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In this paper, we participate to the discussion set forth by the editor of Chaos for the controversy,
“Is the normal heart rate chaotic?” Our objective was to debate the question, “Is there some more
appropriate term to characterize the heart rate variability �HRV� fluctuations?” We focused on the
�24 h RR series prepared for this topic and tried to verify with two different techniques, general-
ized structure functions and wavelet transform modulus maxima, if they might be described as
being multifractal. For normal and congestive heart failure subjects, the hq exponents showed to be
decreasing for increasing q with both methods, as it should be for multifractal signals. We then built
40 surrogate series to further verify such hypothesis. For most of the series ��75%–80% of cases�
multifractality stood the test of the surrogate data employed. On the other hand, series coming from
patients in atrial fibrillation showed a small, if any, degree of multifractality. The population ana-
lyzed is too small for definite conclusions, but the study supports the use of multifractal series to
model HRV. Also it suggests that the regulatory action of autonomous nervous system might play a
role in the observed multifractality. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3152223�

Is there an appropriate term to characterize the heart
rate variability (HRV) fluctuations? Starting from this
question set forth by the editors of Chaos, we analyzed
the 15 series prepared by Physionet as common refer-
ence. Given the fact that the debate around the chaotic
nature of HRV is still wide open, we focused on charac-
teristics of the signal itself. Our goal is to contribute to
the discussion with a fair report on the possibility of ob-
serving multifractality on such series. Apart from being a
fundamental issue, “multifractal” parameters derived
from HRV might furnish new diagnostic tools given the
fact that they describe the series on long time scales.
Findings were tested through a comparison with surro-
gate data. As HRV is strongly influenced by the auto-
nomic nervous system, the tests we performed suggested
that multifractals might model HRV series. The observa-
tions, while drawn from a small population, are in line
with previous studies. On the other hand, they do not
enable any speculation on the chaotic nature of HRV.

I. INTRODUCTION

Since the early 60s, when the first long-term Holter elec-
trocardiogram �ECG� recorders appeared, researchers in-
spected them far beyond the simple search for anomalous
patterns. Such long series permitted to push further the
knowledge on HRV and its links with pathological condi-
tions. The first attempts were made through a rather simple
statistical description of the interbeat series and postacute
myocardial infarction was the condition of choice �which
appears sensible as myocardial infarction is one of the pri-

mary causes of death in World Health Organization regions
and that postevent screening already took place�. The in-
dexes that proved valuable were mainly the standard devia-
tion of the normal-to-normal intervals1 and the HRV triangu-
lar index.2

It was also soon noticed that the interbeat �RR� series
displayed a power law power spectral density �PSD� for time
scales ranging from a few minutes to hours.3 Mathematically,
stationary stochastic processes displaying a PSD of the form
1 / f� are called “scaling”4 or “self-affine.” Taking the integral
of a scaling leads to a nonstationary process for which it is
generally possible to define some generalized correlation
function and PSD that displays a correspondent 1 / f�+2

scaling.5 Both scalings and their integrated counterpart have
�generalized� correlation functions which decay very slowly
�hyperbolically� implying that the decorrelation time is not
well defined: the values of the series are affected by its long-
term history. For this reason in the literature such processes
are referred to as having “long-memory” or “long-range de-
pendence.” Self-affine processes are fractal by definition:
when rescaled both in time and amplitude they conserve the
same statistical properties.

The RR series display characteristics which for certain
scales are approximately similar to those of self-affine pro-
cesses. But as long as the fractal dimension of a long-
memory process is linked to � by the linear relation
D= �5−�� /2,6 it was soon speculated that different levels of
“fractality” might have been connected to distinct health
status.7 Also the outcomes were suggesting quite a change in
perspective: physiological studies were showing that the
HRV of an healthy individual usually displayed a larger frac-
tal dimension and irregularity was the mark of health and not
a deviation from the classical homeostasis principle.a�Electronic mail: roberto.sassi@unimi.it.
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But a strange attractor is generally a fractal set: So was
the scaling at low frequencies suggesting the presence of an
underlying attractor where the trajectories of a low dimen-
sional dynamical system were confined? The possibility of
reconstructing the state space dynamics from the time series
with Takens’ time-delay theorem was tempting. The math-
ematical tool was widely employed in the quest of an under-
lying low dimension dynamical system displaying determin-
istic chaos.8,9 Contradictory results followed10,11 and made
clear an issue which was initially overlooked: these methods
were themselves based on the assumption that the time series
under analysis was indeed generated by a chaotic system.

A quest to prove the chaotic nature of the cardiovascular
system from HRV started. Coming from other sorts of prob-
lems, physicists were already on their way on this path: start-
ing from the work of Osborne and Provenzale,12 a clear con-
cept emerged in literature that nonlinear time series methods
should be trusted only when applied to controlled natural or
laboratory systems for which reasonable models were
known. Otherwise, proper statistical tests, such as surrogate
data,13 were only necessary conditions which had to be met
on the series under analysis for any further claim. Many
methods were proposed over the years, but up to date, none
established a sufficient condition for a system to be chaotic,
especially in experimental biological time series which are
necessarily corrupted by noises �of endogenous or exogenous
origins�. Among the most promising and robust, noise
titration14 evoked that such sufficient condition was finally
met, but recent studies15,16 showed that unfortunately it is not
the case.

As of today, we are not aware of any mathematical proof
of a sufficient condition to confirm the presence of determin-
istic chaos in a time series. We surely acknowledge that the
cardiovascular system is a complex mechanism, where sev-
eral nonlinearities are accounted for; but the fact that a given
system includes nonlinear components does not necessarily
imply that the nonlinearities are also contained in a specific
signal measured from it. For these reasons, we think that no
definite conclusion might be drawn on the nature of HRV.
Fortunately, the wealth of method developed over the years
is nevertheless valuable at distinguishing populations of
patients17 and might serve as useful statistical indices in the
diagnosis process.

In the following, we will address the second question set
forth by the editor of Chaos: “If the normal heart rate is not
chaotic, is there some more appropriate term to characterize
the fluctuations?” We will do so verifying on the data made
available if the hypothesis that the HRV series are fractal or
multifractal stands the test of surrogate data.

The study of multifractals is tightly connected with the
theory of deterministic chaos.18 For example, many strange
attractors are multifractal objects �when one takes as observ-
able the density of points distributed according to the natural
measure�, or maps close to a tangent bifurcation might un-
dergo on-off �temporal� intermittency displaying a multifrac-
tal series of on-off states.19 But, as much as fractal objects,
multifractal ones might as well be generated by geometric or
stochastic processes. Therefore, the claim that a given set is

multifractal does not necessarily imply that the related sys-
tem is chaotic.

II. METHOD

Multifractals are broadly speaking entity composed of a
set of interwoven subfractals. Typically one defines a mea-
sure supported by the set: if such measure has different frac-
tal dimension on different parts of the support, then it is
named multifractal.20 When the entity under analysis is a
time series, the measure typically employed is the local sin-
gularity index evaluated at a given point with a Lipschitz
�Hölder� exponent.21 But finite sampling and numerical res-
olution makes difficult a direct measure. In particular, direct
box-counting assessment might lead to the detection of spu-
rious multifractality on series.22

Two more robust approaches are generally applied. The
first employs the computation of generalized structure func-
tions �GSFs� so avoiding completely the introduction of a
measure. Works on this subject were pioneered in the context
of fully developed turbulence.23 For a random process Xn, for
a time lag �, and order q, GSFs are defined as

GSF��,q� � ��Xn+� − Xn�q� .

If the series has fractal nature, it does exist a scaling region
where GSF�� ,q�	�qhq. When hq is constant with q �hq

=h2=H , ∀q�, the signal is monofractal �or self-affine�, ex-
actly like in the case of standard Brownian motion and white
noise for which GSF�� ,q�	�q/2 and GSF�� ,q�	�0, re-
spectively. In a true multifractal signal the scaling exponents
decrease for increasing q �hq�hp for q� p�. Finally one
might compute the generalized fractal dimension spectrum
Dk via the Legendre transform Dk=minq�qk−qhq+1�.24 The
spectrum Dk can be associated with the presence of nonlinear
correlations in the signal.

The second technique builds on the ability of wavelets to
remove polynomial trends �up to a certain order� that could
cause the failure of box-counting techniques in quantifying
the local scaling exponents. In the first approximation, the
wavelet-transform modulus-maxima �WTMM� method24 first
computes the wavelet transform T��Xi��b ,a� of the series Xi

and the local maxima up of �T��Xi��b ,a�� at each scale a then
defines the partition function

Z�a,q� = 

p

�T��Xi��up,a��q,

where the sum is computed only across all the local maxima
up. The partition function should scale as Z�a ,q�	a��q�,
where a nonlinear function ��q� characterizes multifractal se-
ries �fractal ones have a linear ��q��. Also in this case the
generalized fractal dimensions can be computed by mean of
a Legendre transform Dk=minq�qk−��q��. Loosely speaking,
the scaling exponents of the two methods, ��q� and hq, are
linked by the relation ��q�=qhq−1.
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III. RESULTS

We applied both the generalized structure function and
WTMM method on data provided by PhysioNet for the dis-
cussion of this “controversial topic.” In particular, we con-
sidered five series obtained from normal subjects:
�21.8�1.8 h; ECG sample frequency: 128 Hz;
91 262�8884 points� five series from congestive heart fail-
ure patients �20.0�0.1 h; ECG sample frequency: 250 Hz;
88 701�16 085 points�, and five series obtained while the
patients were undergoing atrial fibrillation �AF�
�23.4�1.9 h; ECG sample frequency: 250 Hz;
116 677�24 041 points�. We did not apply any extra correc-
tion and simply used the filtered series as provided �nn files�.
A few minute sample of HRV signal for one healthy subject
is reported in Fig. 1.

Generalized structure functions were computed for each
RR series with q=1, . . . ,10 and ��N /2. GSFs for subject
n5 are displayed in Fig. 2. Three different regions can be
recognized: �i� a steep growth for the smallest time lags
���10� where the HRV modulating system is not strong
enough to prevent the RR series from randomly walking and
GSF scale as �1/2, �ii� a good linear scaling region at inter-
mediate scales ��� �100;5000�� where we estimated the ex-
ponent hq by linear fitting, and �iii� a third region at large
scales where the stationarity hypothesis breaks down and the
behavior gets unpredictable ���5000�.

Panel �a� of Fig. 3 illustrates the hq exponents computed
on the GSFs of Fig. 2. In this case, the linear scaling holds
for up to q=7. The hq exponents show a clear decreasing
trend supporting the hypothesis of multifractality in this se-
ries. To verify a step further this hypothesis, we prepared for
each sequence a set of 40 iterated amplitude-adjusted
Fourier-transform �IAAFT� surrogate data with an iterative
technique25 �five iterations�. As Ref. 22 points out, the tech-
nique is able to correctly identify the spurious origin of mul-
tifractality in most cases. The hypothesis we would like to
nullify is, “The signal is generated by a linear stochastic
process distorted by a nonlinear filter expressed by mono-
tonically increasing function.” Generalized structure func-
tions and the corresponding scaling exponent hq

� were com-
puted on each surrogate sequence. The hq

� values obtained for
subject n5 are included in Fig. 3�a�; they remain constant for
increasing q or decrease only slightly. Although having the
same power spectrum of the original RR series, they lack
phase correlations and are only colored noise.
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FIG. 1. �Color online� About 4 min of RR series for subject n5 is displayed
in the picture �dots�. Also included is a surrogate series obtained with the
IAAFT method �five iterations, stars�.
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FIG. 2. �Color online� Generalized structured functions for subject n5 �dot-
ted line�. GSFs for ten �out of 40� IAAFT surrogate series are included for
comparison. The dotted lines include the scales where the scaling exponents
were estimated.
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FIG. 3. �Color online� Panel �a�: GSFs hq scaling exponents estimated on
the RR series for subject n5 �square�. Panel �b�: Scaling exponents ��q�
computed with the WTMM technique for subject n5 �square�. In both pan-
els, the corresponding exponents as obtained on ten IAAFT surrogate series
are also reported for comparison �dots�.
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Detailed considerations on the computation of the scal-
ing exponents are included in Table I. In general, for each
recording in the database, a good linear scaling region was
present in the range �100; 5000� for certain values of q. The
hq spectrum was decreasing in each series of the healthy and
congestive heart failure �CHF� group, thus supporting the
hypothesis of multifractality. For AF series, hq values were
nearly constant or slightly decreasing.

A similar approach was undertaken using the WTMM
method. The implementation is critical as the method re-
quires to follow the maxima at the different scales. There-
fore, we employed LASTWAVE, a code provided by E.
Bacry.24 As analyzing wavelet, we selected the fourth deriva-
tives of the Gaussian function and the partition function
Z�a ,q� was computed in the interval q� �−4,6�. By visual
inspection we verified that the ten normal and CHF series led
to fractal dimension spectra Dk which were convex functions
�self-similar signal necessarily shows convex Dk �Ref. 21��.
For these cases, the linear scaling of the partition function
Z�a ,q� was generally good in the interval �32; 2048�. We
also verified which was the largest value q� for which ��q�
was a convex and increasing function of q.21 Further details
are given in Table I. The values of ��q� for subject n5 are
reported in Fig. 3�b� as long as the exponents are computed
on 40 surrogate series. The exponents hq

w= ���q�+1� /q for
q�0 were decreasing as they are expected for multifractal
series. AF series need a separate mention: the span of the
dimension spectra pointed to a possible fractal nature as op-
posed to multifractal �h spans were 0.55�0.16 and
0.56�0.22 for N and CHF subjects, respectively, while only
0.2�0.064 for AF series�.

Finally, starting from the values hq
� and ���q� obtained

from surrogate series, we built the 95% tolerance intervals

�population coverage: 95%; K�=2.445� and verified if the
corresponding hq and ��q� were outside them. That is, we
verified if the results obtained for the scaling exponents on
real RR series were statistically different �p=5%� from those
obtained from surrogate series. For GSFs, comparisons were
established at the largest q listed in Table I and discarding the
cases for which q�3. Among normal and CHF subjects, in
seven out of 8 cases, surrogate data provided different results
with GSFs exponents �series n4 and c1 were not included in
the test as the corresponding GSFs showed linear scaling
only for q�2�. With WTMM, given the availability of nega-
tive moments, comparisons were established at the largest q
listed in Table I and at q=−2. In eight out of ten cases �nor-
mal and CHF�, hq

w exponents were significantly different than
surrogate data in either of the two comparisons. Tests gener-
ally failed for series recorded during AF both with GSFs as
well as WTMM. See Table I for further technical details.

IV. DISCUSSION

Throughout this paper we discussed about the possibility
that RR series might be characterized as being multifractal.
We employed two different methods to evaluate the scaling
exponents hq. For healthy and CHF patients, both methods
agreed that such exponents were decreasing with increasing
q, thus supporting the multifractal nature of the series. Such
results are coherent with previous similar studies.26 On the
contrary recordings collected during AF showed a small, if
any, degree of multifractality. Surrogate data tests generally
corroborated the findings, even if the scenario appeared less
definite.

The small differences between the two methods might be
reasonably charged to nonstationarity present in the signal
�to which WTMM is less sensitive�. Knowing more informa-
tion about the sleeping period, it might have helped in ana-
lyzing more stationary series.

So, is multifractal an appropriate term to characterize
HRV fluctuations? Surely the number of cases is too small to
lead to definite conclusions, but a few considerations might
be drawn. First, we recall that the method of surrogate data
can only nullify the hypothesis set forth, thus it provides a
necessary condition only. As stated in the Introduction, no
sufficient test does exist. Therefore, the results obtained
herein reasonably support the possibility of modeling HRV
on long time scales with a multifractal time series �without
this implying any chaotic nature of the signal�. Second, the
scaling of the series did capture characteristics of the popu-
lations which might prove useful in the diagnostic process.
We verified that normal and CHF series were distinguishable
with respect to the GSFs scaling exponents once considered
only as statistical indices: h1, h2, and h3 had different means
across healthy and CHF subjects �t test; p�1%�. �This con-
sideration also contributes to the discussion on the third
question set forth by Chaos editors.� Third, the fact that se-
ries obtained during AF were better described as simply frac-
tals hints that the multifractality of HRV could be generated,
through the regulatory interaction of the autonomous nervous
system. In fact, during AF, ventricular contractions are trig-
gered by the first fibrillation wave which reaches the atrio-

TABLE I. Scaling exponents were computed on ten RR series. For each
sequence the columns contain �i� GSF�� ,q� l.s.: higher value of q for which
a good linear scaling of the corresponding generalized structure function
holds in the range �100; 5000�. The value was evaluated by visual inspec-
tion; �ii� ��q� �↗: higher value of q for which WTMM scaling ��q� is a
convex and increasing function; �iii� GSF p�5%?: a 3 symbolizes that the
hq value obtained from the RR series was outside the 95% tolerance interval
�95% population coverage� estimated from surrogate data; �iv� WTMM p
�5%?: as for column 3 but for WTMM hq

w.

No. GSF�� ,q� l.s. ��q� �↗ GSF p�5%? WTMM p�5%?

n1 q�8 q�0.5 3 No
n2 q�10 q�2 3 3

n3 q�10 q�6 No 3

n4 q�2 q�5 ¯ 3

n5 q�8 q�4 3 3

c1 q�2 q�3.5 ¯ 3

c2 q�7 q�6 3 No
c3 q�4 q�3 3 3

c4 q�4 q�3 3 3

c5 q�3 q�2 3 3

a1 q�8 q�3.5 No No
a2 q�7 q�6 No No
a3 q�7 q�6 No No
a4 q�8 q�6 No No
a5 q�7 q�3.5 3 No
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ventricular node after the end of the refractory period. Thus,
the time between two consecutive heart contractions is
largely independent from the autonomous nervous system
and its regulation mechanisms.

In conclusion, this work supported the idea of using mul-
tifractals to model HRV. The scaling parameters hi extracted
from GSFs showed to be statistically different among health
and CHF patients and suggested �in line with previous stud-
ies� that further work on this topic might lead to new prog-
nostic indices. Finally, the differences between healthy and
AF series reasonably indicated that multifractality is signifi-
cantly an effect of the way in which vagal and sympathetic
nervous systems interact �see also Ref. 27�.

We hope that this study might contribute to evaluate the
importance of new nonlinear parameters for a better physi-
ological investigation and for finding new clinical correlates.
Actually, only fractal properties �i.e., the � coefficient in
long-term ECG recordings� have been recognized as relevant
nonlinear parameters in HRV studies: multifractality might
provide a new observational window into the complexity
mechanisms of heart rate control.
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