Isometric embeddings of subdivided connected graphs into hypercubes

Méziane Aïder a, Sylvain Gravier b, Kahina Meslem c,∗

a U.S.T.H.B, Faculty of Mathematics, Laboratory LAID3, B.P. 32 El Alia 16111 Algiers, Algeria
b Institut Fourier-ERTÉ Maths à Modeler, UMR 5582 CNRS, Université Joseph Fourier, 100 rue des Maths, BP 74, 38 402 St Martin d’Hères, France
c U.S.T.H.B, Faculty of Mathematics, Laboratory LAID3, B.P. 32 El Alia 16111 Algiers, Algeria

Article info

Article history:
Received 28 September 2006
Accepted 24 October 2008
Available online 27 December 2008

Keywords:
Isometric embedding
Partial cube
Subdivision of a graph

Abstract

Isometric subgraphs of hypercubes are known as partial cubes. These graphs have first been investigated by Graham and Pollack [R.L. Graham, H. Pollack, On the addressing problem for loop switching, Bell System Technol. J. 50 (1971) 2495–2519; and D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263–267]. Several papers followed with various characterizations of partial cubes. In this paper, we determine all subdivisions of a given configuration which can be embedded isometrically in the hypercube. More specifically, we deal with the case where this configuration is a connected graph of order 4, a complete graph of order 5 and the case of a k-fan Fk (k ≥ 3).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Isometric subgraphs of hypercubes, called partial cubes, have first been investigated by Graham and Pollack [5] and Djoković [4]. Later, several characterizations were given using a relation defined on the edge set or by constructive operations. Partial cubes have found various applications, for instance, in [3,7] and [8], interesting applications in chemical graph theory were established.

Clearly, partial cubes are bipartite. A simple way to obtain a bipartite graph is to subdivide every edge of a complete graph of order 4, a complete graph of order 5 and the case of a k-fan Fk (k ≥ 3).

© 2008 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: maider@wissal.dz (M. Aïder), sylvain.gravier@ujf-grenoble.fr (S. Gravier), kmeslem@usthb.dz (K. Meslem).

0012-365X/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
is called principal in G if $u \in H$. We denote by $P(u, v)$ the path that connects the principal vertices u and v in G and does not contain an intermediary principal vertex. This path is said plain if it does not contain any added vertexes of G, i.e., the principal vertexes u and v are adjacent in G. A principal vertex u in G is said universal if the neighboring set of u in H and the neighboring set of u in G are identical. Given a graph G, $S(G)$ is obtained by subdividing each edge of G exactly once. In [9], Klavžar and Lipovec showed that $S(G)$ is a partial cube if and only if every block of G is either a cycle or a complete graph.

We say that two edges $e = xy$ and $f = uv$ of a graph G are in the Džoković–Winkler relation θ and note $e \theta f$ if $d_G(x, u) + d_G(y, v) \neq d_G(x, v) + d_G(y, u)$ [4, 10]. In a shortest path P of a graph G, no two distinct edges are in relation θ. In an isometric cycle C_{2k}, ($k \geq 2$), each edge e is in relation with exactly one different edge f with respect to the relation θ. Winkler [10] proved that a bipartite graph is a partial cube if and only if the relation θ is transitive.

Let G be a connected graph. A proper cover $\{G_1, G_2\}$ consists of two isometric subgraphs G_1, G_2 of G such that $G' = G_1 \cup G_2$ and $G_0 = G_1 \cap G_2$ is a nonempty subgraph, called intersection of the cover. The expansion of G' with respect to G_1 and G_2 is the graph G constructed as follows. Let G_i be an isomorphic copy of G_i' for $i = 1, 2$ and for any vertex u', let u_i be the corresponding vertex in G_i, for $i = 1, 2$. Then, G is obtained from the disjoint union $G_1 \cup G_2$, where for each u' in G_0, the vertices u_1 and u_2 are joined by an edge. Chepoi [2] proved that a graph G is a partial cube if and only if G can be obtained from K_1 by a sequence of expansions.

In this paper, we study partial cubes as subdivisions of a graph. In Section 2, we characterize the subdivisions of all connected graphs of order 4. These characterizations allow us to determine partial cubes which are subdivisions of a complete graph K_5 (Section 3):

Theorem 1. Let G be a subdivision of a complete graph K_5. Then, G is a partial cube if and only if G is isomorphic to $S(K_5)$ or G is bipartite and contains a universal vertex.

Finally, we conclude with some open questions.

2. Graphs of order 4 and fans

If T is a tree, then the subdivided T is also a tree and thus a partial cube. A cycle C_{2n} is a partial cube, too. Let G be a graph constructed by connecting a vertex of an even cycle to a pendant vertex of a path. Such a graph can be embedded in the hypercube by preserving the distance. We just embed the path and the cycle into different dimensions. The graph G is considered as a subdivision of a paw (a triangle K_3 with a pendant vertex). Then, a subdivided paw is a partial cube if the subdivided K_3 is an even cycle. In literature, we can find the following other results concerning partial cubes as subdivisions of connected graphs:

Let W_k be the k-wheel, that is, the graph obtained by connecting one vertex u to all the vertices of the cycle C_k. The vertex u is the central vertex of W_k and the remaining vertices are denoted w_1, \ldots, w_k. The graph $W_k(m_1, \ldots, m_k; n_1, \ldots, n_k)$ is obtained by subdividing edges of W_k, where m_i is the number of vertices added on the edge $w_i w_{i+1}$, and n_i is the number of vertices added on the inner edge uw_i. The vertices added on edges $w_i w_{i+1}$ (resp. on edges uw_i) are $w_{i,1}, \ldots, w_{i,m_i}$ (resp. $u_{i,1}, \ldots, u_{i,n_i}$) for $m_i > 0$ (resp. for $n_i > 0$).

Theorem 2 ([6]). Let G be a subdivisions k-wheel ($k \geq 3$). Then, G is a partial cube if and only if G is isomorphic to $W_k(m_1, \ldots, m_k; n_1, \ldots, n_k)$, where m_i is odd for $i = 1, \ldots, k$ and $n_1 = \cdots = n_k = 0$, or $G = W_3(1, 1; 1; 1, 1, 1)$.

An interesting instance of partial cubes mentioned in the last theorem is the subdivided wheel $W_3(1, 1; 1; 0, 0, 0)$. It is defined as the vertex-deleted subgraph $Q_3 - v$ where $v \in Q_3$ and is denoted Q_3^-, see Fig. 1. (In all our figures, bold vertices represent the vertices added to a given configuration.)

Proposition 3 ([9]). For any $n \geq 1, S(K_n)$ is a partial cube.

For $n = 4, S(K_4)$ which is isomorphic to the subdivided wheel $W_3(1, 1; 1; 1, 1, 1)$ can be embedded in the hypercube Q_4. See Fig. 2.

Lemma 4 ([6]). Let G be a graph and let K be an isometric subgraph of G which is isomorphic to a subdivision of $K_{2,3}$. Then, G is not a partial cube.
Theorem 5. Let G be a subdivision of a diamond $(K_4 - e)$. Then, G is a partial cube if and only if the chord of the diamond is not subdivided and each subdivided triangle K_3 of the diamond is an even cycle in G.

Proof. Let G be a subdivision of the diamond $(K_4 - e)$ induced by vertices w_1, w_2, w_3, w_4 such that w_1w_3 is its chord.

If G is a partial cube, then G is bipartite. Consequently, each cycle of G is even. Furthermore, the edge w_1w_3 does not contain any added vertex, otherwise G is isomorphic to a subdivision of $K_{2,3}$. According to Lemma 4, G is not a partial cube.

Now, suppose that the vertices w_1 and w_3 are adjacent in G, and let us prove that G is a partial cube. The graph G is isomorphic to a combination of two even isometric cycles C_m and C_n having a common edge w_1w_3. The equivalence classes of the relation θ have exactly two edges except the class that intersects G in w_1w_3. We can verify that $w_1w_3\theta e$ and $w_1w_3\theta f$ where e and f are edges of C_m and C_n, respectively. It is straightforward to see that $e\not\theta f$. Furthermore, each edge other than e in C_m (resp. f in C_n) is not in relation with f (resp. with e). Then, θ is a transitive relation in the edge set of G bipartite graph. According to [10], G is a partial cube. □

For $k \geq 3$, the k-fan F_k is the graph obtained by connecting a vertex u to all the vertices of a path on k vertices w_1, \ldots, w_k.

No graph G having an isometric subgraph which is isomorphic to a subdivision of a k-fan F_k such that uw_2, \ldots, uw_{k-1} is subdivided, is a partial cube. We complete this result (proved in [6]) by the following:

Theorem 6. Let G be a subdivided k-fan $F_k (k \geq 3)$. Then, G is a partial cube if and only if each subdivided triangle of F_k is an even cycle in G and the edge uw_j is subdivided for no $j \in \{2, \ldots, k-1\}$.

Proof. Necessary condition, see [6].

Sufficient condition. Let G be a subdivided k-fan $F_k (k \geq 3)$ induced by the vertices u, w_1, \ldots, w_k such that each subdivided triangle of the fan is an even cycle in G. Assume that $uw_2, \ldots, uw_{k-1} \in E(G)$ and let us show that G is a partial cube by induction on k.

If $k = 3$, G is a subdivided diamond having no added vertex to its chord. According to Theorem 5, G is a partial cube.

Now, suppose that $k > 3$ and let us show that G is a partial cube. Since the subdivided diamond u, w_{k-2}, w_{k-1}, w_k is isometric and partial cube, there exists two edges e and f in G such that: $e\theta f$, $e\theta uw_{k-1}$ and $f\theta uw_{k-1}$ where $e \in P(u, w_k)$ or $P(w_{k-1}, w_k)$ and $f \in P(w_{k-2}, w_{k-1})$. The subgraph H of G which is isomorphic to a subdivided $(k - 1)$-fan u, w_1, \ldots, w_{k-1} is isometric and partial cube by induction hypothesis. For each edge $g \in H; g \neq f$, g and e belong to a shortest path in G. Then e is not in relation to g with respect to θ. The θ class of the other edges of the subdivided triangle u, w_{k-1}, w_k contains just two edges. Consequently, the transitivity of θ is preserved in G and then, G is a partial cube. □

3. Subdivisions of the complete graph K_5

In this section, we deal with some partial cubes as subdivisions of complete graphs. Before studying the subdivisions of a complete graph K_5, we prove the following result:

Lemma 7. Let G be a subdivided envelope u, w_1, w_2, w_3, w_4 where w_3 and w_4 are the vertices of degree 4. Let H be the subgraph of G which is isomorphic to a subdivided K_4 induced by w_1, w_2, w_3, w_4. Then, G is a partial cube if and only if H is isomorphic to $W_3(m_1, m_2, m_3; 0, 0, 0)$ (if m_i is odd $i \in \{1, 2, 3\}$) with w_3 (or w_4) is the central vertex of W_3, and the total number of added vertices to the edges uw_2 and uw_4 is odd.

Proof. Necessary condition. Assume that G is a partial cube. We show that w_3 (or w_4) is a universal vertex in H.

Suppose that $P(w_3, w_4)$ is not isometric and put K the subgraph of G induced by all its vertices except the inner vertices of $P(w_3, w_4)$. The subgraph K is isometric and isomorphic to a subdivision of a 3-wheel W_3 (consider w_1, w_2, w_3, w_4 its principal vertices). Since G is a partial cube, K is a partial cube, too. Then, according to Theorem 2, the subgraph K is isomorphic either to $S(K_4)$ or to $W_3(m_1, m_2, m_3; 0, 0, 0)$ with m_i is odd $i \in \{1, 2, 3\}$.

![Fig. 2. The subdivision $S(K_4)$ and its isometric embedding in Q_4.](image-url)
If K is isomorphic to $S(K_4)$, the subdivided diamond u, w_1, w_3, w_4 is isometric. Its chord is subdivided, in contradiction with Theorem 5.

If K is isomorphic to $W_3(m_1, m_2, m_3; 0, 0, 0)$ with m_i is odd $i \in \{1, 2, 3\}$, the central vertex of the wheel is reached in w_2 or w_1 since $d_K(w_3, w_4) \geq 2$. If the vertex w_2 (resp. w_1) is the universal vertex of such a wheel, the graph G contains an isometric subdivided diamond w_2, w_3, w_4, u (resp. w_1, w_3, w_4, u). Then, by virtue of Theorem 5, $P(w_3, w_4)$ has to be plain. This is a contradiction, since $P(w_3, w_4)$ is not isometric.

We conclude that $P(w_3, w_4)$ is isometric and by consequence, the subgraph H is isometric, too. The subgraph H is not isomorphic to $S(K_4)$ otherwise the subdivided diamond w_1, w_3, u, w_4 having a subdivided chord is isometric. According to Theorem 5, G is not a partial cube. Then, H is isomorphic to $W_3(m_1, m_2, m_3; 0, 0, 0)$ with m_i odd $i \in \{1, 2, 3\}$. The central vertex of this subdivided wheel is reached in w_3 (or w_4), otherwise the subdivided diamond induced by w_1, w_3, u, w_4 (or w_2, w_3, u, w_4) is isometric. Its chord is subdivided. Then, G is not a partial cube, contradiction.

Consequently, the subgraph H contains a universal vertex w_2 or w_4. Furthermore, since G is a bipartite graph, the total number of added vertices to the edges uw_3 and uw_4 is odd.

Sufficient condition. Suppose that w_3 is a universal vertex in H and G bipartite and let us prove that G is a partial cube. See Fig. 3. The subgraph H and the subdivided diamonds induced respectively by w_1, w_3, u, w_4 and w_2, w_3, u, w_4 are partial cubes. The subdivided 4-fan induced by u, w_1, w_2, w_3, w_4 is a partial cube too. Since all these subgraphs of G are isometric and partial cubes, the transitivity of the relation \equiv is preserved. Consequently, G is a partial cube.

Lemma 8. Let G be a subdivision of a complete graph $K_n(n \geq 4)$ where each path $P(w_i, w_j)$ with $i, j \in \{1, \ldots, n\}$ is isometric. Then, G is a partial cube if and only if G is isomorphic to $S(K_n)$ or G contains a universal vertex w_{00} and for each $i \neq j, i, j \neq 00$, the length of the path $P(w_i, w_j)$ is two.

Proof. Let G be a subdivision of a complete graph K_n induced by w_1, \ldots, w_n. Suppose that all the paths $P(w_i, w_j)$ with $i \neq j; i, j \in \{1, \ldots, n\}$ are isometric. Assume that G is a partial cube, and let us show by induction on n that either G is isomorphic to $S(K_n)$ or G contains a universal vertex. If $n = 4$, G is a subdivided 3-wheel W_3. According to Theorem 2, G is either $W_3(1, 1, 1; 1, 1, 1)$ or $W_3(0, 1, 1; 0, 0, 0)$.

Assume that $n > 4$, and let H be the subgraph of G which is isomorphic to a subdivision of a complete graph w_1, \ldots, w_{n-1}. This subgraph is isometric and consequently a partial cube. By the induction hypothesis, H has a universal vertex or H is isomorphic to $S(K_{n-1})$. In the first case, we assume that w_1 is universal in H. For each $i \neq j; i, j \in \{2, \ldots, n-1\}$, the subdivided complete graph w_1, w_n, w_i, w_j is an isometric subgraph then a partial cube. Therefore, w_1 is universal in each one of these subdivisions denoted K_{ij} for all $i \neq j; i, j \in \{2, \ldots, n-1\}$. Then, w_1 is universal in G. In the second case, the subdivided complete graph K_{ij} is isomorphic either to $S(K_2)$ or to $W_3(1, 1, 1; 0, 0, 0)$ (Theorem 2). Consequently, either the vertex w_1 is universal in G or G is isomorphic to $S(K_n)$.

Since $S(K_n)$ is a partial cube, the rest of the proof consists of showing that each subdivided complete graph K_n which has a universal vertex and exactly one added vertex to the other edges of K_n is a partial cube.

Let us now denote by u the universal vertex of G, and $w_1, w_2, \ldots, w_{n-1}$ the other principal vertices of the subdivided complete graph K_n. For each $i \neq j; i, j \in \{1, \ldots, n-1\}$, w_{ij} is the vertex belonging to $P(w_i, w_j)$. We can isometrically embed G in the hypercube Q_{n-1} as follows. We put the vertex u in the origin. All the w_i components are null except the i-th one for each $i \in \{1, \ldots, n-1\}$. The i-th and the j-th component of w_{ij} are equals to 1 and the others are null for all $i \neq j; i, j \in \{1, \ldots, n-1\}$.

Let us consider G a subdivision of a complete graph K_3. Here we prove that G is partial cube if and only if G is isomorphic to $S(K_3)$ or G is bipartite and contains a universal vertex (Theorem 1).
Proof of Theorem 1

Necessary condition. Let G be a subdivided K_5 and let u be a principal vertex such that there exists at least a principal vertex a in G different from u such that $P(u, a)$ is not geodesic. The case where all the paths joining a principal vertex are isometric, has been treated above (Lemma 8). We denote by H the isometric subgraph of G resulting from deleting the inner vertices of all non geodesic paths $P(u, a)$. The subgraph H is isomorphic to a subdivided $K_5 - K_{1,p}$ with $1 \leq p \leq 3$. Let $\{K; L; u\}$ be a partition of the principal vertex set of G into $K = \{x; P(u, x) \text{ isometric in } G\}$ and $L = \{a; P(u, a) \text{ non-geodesic in } G\}$. It is straightforward to note that the sets K and L are not empty. Suppose that G is a partial cube and let us show that G contains a universal vertex x such that $x \in K$.

Case 1. Suppose that $|K| = 3$ and $|L| = 1$. Put $K = \{x, y, z\}$ and $L = \{a\}$. See Fig. 4(a). We assume that the au-geodesic goes through the vertex x. If there exists two vertices x and y in K such that the xy-geodesic is $P(x, z) \cup P(z, y)$ with $z \in K$ then, the subdivided complete graph induced by u, x, y, z is isometric in G. The subgraph is a partial cube and is not isomorphic to $S(K_4)$. Then, it contains a universal vertex. Since $P(x, z) \cup P(z, y)$ is a xy-geodesic, the vertex z is universal in the subdivided K_4. Consequently, the subdivided complete graph induced by x, y, z is isometric. Thus, the vertex z is universal in G.

Now, suppose that for each pair of vertices $\{x, y\}$ in K, there is no xy-geodesic going through z. Now, suppose that G is not such a geodesic. Let us show that there exists a plain path joining x and another principal vertex in K. If $P(a, y)$ and $P(a, z)$ are not isometric, then the subdivided diamond induced by u, x, y, a is isometric in G. According to Theorem 5, the vertex x is adjacent to the vertex y. If $P(a, y)$ is isometric, then the subdivided diamond induced by x, a, y, u or a, x, z, u is isometric. Therefore, the vertex x is adjacent to the vertex y or the vertex z.

Since there exists a vertex $y \in K$ such that $P(x, y)$ is plain, the subdivision of a complete graph x, y, a, u is isometric in G. Thus, the vertex x (or y) is universal in G. Then, G contains a geodesic relying two vertices of K and going throw another vertex of K. This is in contradiction with the hypothesis.

Case 2. Suppose that $|K| = |L| = 2$. Put $K = \{x, y\}$ and $L = \{a, b\}$. See Fig. 4(b). Since the subgraph H is an isometric subdivided envelope, and due to Lemma 7, the vertex x (or y) is universal in the subdivided complete graph a, b, x, y. The subdivided K_4 induced by u, x, y, a is isometric. Therefore, the vertex x is universal in G.

Case 3. Suppose that $|K| = 1$ and $|L| = 3$. Put $K = \{x\}$ and $L = \{a, b, c\}$. See Fig. 4(c). The subgraph of G which is isomorphic to a subdivision of K_4 induced by a, b, c is isometric. This one is not isomorphic to $S(K_4)$ otherwise, there exists a subdivided diamond having a subdivided chord. If the subdivided K_4 contains a universal vertex, this one is not reached in L (for instance a). If it is the case, the isometric subdivided K_4 induced by a, b, c, u is isometric. Then the vertex a is adjacent to u (Theorem 5). The path $P(u, a)$ is not geodesic, contradiction. Then, the vertex x is universal in the subdivided K_4. Finally, by considering the isometric subdivided complete graph on u, x, a, b, we conclude that the vertex x is universal in G.

Sufficient condition. Now, let us suppose that G is a subdivided complete graph K_5 such that G contains a universal vertex u and the other edges of K_5 not adjacent to u, noted $w_i(w_j \ (i \neq j, 1 \leq i,j \leq 4)$, are oddly added in G. We put n the total number of added vertices to these edges. Let u us show by induction on n that G is a partial cube. It is clear that $n \geq 6$. For $n = 6$, G is a subdivided K_5 where each path connecting two principal vertices in G is isometric. According to Lemma 8, G is a partial cube. Now, let us suppose that $n > 6$. Consider G' a bipartite subdivided K_5 having a universal vertex u such that G' is obtained from K_5 by adding $n - 2$ vertices to $w_i(w_j$ with $i \neq j, 1 \leq i,j \leq 4$. Then, there exists two paths $P(w_1, w_2) = (w_1, w_{1,1}, w_{1,2}, \ldots, w_{1,2k+1}, w_2)$ and $P'(w_1, w_2) = (w_1, w'_{1,1}, w'_{1,2}, \ldots, w'_{1,2k-1}, w_2)$ connecting the vertices w_1 and w_2 in G and G' respectively with $k \geq 1$. Let G'_1 and G'_2 be the isometric subgraphs of G' respectively induced by $V(G'_1) = \{w'_{1,k-1}, w'_{1,k}, \ldots, w'_{1,2k-1}, w_2\}$ and $V(G'_2) = V(G') \setminus \{w'_{1,k}, w'_{1,k+1}, \ldots, w'_{1,2k-1}\}$. The graph G' is a partial cube by the induction hypothesis. The expansion over the proper cover $\{G'_1, G'_2\}$ of G' is a partial cube. The resulting graph is isomorphic to G. We note that if $k = 1$, we put $V(G'_1) = \{w_1, w_{1,1}, w_2\}$ and $V(G'_2) = V(G') \setminus \{w_{1,1}\}$.

Fig. 4. A non isometric path which links the vertex u to another principal vertex in G is represented by a dashed curve.
4. Open questions

In this paper, we have contributed to the characterization of partial cubes as subdivisions of a given configuration. We have established certain results however more questions remain still open:

The subdivisions of a complete graphs K_n that are partial cubes have been determined for an order $n \in \{4, 5\}$. Using Theorem 1, we will be able to generalize this result for $n \geq 4$ (see [1]).

Let us state another interesting related question. A generalized envelope $E_{m,n}$ is the graph obtained by connecting a vertex u to m vertices of a complete graph K_{m+n} with $m \geq 2$ and $n \geq 2$. The neighborhood of u is noted K and $L = V(E_{m,n}) \setminus (K \cup \{u\})$. The graph $E_{2,2}$ is isomorphic to the envelope and we have provided all subdivisions of the envelope which are partial cubes. Here, we propose the following conjecture for the generalized envelope subdivisions:

Conjecture 9. Let G be a bipartite subdivided $E_{m,n}$ ($n \geq 2; m \geq 2$). Then, G is a partial cube if and only if:

- for $m = 2$, there exists a vertex $x \in K$ such that x is adjacent to y in G for all $y \in K \cup L$.
- for $m > 2$, G has a universal vertex x with $x \in K$.

Using our result in [1], we can prove this conjecture for $m = 2$.

On the other side, within this paper, we have mentioned some subdivisions which are not partial cubes for instance the subdivided $K_{2,3}$. So, it would be interesting to find a characterization of a partial cube by providing a list of forbidden isometric subgraphs if it exists.

References