Mia Liljeström

Mia Liljeström
Aalto University · Department of Neuroscience and Biomedical Engineering

DrSc (Tech)

About

22
Publications
3,072
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
685
Citations
Citations since 2016
12 Research Items
331 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
Additional affiliations
July 2010 - January 2015
Aalto University
Position
  • PostDoc Position

Publications

Publications (22)
Article
Full-text available
Language production is a complex neural process that requires the interplay between multiple specialized cortical regions. We investigated modulations in large-scale cortical networks underlying preparation for speech production by contrasting cortico-cortical coherence for overt and silent picture naming in an all-to-all connectivity analysis. To...
Article
Full-text available
Large-scale networks support the dynamic integration of information across multiple functionally specialized brain regions. Network analyses of haemodynamic modulations have revealed such functional brain networks that show high consistency across subjects and different cognitive states. However, the relationship between the slowly fluctuating haem...
Article
Most neuroimaging studies are performed using one imaging method only, either functional magnetic resonance imaging (fMRI), electroencephalography (EEG), or magnetoencephalography (MEG). Information on both location and timing has been sought by recording fMRI and EEG, simultaneously, or MEG and fMRI in separate sessions. Such approaches assume sim...
Article
Cortical rhythmic activity is increasingly employed for characterizing human brain function. Using MEG, it is possible to localize the generators of these rhythms. Traditionally, the source locations have been estimated using sequential dipole modeling. Recently, two new methods for localizing rhythmic activity have been developed, Dynamic Imaging...
Article
Full-text available
Different neuroimaging methods can yield different views of task-dependent neural engagement. Studies examining the relationship between electromagnetic and hemodynamic measures have revealed correlated patterns across brain regions but the role of the applied stimulation or experimental tasks in these correlation patterns is still poorly understoo...
Article
Exaggerated subthalamic beta oscillatory activity and increased beta range cortico-subthalamic synchrony have crystallized as the electrophysiological hallmarks of Parkinson's disease. Beta oscillatory activity is not tonic but occurs in ‘bursts’ of transient amplitude increases. In Parkinson's disease, the characteristics of these bursts are alter...
Article
Full-text available
Beta rhythm modulation has been used as a biomarker to reflect the functional state of the sensorimotor cortex in both healthy subjects and patients. Here, the effect of reduced alertness and active attention to the stimulus on beta rhythm modulation was investigated. Beta rhythm modulation to tactile stimulation of the index finger was recorded si...
Article
Full-text available
Reliable paradigms and imaging measures of individual-level brain activity are paramount when reaching from group-level research studies to clinical assessment of individual patients. Magnetoencephalography (MEG) provides a direct, non-invasive measure of cortical processing with high spatiotemporal accuracy, and is thus well suited for assessment...
Preprint
Full-text available
Reliable paradigms and imaging measures of individual-level brain activity are paramount when reaching from group-level research studies to clinical assessment of individual patients. Magnetoencephalography (MEG) provides a direct, non-invasive measure of cortical processing with high spatiotemporal accuracy, and is thus well suited for assessment...
Article
Full-text available
Modulation of the ∼20-Hz brain rhythm has been used to evaluate the functional state of the sensorimotor cortex both in healthy subjects and patients, such as stroke patients. The ∼20-Hz brain rhythm can be detected by both magnetoencephalography (MEG) and electroencephalography (EEG), but the comparability of these methods has not been evaluated....
Article
Despite the high prevalence of mild traumatic brain injury (mTBI), current diagnostic tools to objectively assess cognitive complaints after mTBI continue to be inadequate. Our aim was to identify neuronal correlates for cognitive difficulties in mTBI patients by evaluating the possible alterations in oscillatory brain activity during a behavioral...
Article
Full-text available
Mild traumatic brain injury (mTBI) patients continue to pose a diagnostic challenge due to their diverse symptoms without trauma-specific changes in structural imaging. We addressed here the possible early changes in spontaneous oscillatory brain activity after mTBI, and their feasibility as an indicator of injury in clinical evaluation. We recorde...
Article
Full-text available
Communication between brain regions is thought to be facilitated by the synchronization of oscillatory activity. Hence, large-scale functional networks within the brain may be estimated by measuring synchronicity between regions. Neurophysiological recordings, such as magnetoencephalography (MEG) and electroencephalography (EEG), provide a direct m...
Article
Full-text available
Reconfigurations of synchronized large-scale networks are thought to be central neural mechanisms that support cognition and behavior in the human brain. Magnetoencephalography (MEG) recordings together with recent advances in network analysis now allow for sub-second snapshots of such networks. In the present study, we compared frequency-resolved...
Preprint
Full-text available
Communication between brain regions is thought to be facilitated by the synchronization of oscilla-tory activity. Hence, large-scale functional networks within the brain may be estimated by measuring synchronicity between regions. Neurophysiological recordings, such as magnetoencephalography (MEG) and electroencephalography (EEG), provide a direct...
Article
Phase-locked evoked responses and event-related modulations of spontaneous rhythmic activity are the two main approaches used to quantify stimulus- or task-related changes in electrophysiological measures. The relationship between the two has been widely theorized upon but empirical research has been limited to the primary visual and sensorimotor c...
Article
Full-text available
It is often implicitly assumed that the neural activation patterns revealed by hemodynamic methods, such as functional magnetic resonance imaging (fMRI), and electrophysiological methods, such as magnetoencephalography (MEG) and electroencephalography (EEG), are comparable. In early sensory processing that seems to be the case, but the assumption m...
Article
Neuropsychological studies have suggested differences in the cortical representations of verbs and nouns. Assessment of word-class specific deficits often relies on picture naming with different sets of images used for action and object naming. Such a setup may be problematic in neuroimaging studies, as the perception of the image and the actual di...
Article
To evaluate the effect that different head conductor models have on the source estimation accuracy of magnetoencephalography (MEG) under realistic conditions. Magnetic fields evoked by current dipoles were simulated using a highly refined 3-layer realistically shaped conductor model. Noise from a real MEG measurement was added to the simulated fiel...

Network

Cited By