysis in dif-
feomorphic image registration. Our method is the first probabilistic model for
automatic dimensionality reduction for diffeomorphisms. We developed an infer-
ence strategy based on MAP to estimate parameters, including the noise variance
and image atlas, simultaneously. The estimated low-dimensional latent variables
provide a compact representation of the anatomical variability in a large image
database, and they can be used for further statistical analysis of anatomical
shape in clinical studies. Reducing the dimensionality to the inherent modes of
shape variability has the potential to improve hypothesis testing, classification,
mixture models, etc.
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