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Since speed of classification is important to real-time applications, this study proposed fast classification
of sleep and wake stages using a single electroencephalograph (EEG) channel. Changes in the sleep and
wake stages are accompanied by changes in the frequency spectrum of the EEG signals; so, the features
extracted from the 5-s epoch of the EEG using auto-regressive (AR) coefficients were used to represent
EEG signals of different sleep and wake stages. The proposed fast classification method was based on
partial least squares regression (PLS), which was used to classify these features by finding an optimum
beta using K-fold cross validation. The Physionet database was used to confirm accuracy and speed of
the proposed classification system. This system could be used in real-time implementations because of
its high classification rate, speed and capability to be implemented on hardware owing to be very
comfortable. Finally, results of the PLS were compared with those of other classifiers such as k-nearest
neighborhood (k-NN), linear discriminant classifier (LDC) and Bayes. We achieved 91% classification
accuracy by selecting PLS as the classifier. These comparisons revealed that the proposed algorithm could
recognize an emergency situation in less than 1 s with high accuracy.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Visual sleep scoring is a difficult process because of requiring a
great deal of time and being a subjective procedure. In response to
these challenges, automatic sleep-staging methods based on mul-
tichannel signals, including EEG, EMG and EOG (Kuwahara et al.,
1988; Park, Park, & Jeong, 2000; Schaltenbrand et al., 1996;
Smith, Negin, & Nevis, 1969; Smith and Karacan, 1971), have been
developed. Two important items of sleep scoring are feature
extraction, which helps researchers to analyze recording epoch,
and classification, which helps researchers to recognize sleep stage
of the epoch. A few features that adhere to the Rechtschaffen and
Kales (R&K) standard have been proposed for sleep staging, which
include alpha ratio (Agarwal and Gotman, 2001), spindle ratio
(Duman, Erdamar, Erogul, Telatar, & Yetkin, 2009) and SWS ratio
(Berthomier, Prado, & Benoit, 1999). Spectral power, power ratio
and spectral frequency (Schaltenbrand et al., 1996) have been also
used in previous studies. In addition, many methods have been
proposed for classification, among which linear discriminant
analysis (LDA) (Šušmáková & Krakovská, 2008), artificial neural
network (Schaltenbrand et al., 1996), fuzzy system (Berthomier
et al., 2007) and decision tree (Anderer et al., 2005) can be
mentioned. Success of these methods has been in the range of
80–85%. One recent study (Sheng-Fu, Kuo Hu, Pan, & Wanga,
2012) proposed an automatic sleep-scoring method that combined
multi scale entropy (MSE) and autoregressive models for a
single-channel EEG. This work also recommended comparatively
assessing performance of the method with the manual scoring
based on full polysomnograms. Indeed, EEG data have been used
for sleep scoring; but, using a system that is fast, accurate and com-
fortable with an implemented algorithm would be even more ben-
eficial. Most of the previously proposed approaches are not
suitable for implementation in real-time systems and many of
them are not comfortable for the subjects. Some of the reasons
for these shortcomings are low accuracy, infeasibility for hardware
implementation, computational complexities and lack of
generalization.

The objective of the present analysis was to test and compare
performance of the PLS algorithm for sleep scoring with a
single-source EEG (a single electrode) to test its feasibility in future
works. This article is organized as follows. The following section
presents sleep and sleep frequencies. Section 2 introduces the
methods. Data acquisition, feature extraction and classifications
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are also described in this section. Finally, in Sections 3 and 4, the
results and conclusions are respectively presented.

1.2. Sleep

The standard (R&K) for sleep stage classification defines two
groups of stages for determining sleep depth. The first stage is
non-rapid eye movement (NREM) stage, which is then
sub-divided to four stages. Rapid eye movement (REM) stage is
the second stage, which is characterized by high ocular activity
in the EOG recordings. Four stages of NREM sleep are called
Stage 1, Stage 2, Stage 3 and Stage 4. Recently, Stages 3 and 4 have
been combined to form new slow-wave sleep stage (SWS) because
they exhibit many similar characteristics.

1.3. Sleep frequencies

EEG rhythms are closely related to sleep and wake stages.
Characteristics and patterns of the EEG recordings associated with
the wake stage and various sleep stages are: alpha-band (8–12 Hz
with 20_60 micro volt _ Amplitude) in wake, stages 1 and REM,
beta-band (13–49 Hz with 2_20 micro volt _ Amplitude) in wake
and theta-band (4–7 Hz with 50_75 micro volt _ Amplitude) in
Stages 1, 2, 3 and 4 and REM and delta-band (0–4 Hz with 75 micro
volt _ Amplitude) in Stages 3 and 4.

2. Material and methods

2.1. Dataset acquisition

The database used in this study was provided by Physionet
(http://www.physionet.org/cgi-bin/atm/ATM). EEG signals were
obtained from seven subjects ranging from healthy to abnormal.
These subjects included Caucasian males and females (21–35 years
old) who were neither on prescription drugs nor on recreational
drugs at the time of the study. Sleep EEG for 80 h was extracted
from the recordings and sampled at 100 Hz. Format of the dataset
was an EDF (European Define Format) so that it could be down-
loaded. The 10–20 standard electrode placement system was used
for the EEG recordings, which contained horizontal EOG, Fpz-Cz
EEG and Pz-Oz EEG, each one sampled at 100 Hz. The process of
sleep scoring involves identifying EEG signal epochs according to
the sleep stage using a graphical plot called a hypnogram, which
shows the sleep profile. Hypnograms were manually scored
according to the R&K scale based on the Fpz-Cz and Pz-Oz EEGs
Fig. 1. Hypnogram of a subject; stages 0, 1, 2, 3, 4, and 5 are wakin
and then classified into the following stages: waking, NREM 1,
NREM 2, NREM 3, NREM 4, REM and movement time (M). One of
the hypnograms is shown in Fig. 1. The epochs were
pre-processed by filtering all of the data. This filtering step elimi-
nated unwanted artefacts from the EEG data and enhanced their
accuracy (http://www.physionet.org/cgi-bin/atm/ATM).

2.2. System design to classification of EEG sleep

Fig. 2 shows the flowchart of the proposed classification of EEG
sleep method that includes three parts: (1) pre-processing; (2) fea-
ture extraction; and (3) classification. Each of these parts will be
explained in the following subsections.

2.3. Pre-processing

The alternations in the EEG signals across the sleep stages are
very delicate and therefore require advanced signal processing
techniques to extract the features. EEG has different specific fre-
quency components, some of which contain this discriminative
information, which includes energy of the delta, theta, alpha and
beta bands. This energy is important for classifying different brain
states. In this study, the alpha, theta and beta bands were used to
classify the sleep and wake stages.

First, the epochs were normalized between [�11] so that they
all possessed similar conditions. In the next step, the epochs were
filtered by three Butterworth band pass filters in the order of ten
for the alpha-band (8–12 Hz), in the order of eleven for the
beta-band (13–49 Hz) and in the order of eight for the
theta-band (4–8 Hz). After the filtration, all three types of data
were ready for any epoch and they were placed as input to the
AR model in this format.

2.4. Feature extraction

2.4.1. Auto-regressive coefficients
AR model is a powerful and useful tool for signal modeling. In

this model, each sample of a given signal is considered a prediction
of the previous weighted samples of that signal. The number of coef-
ficients determines the model order. In this paper, autoregressive
coefficients were estimated with Burg method (Stoica and Moses,
1997). The Burg method fits the p’th order AR model to the input sig-
nal, x, by minimizing (least squares) the forward and backward pre-
diction errors while constraining AR coefficient, ai, to satisfy the
Levinson–Durbin recursion. Eq. (1) shows the AR model.
g, NREM 1, NREM 2, NREM 3, NREM 4, and REM, respectively.
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Fig. 2. Flow chart of design system.
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xðtÞ ¼ �
Xp

i¼1

aixðt � iÞ þ eðtÞ ð1Þ

In this paper, order of the AR model was 22 and inputs of the AR
model were the theta-band, alpha-band and beta-band signals
that were separately extracted by eighth-order, tenth-order and
eleventh-order Butterworth band-pass filter during pre-processing.
22 AR coefficients were the whole of features in this method, which
meant that the present feature vector had 22 dimensions for any
epoch in any band.

2.5. Classification

2.5.1. PLS algorithm
Partial least squares (PLS) is an extended class of methods for

modeling relations between sets of observed variables by means
of latent variables. By encoding the class membership in a suitable
indicator matrix, PLS can also be applied to classification problems.
To build a typical model, the number of latent variables should be
carefully selected. A metric that is frequently used by chemometri-
cians for determining the number of latent variables is that of
Wold’s R criterion while a number of statisticians have advocated
use of Akaike information criterion (AIC) more recently (Li,
Morris, & Martin, 2002).

Data matrix of the process variables is XN�M and data matrix of
the quality variables is YN�K . Data matrixes are recorded for N time
points. A number of latent variables is make by linear PLS, say tj

and uj (j = 1, . . . ,A) where A is the number of latent variables and
then develop a linear regression model between tj and uj:

uj ¼ bjtj þ ej ðj ¼ 1; . . . ;AÞ ð2Þ

where ej is a vector of errors and bj is an unknown parameter
estimated by
b^j ¼ tT
j tj

� ��1
tT

j uj ð3Þ

The latent variables are computed by uj = Yjqj, where both wj and qj

have a unit length and are determined by maximizing the covari-
ance between tj and uj. Then, Xjþ1 ¼ Xj � tjpT

j , where X1 ¼ X and

pj ¼ XT
j tj=ðtT

j tjÞ, and Yjþ1 ¼ Yj � b^j tjqT
j , where Y1 ¼ Y .

If u^j ¼ b^j tj be is prediction of uj, matrices X and Y can be sepa-
rated into simpler compounds as sum of the following outer
products:

X ¼
XA

j¼1

tjpT
j þ E and Y ¼

XA

j¼1

u^j qT
j þ F ð4Þ

where after extracting the first A pairs of latent variables, E and F
are remainders of X and Y (Li et al., 2002).

2.5.2. k-NN algorithm
k-NN is one of the oldest, fastest and easiest algorithms for imple-

mentation among the existing classification algorithms. In this algo-
rithm, k (i.e. the nearest neighbor to the sample) is first determined.
Then, the label that is in maximum between these neighbors is diag-
nosed. Thus, the sample is labeled with its maximum label. In binary
classification problems, it is beneficial to use odd numbers for k
because they do not cause any problems for researchers while decid-
ing upon a label. Moreover, the query instance compares all training
samples; so, k-NN encounters a high response time. It is worth men-
tioning that Euclidean distance method is commonly used to calcu-
late the nearest neighbors to the sample.

2.5.3. Bayes algorithm
Bayes’ theorem is named after Thomas Bayes, an

eighteenth-century British mathematician and minister. He
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conducted some of the earliest works in probability and decision
theory. Bayes classification is a statistical classification method
which can predict class membership probabilities such as the
probability by which a given tuple belongs to a particular class.

X is a data tuple which is described by measurements that are
based on a set of n attributes x � [x(1),x(2), . . . ,x(l)]. It also com-
prises the corresponding feature vector. The number of possible
classes is equal to C, that is, [w1, wc]. The aim is to determine the
probability P(wi|x) by which tuple x belongs to class C based on
the attribute description of x. P(wi|x) is defined as the probability
that class wi holds given the data tuple x. P(wi|x) is the posterior
probability that wi is conditioned on x and P(wi) is prior probability
of wi. Bayes’ Theorem provides a way for calculating posterior
probability, P(wi|x), from P(wi), P(x|wi) and P(x). P(x) is probability
density function (PDF) of x. Bayes theory states that:

PðwijxÞ ¼ PðxjwiÞPðwiÞ=PðxÞ ð5Þ

According to the Bayes decision theory, x is assigned to class wi if:

PðwijxÞ > PðwjjxÞ; 8j–1 ð6Þ

One of the most useful and commonly used is the use of discrimi-
nant function for expressing the pattern classifiers. The ln of both
Table 1
Description of the selection of the data set.

30-s epochs 120 epochs 60 for waking, 12 for any stage of sleep
15-s epochs 200 epochs 100 for waking, 20 for any stage of sleep
10-s epochs 240 epochs 120 for waking, 24 for any stage of sleep
5-s epochs 600 epochs 300 for waking, 50 for any stage of sleep

Table 2
Estimated label based on criteria.

Theta band Alpha band Beta band Estimated label
based on criteria

Epoch label 0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 3
Results of PLS classifier for Pz-Cz and Fpz-Cz channels.

PLS algorithm 30 s 15 s
60 train-60 test 100 train-100 t

Mean ± std Mean ± std

Pz-Cz
Object.1 92.75 ± 4.0 93.15 ± 3.06
Object.2 94.91 ± 3.1 95.3 ± 2.31
Object.3 96.58 ± 2.7 96.05 ± 1.7
Object.4 89.58 ± 3.81 86.70 ± 2.9
Object.5 90.91 ± 3.9 92.75 ± 2.5
Object.6 88.66 ± 3.3 90.85 ± 2.8
Object.7 92.25 ± 2.71 92.5 ± 1.9

Fpz-Cz
Object.1 95.41 ± 2.6 95.90 ± 1,7
Object.2 93.66 ± 2.2 90.90 ± 2.71
Object.3 91 ± 3.6 92.90 ± 1.9
Object.4 88.88 ± 4.05 85.10 ± 2.5
Object.5 89.41 ± 4.4 90.20 ± 2.85
Object.6 89.16 ± 3.6 91.15 ± 2.32
Object.7 85.66 ± 3.83 88.55 ± 3.2
sides of expressed in the Eq. (5) is taken to determine the discrim-
inant function.

giðxÞ ¼ ln pðxjwiÞ þ ln PðwiÞ ð7Þ

giðxÞ > gjðxÞ; j–i ð8Þ

According to the Eq. (8) discriminant function which belongs to the
class is large, the data will be included in that class.

The above description is for two class. Therefore, the singular
discriminant function will be in this form;

gðxÞ � g1ðxÞ � g2ðxÞ ð9Þ

If this expression obtained as gðxÞ > 0 for x data, w1 class, if
gðxÞ < 0, w2 class is decided.

2.5.4. LDC algorithm
LDC operates on two classes based on the hypothesis that both

classes are under normal distribution with equal covariance matri-
ces. The separating hyper-plane is obtained by finding projection of
the labeled training data that maximizes the distance between
means of the two classes and minimizes the interclass variance.
The main task is to solve the following problem:

y ¼ wT xþw0 ð10Þ

where x is feature vector. The vectors w and w0 are determined by
maximizing the interclass means and minimizing the interclass
variance, respectively. LDC classifier is more robust than the k-NN
and SVM algorithms because it has only limited flexibility (less free
parameters to tune) and is less prone to over-fitting (Muller,
Anderson, & Birch, 2003).

3. Results

In this study, EEG data analysis, signal pre-processing and clas-
sification were implemented by the scripts running in MATLAB
(R2012b). The dataset contained seven objects. For any object,
the following algorithm was used.

After pre-processing, the three kinds of AR coefficients (for the
three bands) were calculated for any epoch.

Classification of 30-s epochs, 15-s epochs, 10-s epochs and 5-s
epochs was separately done in three bands. Selection of these
epochs is described in Table 1. For example, 120 and 60 epochs
of waking and 12 epochs for each stage of sleep were randomly
selected from NREM 1–4 to REM for 30 s. The selected epochs were
10 s 5 s
est 120 train-120 test 300 train-300 test

Mean ± std Mean ± std

93.16 ± 3.0 91.38 ± 1.6
94.58 ± 3.1 94.15 ± 1.7
96.04 ± 2.3 96.28 ± 0.94
86.04 ± 3.4 84.31 ± 2.07
92.12 ± 2.3 91.45 ± 1.4
92.62 ± 2.1 91.86 ± 1.5
91.41 ± 2.4 91 ± 1.44

95.66 ± 1.78 95.23 ± 1.1
88.5 ± 2.06 87.43 ± 2.08

92.66 ± 2.2 93.18 ± 1.31
83.7 ± 2.04 81.46 ± 1.32

88.20 ± 2.4 87.36 ± 1.4
89.91 ± 1.9 89.45 ± 1.51
89.12 ± 3.6 89.60 ± 1.7



Table 4
Results of k-NN classifier for Pz-Cz and Fpz-Cz channels.

k-NN algorithm 30 s 15 s 10 s 5 s
60 train-60 test 100 train-100 test 120 train-120 test 300 train-300 test

Mean ± std Mean ± std Mean ± std Mean ± std

Pz-Cz
Object.1 84.1 ± 3.4 86.4 ± 2.2 86 ± 2.9 85.3 ± 2.3
Object.2 96 ± 2.8 95.4 ± 2.3 94.8 ± 1.6 93.2 ± 1.3
Object.3 94.8 ± 2.7 93.5 ± 2.6 89.8 ± 3.2 91.8 ± 1.09
Object.4 94.8 ± 3.2 94.9 ± 1.7 95.3 ± 2.3 96.4 ± 1.04
Object.5 84.6 ± 3.9 84.6 ± 3.3 83.8 ± 3.7 94.4 ± 1.9
Object.6 91.1 ± 3.4 90.6 ± 2.09 88.8 ± 2.1 86.9 ± 1.6
Object.7 84.1 ± 3.4 85.2 ± 2.8 80.6 ± 2.6 79.6 ± 2.3

Fpz-Cz
Object.1 92.83 ± 2.94 95.30 ± 2.05 94.5 ± 2.55 84.9 ± 2.6
Object.2 77.5 ± 5.45 78.40 ± 4.92 77.80 ± 4.32 92.7 ± 1.85
Object.3 89.33 ± 3.35 92 ± 2.58 91.5 ± 2.68 91.3 ± 1.9
Object.4 83.66 ± 3.4 82.70 ± 2.66 77.83 ± 4.76 95.1 ± 1.5
Object.5 90 ± 3.2 85.7 ± 2.31 85.91 ± 3.5 93.0 ± 1.4
Object.6 88.5 ± 3.08 87.6 ± 4.1 85.5 ± 3.9 85.5 ± 1.6
Object.7 81.66 ± 3.33 84.5 ± 2.63 85.5 ± 2.0 79.1 ± 2.5

Table 5
Results of Bayes classifier for Pz-Cz and Fpz-Cz channels.

Bayes algorithm 30 s 15 s 10 s 5 s
60 train-60 test 100 train-100 test 120 train-120 test 300 train-300 test

Mean ± std Mean ± std Mean ± std Mean ± std

Pz-Cz
Object.1 80.5 ± 2.9 83.8 ± 3 83.8 ± 4.5 84.7 ± 3.1
Object.2 81.3 ± 11.3 86.8 ± 9.2 86.5 ± 8.7 89.8 ± 2.3
Object.3 72.1 ± 19.3 88.3 ± 6 84.5 ± 9.3 88.9 ± 6.6
Object.4 64.7 ± 14.9 86.2 ± 14.4 84.4 ± 13.9 90.5 ± 10.1
Object.5 78.5 ± 7.9 85.8 ± 3.6 85.8 ± 3.6 85.8 ± 5.3
Object.6 81.7 ± 4.2 84.4 ± 5.6 83.4 ± 4.5 80.1 ± 3.16
Object.7 80.5 ± 2.9 82.9 ± 3.9 79.8 ± 5.2 81.7 ± 3

Fpz-Cz
Object.1 81.6 ± 2.6 84.8 ± 3.5 81.8 ± 5 82.7 ± 3.5
Object.2 80.7 ± 11.5 85.9 ± 9.2 85.5 ± 4.5 88.8 ± 4.3
Object.3 73.9 ± 19.8 86.3 ± 6.6 84.5 ± 5.3 88.9 ± 5.6
Object.4 65.7 ± 14.2 85.7 ± 14.4 83.4 ± 10.6 91.5 ± 1.1
Object.5 78.8 ± 7.9 84.7 ± 2.6 86.8 ± 6.6 82.8 ± 6.3
Object.6 80.7 ± 4.0 82.8 ± 4.6 82.4 ± 6.5 81.1 ± 3.9.6
Object.7 81.9 ± 2.0 82.5 ± 4.9 80.3 ± 5.5 80.7 ± 2.3
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randomly divided into the training and testing data. Thus, 50% of
the samples was considered the training set and the other 50%
was considered the testing data.

Using the K-fold cross validation beta, k, and the discriminant
function for PLS, k-NN and Bayes algorithms could be calculated,
respectively. K-fold cross-validation (K-FCV) is one of the most fre-
quently adopted criteria for assessing performance of a model and
selecting a hypothesis within a class. The advantage of this method
over the simple training–testing data splitting is its repeated use of
all available data for both building and testing a learning machine.
Therefore, K-FCV reduces risk of (un)lucky splitting. In K-FCV, the
dataset is randomly split into K subsets of equal size and this step
is repeated K times. Each time, one of the K subsets is used as a val-
idation set and other K � 1 subsets are put together to form
pre-training. A common problem is determining the number of
folds, to which the training set should be divided. In this paper, K
was selected to be 10.

At the end of the classification, the result was evident for each
band of any epoch according to a decision mechanism. This deci-
sion mechanism is summarized in Table 2. In this table, the final
decision is called ‘‘estimated label based on criteria’’. It takes the
value 0 if estimated epoch label for two band (or three band) is 0
and is considered to be ‘‘wake’’. Also it takes the value 1 if esti-
mated epoch label for two band (or three band) is 1 and is consid-
ered to be ‘‘sleep’’. The method is applied for any epoch.

To confirm the results, this algorithm was performed 20 times
on different epochs and each result was separately averaged for
each subject. In this review, EEG signal of the Fpz-Cz and
Pz-Cz channels was separately analyzed. Tables 3–6 show
results of each channel for the four classifiers. These results
indicated that the Pz-Cz channel had better accuracy than the
Fpz-Cz channel. In addition, PLS algorithm increased accuracy of
the Pz-Cz channel.

The training and testing times of the applied classifiers were
calculated. All the runtime experiments were checked on a PC with
an Intel Pentium� 5 processor with 2.67 GHz and 4 GB RAM.
Table 7 shows speed of these classifiers for 60 epochs. Each epoch
lasted for 30 s. The average time taken to train PLS algorithm was
about 2.3 CPU sec for the entire training set. For the 60 epochs in
the testing set, the average test time of PLS and LDC algorithms
was approximately 0.4 and 0.5 s, respectively. Therefore, PLS has
better training and testing time.



Table 6
Results of LDC classifier for Pz-Cz and Fpz-Cz channels.

LDC algorithm 30 s 15 s 10 s 5 s
60 train-60 test 100 train-100 test 120 train-120 test 300 train-300 test

Mean ± std Mean ± std Mean ± std Mean ± std

Pz-Cz
Object.1 92.5 ± 3.7 90.75 ± 3.5 91.54 ± 2.29 89.16 ± 1.9
Object.2 96.16 ± 3.11 96.15 ± 2.8 95.58 ± 1.81 94.53 ± 1.2
Object.3 97.16 ± 2.23 97.35 ± 1.9 96.70 ± 1.4 96.68 ± 0.96
Object.4 87.91 ± 5.40 85.85 ± 3.39 83.83 ± 3.9 81.56 ± 2.04
Object.5 91 ± 4.2 92.35 ± 2.25 90.95 ± 2.7 89.15 ± 1.73
Object.6 88.33 ± 3.6 87.60 ± 2.9 87.12 ± 2.23 86.15 ± 2.3
Object.7 91.83 ± 2.75 91.85 ± 2.9 89.70 ± 1.9 88.83 ± 1.9

Fpz-Cz
Object.1 96.5 ± 2.8 96.45 ± 1.8 95.37 ± 1.80 95.68 ± 1.18
Object.2 92.08 ± 3.2 92.55 ± 2.7 91.20 ± 1.8 88.05 ± 2.38
Object.3 92.08 ± 3.32 95.60 ± 2.68 93.83 ± 2.31 93.65 ± 0.95
Object.4 88.58 ± 5.3 85.25 ± 4.15 84.66 ± 2.43 82.20 ± 2.25
Object.5 89.5 ± 3.2 90.35 ± 1.98 90.54 ± 2.9 87.51 ± 1.7
Object.6 89.91 ± 4.4 91.95 ± 3.2 90.66 ± 2.2 89.46 ± 1.2
Object.7 88.75 ± 3.7 89.35 ± 3.9 89.5 ± 3.6 90.10 ± 1.98

Table 7
Speed of four classifiers for 60 epochs.

Data/algorithms PLS k-NN Bayes LDC

TRAIN �2.3 s �220 s �3.5 s �2.4 s
TEST �0.4 s �6.75 s �1.2 s �0.5 s
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4. Conclusion

This study developed a novel PLS-based approach for auto-
mated sleep scoring by analyzing a single EEG channel. The dataset
was provided by Physionet. The alternative indicators were
extracted from the three bands of the EEG signal. Gamma-band
of the EEG signal was not used in the present study. AR
coefficient-based feature extraction was applied to classify the
sleep and wake stages of the EEG signal using PLS as a
high-speed classifier. The PLS classifier performed well while clas-
sifying stages of sleep and wakefulness at a high speed. Moreover,
speed and accuracy of PLS were compared with those of k-NN,
Bayes and LDC classifiers. The proposed algorithm could be easily
implemented on the hardware for real-time applications. Using
only one channel of EEG was also very important because of being
very comfortable for the subjects.

The low-cost electroencephalograph with minimum electrodes
could be also used to evaluate driver fatigue with high accuracy
and speed. Drivers, especially those who usually drive for long
periods of time, will feel more comfortable with the minimum
electrodes placed on their heads. Achieving this aim without put-
ting pressure on the psychological factors that are associated with
fatigue (e.g. anxiety, mood, temperament and personalities) would
greatly benefit field of sleep study.
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