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Abstract: Objective: To explore changes in the alpha rhythm wavelength of background electroen-
cephalography in Alzheimer’s disease patients with different degrees of dementia in a resting state; 
examine their correlation with the degree of cognitive impairment; determine whether the alpha 
rhythm wavelength can distinguish mild Alzheimer’s disease patients, moderately severe Alzheimer’s 
disease patients, and healthy controls at the individual level; and identify a cut-off value to differenti-
ate Alzheimer’s disease patients from healthy controls. 
Methods: Quantitative electroencephalography signals of 42 patients with mild Alzheimer’s disease, 
42 patients with moderately severe Alzheimer’s disease, and 40 healthy controls during rest state with 
eyes closed were analyzed using wavelet transform. Electroencephalography signals were decom-
posed into different scales, and their segments were superimposed according to the same length 
(wavelength and amplitude) and phase alignment. Phase averaging was performed to obtain average 
phase waveforms of the desired scales of each lead. The alpha-band wavelengths corresponding to the 
ninth scale of the background rhythm of different leads were compared between groups. 
Results: The average wavelength of the alpha rhythm phase of the whole-brain electroencephalog-
raphy signals in Alzheimer’s disease patients was prolonged and positively correlated with the severi-
ty of cognitive dysfunction (P < 0.01). The ninth-scale phase average wavelength of each lead had 
high diagnostic efficacy for Alzheimer’s disease, and the diagnostic efficacy of lead P3 (area under 
the receiver operating characteristic curve = 0.873) was the highest. 
Conclusion: The average wavelength of the electroencephalography alpha rhythm phase may be used 
as a quantitative feature for the diagnosis of Alzheimer’s disease, and the slowing of the alpha rhythm 
may be an important neuro-electrophysiological index for disease evaluation. 

A R T I C L E  H I S T O R Y 

 
Received: November 12, 2022 
Revised: February 19, 2023 
Accepted: March 09, 2023 
 
 
DOI:  
10.2174/1567205020666230503094441 
 

Keywords: Alzheimer’s Disease, EEG, alpha rhythm, alpha-band wavelength, average phase waveform, wavelet transfor-
mation. 

1. INTRODUCTION 

Alzheimer’s disease (AD) is a chronic progressive neu-
rodegenerative disease characterized by impairments in 
memory function and numerous other cognitive domains [1-
3]. It is the primary cause of senile dementia and accounts 
for approximately 70% of all dementia patients [4-6]. The 
typical pathological feature of AD is the formation of extra-
cellular neuritic plaques containing β-amyloid (Aβ) and tau-
containing neurofibrillary tangles in cells, eventually leading 
to synaptic and neuronal apoptosis [1, 7, 8]. At present, the 
most effective method for the diagnosis of AD is the detec-
tion of a decrease in the cerebrospinal fluid (CSF) biomarker 
Aβ42 and an increase in phosphorylated tau protein (p-TAU 
181) [9-12]. Fluorodeoxyglucose-positron emission tomo-  
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E-mail: zmy22202@aliyun.com 
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graphy measures the region and degree of cerebral hypome-
tabolism, reflecting the clinical severity of AD [1, 9]. Alt-
hough CSF and imaging examinations have high diagnostic 
value, their invasiveness, exposure to radiation, and high-
cost limit their clinical application. To date, several studies 
have shown that the Aβ42/Aβ40 ratio in peripheral blood [1, 
9] and p-TAU 181 detection have great significance in the 
diagnosis of AD [13-15]; however, their reliability is signifi-
cantly lower than that of CSF biomarkers [1]. A recent study 
conducted in the United States has suggested that the patho-
logical process of AD begins with the dysfunction of au-
tophagic lysosomal acidification in nerve cells, leading to the 
metabolic disorder of Aβ and its precursor proteins, which 
gradually disintegrates lysosomes and cells and results in the 
formation of neuroinflammatory plaques alongside the re-
mains of nerve cells and Aβ. The theory that cell death pre-
cedes the formation of extracellular amyloid plaques has 
been proposed [16], which challenges traditional neuropath-
ophysiological concepts and indicates that brain cell necrosis 
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has already occurred when pathological biomarkers are de-
tected. This may reshape the direction of the pathological 
diagnosis of AD. 

Electroencephalography (EEG) is a non-invasive, simple, 
low-cost, and high-temporal resolution electrophysiological 
monitoring method [5, 17]. EEG signals reflect changes in 
the synchronous activity of neurons under spontaneous and 
stimulation states and can reveal neuronal degeneration and 
synaptic loss. Changes in EEG signals are closely related to 
human cognition [4, 5, 17]. Indeed, several studies have ob-
served cognitive impairment in AD patients before the detec-
tion of brain tissue atrophy or behavioral symptoms [5]; thus, 
EEG technology can assist in the diagnosis of early dementia 

[18]. Recent advances in EEG have suggested that EEG is 
more sensitive than brain atrophy and brain connectivity 
maps obtained using functional magnetic resonance imaging 
(MRI) for detecting the early stages of AD [17] and that it 
has the potential for the identification of diagnostic bi-
omarkers for dementia. 

EEG signals are generally divided into five frequency 
bands: delta (δ; 2-4 Hz), theta (θ; 4-8 Hz), alpha (α; 8-13 
Hz), beta (β; 13-30 Hz), and gamma (γ; 30-40 Hz). In addi-
tion, α is further subdivided into α1 (8-10.5 Hz) and α2 
(10.5-13 Hz), and β  is divided into β 1 (13-20 Hz), and β2 
(20-30 Hz)[19]. Recent progress in EEG methodologies for 
the diagnosis of AD in rest state has mainly focused on the 
slowing of EEG background signals [8, 20, 21] (e.g., the 
increase of slow wave band power and the decrease of fast 
wave band power [22, 23]) to evaluate the neurophysiologi-
cal mechanism underlying cortical arousal and attention state 
fluctuation disorder in AD patients [24]; complexity reduc-
tion [22] (e.g., dynamic characteristic indices, such as Shan-
non entropy, approximate entropy, sample entropy, permuta-
tion entropy, fractal dimension, multi-scale entropy, Lempel 
Ziv complexity, and Hurst index) to measure reductions in 
information processing capacity of the brain [20, 25-29]; 
decreased connectivity [22] (e.g., average phase coherence, 
phase synchronization degree, synchronization likelihood, 
phase lag index, and Granger causality) to examine decreases 
in brain function synchronization [20, 30, 22, 31]. Further-
more, changes in power spectrum and complexity may re-
flect the dysregulation of neuroplasticity of cortical neural 
networks in different brain regions [24, 32], which is related 
to the destruction of functional or structural integrity in AD, 
such as cholinergic defects in neurons, neuronal loss, and 
disruption of cortical information transmission between vari-
ous brain regions [31]. As a result, the synchronous activity 
of neurons reduces, synchronization and coupling functions 
become abnormal, and neural activity patterns become sim-
plified, leading to the progression of cognitive dysfunction 
[20]. 

Among the various frequency bands, the α band of the 
background rhythm is the most widely studied [33, 34]. 
When healthy adults are in a rest state with eyes closed, EEG 
usually shows an α dominant rhythm in the occipital region 
[35]. This rhythm is generated by the synchronous activity of 
thalamic neurons, regulated by the interaction between the 
thalamic-cortex and cortico-cortex and is closely related to 
cognitive function [12, 36, 37]. The strength of occipital α -
rhythm activity is negatively correlated with gray matter and 

hippocampal atrophy [35, 38] and positively correlated with 
scores of cognitive function assessments [36]. In addition, 
patients with AD and mild cognitive impairment show a shift 
in power spectrum to a lower frequency band, a decrease in 
the consistency of the fast rhythm [22], and a decrease in the 
amplitude of the occipital α rhythm [19]. Moreover, the ac-
tivity of the δ and θ bands increases, while the activity of the 
α and β bands decreases [39, 40]. 

Numerous studies have used the ratio of the combined 
values of frequency bands to determine the degree of de-
creased high-frequency activity and increased low-frequency 
activity. For example, Ozbek et al. used decreased α/θ power 
as an index of decreased α power and increased θ power to 
distinguish early-onset AD patients from healthy subjects 
[6]. Several studies have also found that a decrease in 
(α+β)/(δ+θ) and the α2/α1 ratio are specifically related to 
cognitive decline and reflect the slowing of EEG activity [4, 
41, 42]. Polverino et al. reported that the α2/α1 power ratio 
is lower in patients with mild cognitive impairment than in 
healthy controls (HC), although the total α power did not 
differ significantly [43]. It is possible that α1 is mainly relat-
ed to overall attentional fluctuation, whereas α2 reflects the 
content of sensorimotor or semantic information in specific 
nervous system oscillations [36]. 

Another study on the α rhythm by Babiloni et al. found 
that the α -band connections and functional connectivity be-
tween the cerebral hemispheres were significantly reduced in 
patients with AD and mild cognitive impairment, whereas 
subjects with intact cognitive function had higher functional 
connectivity between the hemispheres [17]. These reductions 
in the patients decreased stepwise with the severity of cogni-
tive decline [44]. Furthermore, a drug study has shown that 
the α -band global functional connectivity of AD patients 
improved following cognitive drug therapy [19]. 

The aim of this study was to develop a new method to 
identify the key characteristics of α rhythm slowing in AD 
patients. 

2. MATERIALS AND METHODS 

2.1. Participants 

A total of 84 AD patients from the outpatient and inpa-
tient departments of Tianjin Union Medical Center were in-
cluded in this study, which comprised 42 mild AD (mAD) 
patients (21 male, mean age 73.31 ± 9.462 years) and 42 
moderately severe AD (msAD) patients (22 male, mean age 
67.93 ± 8.148 years). 

Inclusion criteria for AD patients were as follows: (1) 
met diagnostic criteria of the National Institute of Aging and 
Alzheimer’s Disease Association Diagnostic Guidelines 
Writing Group (2011) [45] ; (2) impairment of two or more 
cognitive domains in the fields of memory, language, visual 
space, execution, and changes in personality and behavior; 
(3) aged over 50 years, with an educational level above pri-
mary school education; (4) impairment of activities of daily 
living (> 22 points on the Abilities of Daily Living Scale 
[ADL]) caused by a non-somatic structural disorder that se-
riously affects social function, and a Clinical Dementia Rat-
ing Scale (CDR) score of 1-3 points. Patients with a CDR 
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score of 1 were classified as mAD, and those with a CDR 
score of 2 or 3 were classified as msAD. 

 Exclusion criteria were as follows: (1) patients with cog-
nitive impairment caused by frontotemporal dementia, de-
mentia with Lewy bodies, vascular dementia, Parkinson’s 
syndrome, epilepsy, or other mental diseases; (2) patients 
with serious digestive, respiratory, circulatory, blood, im-
mune, or other system diseases; (3) patients whose cranial 
computed tomography or MRI showed significant abnormal 
signals in important regions, such as the frontal lobe, tem-
poral lobe, hippocampus, and thalamus; (4) patients with a 
history of drug, poison, or alcohol abuse or head trauma. 

We recruited 40 HC subjects matched for age and educa-
tional level during the same period, comprising 17 male pa-
tients with a mean age of 68.53 ± 9.543 years. Inclusion cri-
teria were as follows: (1) normal cognitive function and no 
complaints of subjective memory loss (defined as a Mini-
mental State Examination [MMSE] score of ≥ 27 points, 
junior high school and above education, ADL score of < 22 
points, CDR score of 0 points); (2) no history of neuropsy-
chiatric disorders or drug and alcohol abuse; (3) no history of 
serious heart, lung, liver, or kidney-related diseases; (4) no 
obvious sleep disorder. 

Local institutional ethics committees approved the study. 

2.2. Neuropsychological Measures 
�Data on the medical history and medication of AD pa-

tients were collected. Participants underwent evaluations 
using the following scales, which were completed by the 
participants themselves or by a guardian who was familiar 
with the participant’s condition. The degree of cognitive 
impairment was assessed using the MMSE and the CDR. 
The MMSE scale was used to assess global cognitive per-
formance. The ADL was used to assess impairments in daily 
life. The Chinese versions of the auditory verbal learning 
test, shape trail test, animal fluency test, clock drawing test, 
and digital span test were used to evaluate participants’ 
memory, executive function, language ability, spatial-
temporal structure, attention, and other cognitive functions. 
The Hachinski Ischemic Scale was used to calculate the cer-
ebral ischemia index. The Hamilton Depression and Anxiety 
Scales were used to assess depression and anxiety. Patients 
whose condition was too severe to cooperate or complete 
any part of the assessment were recorded as unable to com-
plete, and the score of the patient for the incomplete cogni-
tive assessment was recorded as 0. 

2.3. EEG Recording and Analysis 

2.3.1. EEG Data Acquisition 

Subjects were instructed not to take sleep-disrupting 
medications (e.g., antipsychotics, antidepressants, benzodi-
azepines, or any sleep-inducing drugs) or substances (e.g., 
coffee and alcohol) from 2 days before and on the day of the 
examination and to wash and dry their hair on the day of the 
examination. The scalp was cleaned with alcohol before the 
EEG recording. EEG data were acquired in a quiet and com-
fortable EEG room. During the EEG recording, subjects 
were seated in a quiet room and were asked to keep their 
eyes closed. EB-neuro Be-light (Firenze, Italy) EEG and 

scalp disc electrodes were used for the EEG recording. We 
placed 20 scalp electrodes according to the international 
standard 10-20 system, which included two auricular elec-
trodes. Bilateral auricular electrodes were used as reference 
electrodes to collect 16-lead EEG signals. The electrical im-
pedance was maintained at < 5 kΩ, the sampling frequency 
was set to 512 Hz, and low-frequency and high-frequency 
filtering were set to 0.3 Hz and 35 Hz, respectively. The total 
recording time was 10-20 minutes. Lead settings were as 
follows: FP1-A1, FP2-A2, F3-A1, F4-A2, C3-A1, C4-A2, 
P3-A1, P4-A2, O1-A1, O2-A2, F7-A1, F8-A2, T3-A1, T4-
A2, T5-A1, and T6-A2. After EEG data were collected, 20 s 
16-lead EEG data without visual artifacts were selected for 
subsequent analyses. 
2.3.2. EEG Digital Signal Analysis 

2.3.2.1. Wavelet Analysis 

Gauss continuous wavelet transform (CWT) analysis was 
used to analyze the EEG data. Wavelet transform is a time-
frequency localization analysis method which converts one-
dimensional unsteady EEG signals into two-dimensional 
time-frequency signals, gradually refines signals of multiple 
scales, and enables accurate synchronization analysis in the 
time and frequency domains. The calculation method is ex-
pressed by the following formula: 

���� ��� � � � � ���� � ���
��

��
          (1). 

The wavelet generating function was transformed by 
translating the β units and scaling the α units to obtain the 
wavelet function family ������� , where t represents time, α 
represents the scale transformation factor, and β represents 
the translation parameter corresponding to the time variable 
t. The translation scaling process is shown in Fig. (1). The 
formula for the wavelet function is as follows in Eq. (2): 

���� � �
�

�
��

���

�
�                               (2) 

After the Gauss CWT analysis, we determined the corre-
sponding relationship between frequency and scale number, 
which is shown in Table 1. 

 
Fig. (1). Signal decomposition and extraction process of the wave-
let transform signal. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 
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Table 1. Correspondence between EEG signal analyses of scale and frequency. 

Scale 5 6 7 8 9 10 11 12 13 14 15 

Frequency (Hz) 52.02 34.68 23.12 15.41 10.28 6.85 4.58 3.04 2.03 1.35 0.90 

Scale 16 17 18 19 20 21 22 23 24 25 26 

Frequency (Hz) 0.60 0.40 0.27 0.18 0.12 0.08 0.05 0.04 0.02 0.02 0.01 

 
2.3.2.2. Conditional Sampling - Phase Averaging 

The average phase waveform of the EEG signal is re-
garded as the average wavelength of waveform activity in a 
certain frequency band. The unit of wavelength is time (s), 
and 1/s is the specific frequency of the wave in the corre-
sponding frequency band, the unit for which is Hz [46]. 

The EEG signal � ���  was used as the detection condi-
tion, and the single wavelet coefficient at the α scale � ���  
was detected. The maximum positive value was then calcu-
lated to obtain the average phase waveform. The calculation 
formula is as follows in Eq. (3): 

� ��� �
�� � � � �� �

� �

�
� �� �

� �

�

��� ���������

                  (3) 

The above sampling function formula is the correspond-
ing conditional qualification; thus, it is also called the condi-
tional sampling function. The original EEG signal � �  in 
Eq. (1) and the phase average waveform � ���  in Eq. (4) 
are multiplied to obtain � � � ���  . Therefore, unqualified 
signals are removed to leave only the qualified signals to 
enable conditional sampling of the original EEG signal. The 
screened EEG signal fragments were superimposed in terms 
of consistent length (wavelength and amplitude) and phase 
alignment, and phase averaging was subsequently performed 
to obtain the average phase waveform of the desired scale of 
each lead: 

� � ��� ��
�

�
� � � �� �

� �

�

�
��� � �� �� � � �

� �
� �

�
�
� �

�
                           (4) 

2.4. Statistical Analysis 

All data were analyzed using the IBM SPSS Statistics 24 
software (IBM SPSS Inc., Chicago, USA). Normally distrib-
uted data are expressed as means ± standard deviations, and 
non-normally distributed data are expressed as interquartile 
ranges. Clinical data and the average waveform wavelength 
of the ninth scale phase in different brain regions of the HC, 
mAD, and msAD groups were analyzed using analysis of 
variance for normally distributed data and the Kruskal-
Wallis test for non-normally distributed data. If the Kruskal-
Wallis test for the average waveform wavelength of the ninth 
scale phase in different brain regions showed a significant 
difference among the three groups, pairwise comparison be-
tween groups was performed by Mann-Whitney U test, and 
the results were corrected by Bonferroni. Spearman correla-
tion analysis was used to investigate the correlation between 
the average waveform wavelength of the ninth-scale phase 

and the MMSE score. Receiver operating characteristic 
(ROC) curve analysis was used to evaluate the diagnostic 
accuracy of the α-rhythm wavelength of each lead, and the 
Youden Index was calculated to find the best cutoff value. 
The area under the ROC curve (AUC) was used to evaluate 
the diagnostic efficacy of the ninth scale phase average 
waveform wavelength in different leads. P < 0.01 indicated 
statistical significance. The Origin 2017 and GraphPad Prism 
8.4.0 software were used for drawing the figures. 

3. RESULTS 

3.1. Clinical Data Analysis 

The comparison results of clinical data among the three 
groups are shown in Table 2. No significant differences in 
age, sex, or an educational level were found among the three 
groups (P > 0.05). The MMSE score differed significantly 
among the three groups (P < 0.001). 

3.2. Original Visual EEG 

�Fig. (2) shows the original visual EEG of three subjects 
in the HC (a), mAD (b), and msAD (c) groups of the same 
sex and similar age, which is a typical representative of peo-
ple with different cognitive levels. As shown in Fig. (2a), the 
visual background EEG of the HC was dominated by the α 
rhythm. There was a clear predominant α rhythm in the oc-
cipital region, which was mixed with a small amount of β 
and θ waves. As shown in Fig. (2b), the visual EEG showed 
that the α background rhythm was slower, the α rhythm was 
shifted forward, the dominance of the occipital region was 
less obvious, there were more θ waves in the background, 
and amplitude modulation was poorer in mAD patients than 
in HCs. Fig. (2c) shows that the background rhythm of the 
visual EEG of msAD patients was even slower than mAD 
patients, characterized by primarily the θ rhythm at approxi-
mately 5 Hz. There was almost no dominant α rhythm in the 
occipital region. Moreover, the waveform was irregular, and 
the amplitude modulation was poor. Henceforth, this rhythm 
change phenomenon is collectively referred to as the slowing 
of the α rhythm. Although the slowdown of this scale rhythm 
has exceeded the range of the α frequency band, the change 
of the average phase waveform of this scale is continuous in 
patients with different degrees of dementia, and it is still 
referred to as the slowdown of α rhythm in this paper. 

3.3. Time-frequency Analysis of EEG Signals at Different 
Scales 

The Gauss wavelet transform technique was used to de-
compose 20-seconds original EEG signals to study the time-
frequency characteristics of EEG signals and understand the 
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Table 2. Demographic data. 

Group All Subjects HC mAD msAD χχ2/F/U P 

Gender (F/M) 64/60 23/17 21/21 20/22 0.867 0.648 

Age 71.09 ± 9.304 68.53 ± 9.543 73.31 ± 9.462 71.31 ± 8.487 2.807 0.064 

Education 5.69 ± 2.173 6.18 ± 0.347 5.29 ± 0.341 5.62 ± 0.320 1.767 0.175 

MMSE 22.00 (14.00,27.00) 29.00 (27.00,30.00) 22.00 (20.00,24.00) 10.50 (4.50,14.00) 109.396 <0.001 

 

Fig. (2). Original visual EEG of HC (a; MMSE 30 points), mAD (b; MMSE 19 points), and msAD (c; MMSE 3 points) in a quiet state with 
eyes closed. 
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Fig. (3). Time-frequency analysis of EEG signals at different scales in HC (a and b; MMSE 30 points), mAD (c and d; MMSE 19 points), 
and msAD (e and f; MMSE 3 points). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

relationship between different scales of EEG signals. Figs. (3 
and 3-f) shows the time-frequency analysis diagrams of the 
EEG signals in the occipital region corresponding to Fig. (2) 
of the three subjects, respectively. The horizontal axis repre-
sents time (the sampling frequency was 200 Hz, correspond-

ing to 1 s when converted into time), and the vertical axis 
represents the scale (the corresponding relationship with 
frequency is shown in Table 1). The different colors indicate 
the amplitude (voltage) of the wavelet coefficient. 
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Figs. (3a and b) show the time-frequency structure char-
acteristics of the EEG signals at different time resolutions 
(i.e., 10 and 2 s, respectively) in HCs. The 10-s contour map 
shows an obvious “cascade coupling” relationship between 
different scales in HCs. The 21-scale structure generated a 
17-scale envelope structure via bifurcation, and the 17-scale 
structure enveloped the nine-scale structure, which showed a 
clear hierarchical interconnecting relationship. The 2-s con-
tour map shows rhythmic activity at the ninth scale below 
the 17-scale structure, which contained approximately 8-10 
nine-scale structures per second. 

Figs. (3c and d) show the time-frequency structure char-
acteristics of the EEG signals in mAD patients at different 
time resolutions (i.e., 10 and 2 s, respectively). The 10-
second contour map shows that the “cascade coupling” rela-
tionship between different scales was disordered, and the 
scale structure was not rich. The 2-s contour map shows 
rhythmic activity at the 10th scale below the 17-scale struc-
ture, and there were approximately 6-8 10-scale structures 
per second, corresponding to a frequency of approximately 6 
Hz. These results indicated that the α band of mAD patients 
moved to a higher scale than that of HCs; that is, the α 
rhythm slowed down. 

Figs. (3e and f) shows the time-frequency structure char-
acteristics of EEG signals in msAD patients at different time 
resolutions (i.e., 10 and 2 s, respectively). The comparison of 
contour plots among subjects a, b and c showed that as AD 
progressed, the scale structure became simplified, and the 
“cascade coupling” structure gradually deteriorated and was 
destroyed. The α band of msAD patients moved to a higher 
scale, approaching the 11th scale, and the slowing of the α 
rhythm was more evident in these patients than in HCs and 
mAD patients. 

3.4. EEG Waveform Activity of the Ninth Scale  

We examined the waveform activity characteristics of the 
ninth scale in the occipital region corresponding to the α 
frequency band. Fig. (4) shows the activity waveforms of the 
main rhythm in the occipital region of the above three sub-
jects. The 10- and 2-s data with stable signals are shown in 
the figure. The 10-s α-wave shape characteristics of the HC 
(Fig. 4a), MMSE 30 points), mAD (Fig. 4c), MMSE 19 
points), and msAD subjects (Fig. 4e), MMSE 3 points) 
showed that the α -wave density decreased significantly as 
cognitive function declined. The 2-s pattern of the three sub-
jects showed that the occipital region of HCs (Fig. 4b) was 
dominated by an α  rhythm of 9-10 Hz, and the amplitude 
modulation was good. In mAD (Fig. 4d) patients, the back-
ground occipital α  rhythm was slow at approximately 7-8 
Hz, and the amplitude modulation was poor. The EEG of the 
msAD (Fig. 4f) patients showed that the background rhythm 
was even slower at approximately 5-6 Hz. 

3.5. Phase Average Waveform Analysis of the EEG Sig-
nal of the Ninth Scale  

We extracted the phase average waveform characteristics 
of the ninth scale in different leads, which were the frequen-
cy bands of the visual EEG of healthy awake adults in a qui-
et state with eyes closed. The corresponding center frequen-
cy was 10 Hz. Fig. (5) represent the phase average waveform 

characteristics of lead O1 of the ninth scale in the three sub-
jects, respectively, corresponding to Fig. (2). The average 
waveform wavelength of the ninth-scale phase in the lead of 
HC was approximately 0.1 s, and the corresponding center 
frequency was 10 Hz, corresponding to the α frequency 
band. The average waveform wavelength of the lead in mAD 
subject was approximately 0.13 s, and the corresponding 
center frequency was 7-8 Hz. The average waveform wave-
length of the ninth-scale phase in the lead of msAD subject 
was approximately 0.16 s, which corresponded to a center 
frequency of 6.25 Hz. The comparison of the average phase 
waveforms among the three subjects with different wave-
lengths revealed that the average waveform wavelength of 
the ninth scale gradually lengthened as the cognitive function 
of patients declined, and the α  frequency gradually slowed. 
Thus, the slow α frequency of the EEG signal gradually 
slowed with the progression of AD. We found that the aver-
age waveform wavelength of the ninth-scale phase was high-
est in msAD patients, followed by mAD patients and HCs. 

The Kruskal-Wallis test was used to compare the average 
wavelength of the ninth-scale phase of EEG signals in dif-
ferent brain regions (16 leads) among mAD patients, msAD 
patients, and HCs. As shown in Table 3, results showed sig-
nificant differences in the wavelength of the average wave-
form of the ninth-scale phase of EEG signals among the 
three groups under a spontaneous state. In the HC and mAD 
groups, the wavelengths of the parietal and occipital regions 
were shorter than those of the anterior head and temporal 
regions, which is consistent with the dominant rhythm distri-
bution characteristics of the occipital region. However, in 
msAD patients, the wavelengths of each lead across the brain 
were similar, and there were no obvious dominant rhythm 
distribution characteristics. The wavelength of msAD pa-
tients was greater than that of the mAD patients and HC sub-
jects. The results of the pairwise comparisons by the Mann-
Whitney U test between the groups are shown in Table 4. 
Except for the T6 lead of mAD and msAD patients, the aver-
age wavelength of the ninth-scale phase of the leads differed 
significantly between groups (P < 0.01). To more directly 
observe the average waveform wavelength characteristics of 
the ninth-scale phase of different leads in the three groups, 
we drew a violin plot (Fig. 6), which showed that as cogni-
tive function declined, the wavelength increased, and the 
EEG signal slowed. Furthermore, the wavelength of several 
msAD patients was greater than 0.2 s, which is equivalent to 
a scale-corresponding frequency of over 5 Hz, approaching 
or reaching the θ band.�

3.6. Correlation Analysis between the Phase Average 
Waveform Wavelength of the Ninth Scale and the MMSE 
Score 

To examine the relationship between the average wave-
form wavelength of the ninth scale and the severity of AD, 
we performed a correlation analysis between the phase aver-
age waveform wavelength at the ninth scale in different leads 
and the MMSE score. Fig. (7) shows a scatter plot of the 
correlation in different leads. In all leads, we found that as 
the MMSE score decreased, the phase average waveform 
wavelength of the ninth scale became larger, as evidenced by 
a significant negative correlation. The Spearman correlation 
analysis results showed all leads were significant (Table 5),
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Fig. (4). Waveform activity of EEG signals in the occipital region of an HC (a and b; MMSE 30 points), an mAD (c and d; MMSE 19 
points), and an msAD subject (e and f; MMSE 3 points) at the ninth scale for 10 s and 2 s. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
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a. HC subject (MMSE 30 points) 

 
b. mAD subject (MMSE 19 points) 

 
c. msAD subject (MMSE 3 points) 

 
d. phase average waveform wavelength of lead O1 in three subjects 

Fig. (5). (a-c), respectively, show the ninth-scale phase average waveform characteristics of different brain regions in the left hemisphere of 
HC, mAD, and msAD subjects. (d) shows the average waveform wavelength of the ninth scale of lead O1 in HC, mAD, and msAD subjects. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
and the strongest correlation was found in lead P3 (ρ = 
0.721, P < 0.001). There were no significant correlations 
between the phase average waveform wavelength of the 
ninth scale and age, sex, or educational level (P > 0.05). 

3.7. ROC Curve Analysis 

The ROC curve analysis was performed on the phase av-
erage waveform wavelength of the ninth scale between HCs 
and mAD patients, HCs and msAD patients, mAD and 
msAD patients, and HCs and all AD patients. The results are 
shown in (Fig. 8 and Table 6). For the comparison between 
the HCs and the mAD patients, the diagnostic efficacy of the 
phase average waveform wavelength of the ninth scale of all 
leads except T4 was higher than 70%. The AUC of lead P3 
was the largest (AUC = 0.805, P < 0.001), which indicated 
that this lead had the greatest diagnostic efficacy. For the 
comparison between HCs and msAD patients, the diagnostic 
efficiency of the phase average waveform wavelength of the 
ninth scale in all leads was higher than 80%, and the AUC of 
lead P3 was the largest (AUC = 0.940, P < 0.001), indicating 

that this lead had the greatest diagnostic efficiency. For the 
comparison between the mAD and msAD patients, the diag-
nostic efficiency of the phase average waveform wavelength 
of the ninth scale in all leads was higher than 70%, and the 
FP1 lead had the largest AUC (AUC = 0.812, P < 0.001) and 
thus had the greatest diagnostic efficiency. For the compari-
son between HCs and all AD patients, the diagnostic effi-
ciency of the phase average waveform wavelength of the 
ninth scale in all leads was higher than 70%, and the AUC of 
lead P3 was the largest (AUC = 0.873, P < 0.001), which 
indicated that this lead had the greatest diagnostic efficacy. 

The wavelength of the average phase waveform of the 
ninth scale showed a higher correct index for the diagnosis 
of AD patients. As shown in Table 7, among the 16 leads 
across the brain, the Youden Index of the phase average 
waveform wavelength of the ninth scale in lead P3 reached 
0.668, with a sensitivity of 89.3% and a specificity of 77.5%. 
A phase average waveform wavelength of the ninth scale of 
lead P3 of 0.11 seconds was determined to be the critical 
value for differentiating AD patients from HCs. 
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Table 3. Comparison results of the phase average waveform wavelength of the ninth scale of subjects in the HC, mAD, and msAD 
groups. 

Lead 
HC 

The Median (P25��P75) 
msAD 

U P mAD 

(n=40) (n=42) (n=42) 

FP1 0.110 (0.103, 0.119) 0.120 (0.116, 0.130) 0.140 (0.130, 0.160) 57.319 <0.001 

FP2 0.110 (0.103, 0.120) 0.120 (0.115, 0.130) 0.140 (0.128, 0.153) 47.134 <0.001 

F3 0.110 (0.100, 0.112) 0.120 (0.110, 0.130) 0.130 (0.127,0.160) 55.358 <0.001 

F4 0.110 (0.100, 0.118) 0.120 (0.110, 0.129) 0.131 (0.128, 0.160) 53.448 <0.001 

C3 0.105 (0.100, 0.110) 0.120 (0.110, 0.122) 0.130 (0.120, 0.150) 59.564 <0.001 

C4 0.105 (0.100, 0.116) 0.112 (0.110, 0.121) 0.130 (0.120, 0.160) 47.838 <0.001 

P3 0.100 (0.098, 0.110) 0.113 (0.110,0.125) 0.135 (0.120, 0.150) 60.449 <0.001 

P4 0.104 (0.100, 0.110) 0.110 (0.110, 0.129) 0.130 (0.120, 0.150) 42.549 <0.001 

O1 0.102 (0.100, 0.110) 0.110 (0.110, 0.120) 0.140 (0.120, 0.150) 58.359 <0.001 

O2 0.102 (0.100, 0.110) 0.110 (0.110, 0.120) 0.130 (0.120, 0.150) 49.716 <0.001 

F7 0.110 (0.102, 0.112) 0.120 (0.110, 0.130) 0.140 (0.130, 0.150) 54.083 <0.001 

F8 0.110 (0.102, 0.118) 0.120 (0.110, 0.130) 0.140 (0.120, 0.143) 41.420 <0.001 

T3 0.102 (0.100, 0.110) 0.113 (0.110, 0.123) 0.140 (0.120, 0.150) 58.720 <0.001 

T4 0.110 (0.100, 0.119) 0.117 (0.110, 0.130) 0.130 (0.110, 0.150) 29.127 <0.001 

T5 0.105 (0.100,0.110) 0.120 (0.110, 0.126) 0.135 (0.120, 0.150) 55.631 <0.001 

T6 0.110 (0.100, 0.116) 0.120 (0.110, 0.130) 0.130 (0.118, 0.143) 30.054 <0.001 

 

Table 4. Comparison and statistical analysis results of the phase average waveform wavelength of subjects in the HC, mAD, and 
msAD groups. 

- 
HC VS mAD HC VS msAD mAD VS msAD 

Z (P) Z (P) Z (P) 

FP1 -3.551 (0.001) -7.562 (<0.001) -4.060 (<0.001) 

FP2 -3.553 (0.001) -6.865 (<0.001) -3.354 (0.002) 

F3 -3.735 (0.001) -7.440 (<0.001) -3.751 (0.001) 

F4 -3.476 (0.002) -7.304 (<0.001) -3.876 (<0.001) 

C3 -3.857 (<0.001) -7.717 (<0.001) -3.908 (<0.001) 

C4 -3.039 (0.007) -6.893 (<0.001) -3.902 (<0.001) 

P3 -3.941 (<0.001) -7.775 (<0.001) -3.881 (<0.001) 

P4 -3.108 (0.006) -6.517 (<0.001) -3.452 (0.002) 

O1 -3.645 (0.001) -7.633 (<0.001) -4.037 (<0.001) 

O2 -3.084 (0.006) -7.025 (<0.001) -3.991 (<0.001) 

F7 -3.508 (0.001) -7.348 (<0.001) -3.888 (<0.001) 

F8 -3.221 (0.004) -6.435 (<0.001) -3.255 (0.003) 

T3 -3.789 (<0.001) -7.661 (<0.001) -3.920 (<0.001) 

T4 -2.421 (0.046) -5.383 (<0.001) -2.998 (0.008) 

T5 -3.606 (0.001) -7.454 (<0.001) -3.896 (<0.001) 

T6 -3.336 (0.003) -5.445 (<0.001) -2.135 (0.098) 
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�
Fig. (6). Comparison of the phase average waveform wavelength of the ninth scale EEG signal in different leads between the AD patients and 
HCs. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
4. DISCUSSION 

According to traditional visual EEG analysis, as cogni-
tive function declines, dementia patients may exhibit various 
visual EEG features, such as slowing of background rhythm 
frequency and adjustment and amplitude modulation chang-
es; however, it is difficult to distinguish early AD patients 
[25]. Therefore, extracting accurate waveform features to 
identify early disease states is crucial. Our aim was to identi-
fy simple EEG biomarkers that respond during rest state. We 
decomposed EEG signals at different scales using wavelet 
transform analyses and determined EEG characteristics in 
terms of time and frequency simultaneously. The phase av-
eraging technique enables the extraction of multi-scale 
phase-averaging waveforms from EEG signals. The main 
advantage of this technique is its ability to detect the compo-
nents of EEG signals with similar rhythms by establishing 
basic rhythmic activity characteristics of different scale 
components of EEG signals, intercepting the original com-
plex non-linear EEG signals into segments with the same 
components, superimposing these in phase alignment, and 
conducting phase alignment averaging to obtain the average 
waveform characteristics of EEG signals at certain scales 
and time periods. This enabled us to confirm that the phase 
average waveform wavelength reflects the frequency charac-
teristics of EEG signals. 

We extracted the average, typical waveform features of 
the ninth-scale phase of the background rhythm of EEG sig-

nals as an index of α-rhythm characteristics that correspond-
ed to a center frequency of approximately 10 Hz. We found a 
significant difference in the phase average waveform wave-
length of the ninth scale (i.e., the average wavelength of the 
α rhythm phase) between AD patients and HCs. We revealed 
that the wavelength of the phase average waveform of the α 
rhythm in HCs was within 0.11 s, which corresponded to an 
α-rhythm frequency of roughly 9 Hz. The wavelength of the 
phase average waveform in AD patients was between 0.11 
and 0.16 s, which scale corresponded to the frequency of 
approximately 6-9 Hz. Moreover, the wavelength of several 
patients with severe dementia reached as high as 0.20 s, 
which scale corresponded to the frequency of approximately 
5 Hz. A normal α rhythm involves the synchronization of a 
large number of neurons and ensures a normal transmission 
speed of cognitive information between cortical neurons 
with the same phase and frequency oscillation; this allows 
the cortical network to process cognitive information at an 
appropriate speed [47]. The slow rhythm of the α-phase av-
erage waveform in patients with AD may be related to the 
loss of cholinergic neurons projecting to the hippocampus 
and neocortex [21], and the synchronous activity of neurons 
involved in cognition, which slows information transmission, 
reduces the ability to further process and integrate infor-
mation, eventually leading to brain atrophy and cognitive 
dysfunction [19]. Studies have shown that the MMSE score 
of AD patients is negatively correlated with the wavelength 
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Fig. (7). Scatter plot of the relationship between the phase average waveform wavelength of the ninth scale and MMSE score in different 
brain regions of all subjects. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Table 5. Correlation between the phase average waveform wavelength of the ninth scale and MMSE score in all subjects. 

Lead FP1 F3 C3 P3 O1 F7 T3 T5 

ρ -0.689 -0.687 -0.718 -0.721 -0.709 -0.666 -0.701 -0.702 

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Lead FP2 F4 C4 P4 O2 F8 T4 T6 

ρ -0.644 -0.669 -0.651 -0.619 -0.673 -0.595 -0.534 -0.521 

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Fig. (8). ROC curves of the phase average waveform wavelength of the ninth scale of each lead in different groups. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 
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Table 6. Area and significance under the ROC curve of the phase average waveform wavelength of the ninth scale of each lead. 

Lead 
HC VS mAD HC VS msAD mAD VS msAD HC VS AD 

AUC P AUC P AUC P AUC P 

FP1 0.786 <0.001 0.921 <0.001 0.812 <0.001 0.853 <0.001 

FP2 0.773 <0.001 0.889 <0.001 0.756 <0.001 0.831 <0.001 

F3 0.783 <0.001 0.927 <0.001 0.779 <0.001 0.855 <0.001 

F4 0.767 <0.001 0.918 <0.001 0.787 <0.001 0.842 <0.001 

C3 0.803 <0.001 0.932 <0.001 0.801 <0.001 0.868 <0.001 

C4 0.733 <0.001 0.898 <0.001 0.783 <0.001 0.815 <0.001 

P3 0.805 <0.001 0.940 <0.001 0.796 <0.001 0.873 <0.001 

P4 0.744 <0.001 0.868 <0.001 0.761 <0.001 0.806 <0.001 

O1 0.778 <0.001 0.935 <0.001 0.798 <0.001 0.856 <0.001 

O2 0.736 <0.001 0.905 <0.001 0.789 <0.001 0.821 <0.001 

F7 0.773 <0.001 0.916 <0.001 0.792 <0.001 0.845 <0.001 

F8 0.748 <0.001 0.865 <0.001 0.746 <0.001 0.807 <0.001 

T3 0.795 <0.001 0.933 <0.001 0.798 <0.001 0.864 <0.001 

T4 0.683 0.004 0.813 <0.001 0.716 0.001 0.748 <0.001 

T5 0.772 <0.001 0.932 <0.001 0.785 <0.001 0.852 <0.001 

T6 0.737 <0.001 0.820 <0.001 0.658 0.013 0.779 <0.001 

 
Table 7. Sensitivity, specificity, Youden index, and cutoff score of the ROC curve analysis of the phase average waveform wave-

length of the ninth scale of 16 leads in AD and HC subjects. 

Lead Sensitivity (%) Specificity (%) Youden Index Cut off 

FP1 85.7 72.5 0.582 0.113281 

FP2 82.1 72.5 0.546 0.118828 

F3 76.2 82.5 0.587 0.118594 

F4 76.2 80.0 0.562 0.118830 

C3 70.2 87.5 0.577 0.118595 

C4 63.1 85.0 0.481 0.118830 

P3 89.3 77.5 0.668 0.109920 

P4 84.5 67.5 0.520 0.109922 

O1 92.9 67.5 0.604 0.109690 

O2 90.5 60.0 0.505 0.107423 

F7 77.4 77.5 0.549 0.113281 

F8 75.0 75.0 0.500 0.111641 

T3 91.7 70.0 0.617 0.109690 

T4 44.0 95.0 0.390 0.129455 

T5 70.2 85.0 0.552 0.119922 

T6 65.5 80.0 0.455 0.119922 
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of the average phase waveform, where the phase average 
waveform wavelength of the ninth scale in AD patients in-
creases gradually as dementia progresses, and the frequency 
is slower. In AD patients, the α rhythm slows, the degree to 
which can reach the θ or δ frequency band; this is known as 
α-rhythm slowing down. Our results showed that the average 
α-rhythm phase waveforms in all leads differed significantly 
among the HC, mAD, and msAD groups. Thus, we suggest 
that the slowing of α -rhythm frequency is an important bi-
omarker for differentiating AD patients from HCs. 

Although the slowing of the α rhythm has been demon-
strated in numerous studies, most previous studies only stud-
ied EEG slowing in dementia patients regarding power or 
amplitude [35, 48]. In contrast, we calculated the wavelength 
of the background rhythm of different individuals in the rest 
state to examine the α-rhythm frequency. We found that the 
more severe the dementia, the slower the EEG activity, and 
the longer the wavelength of the background rhythm, the 
lower the α frequency. Moreover, even the θ band rhythm 
can be reached in severe cases, although this is not the real 
meaning of the θ rhythm, but rather a slowing phenomenon 
of the α  rhythm. This finding is consistent with previous 
studies investigating power, where α frequency and power 
change are non-linearly correlated [47]. Several studies have 
demonstrated that the background rhythm of EEG slows dur-
ing the normal aging process in healthy older adults. Com-
pared with middle-aged adults aged 30-50 years, the α  fre-
quency of older adults aged 60-80 years is approximately 1 
Hz slower, characterized as a decrease in α amplitude in the 
posterior brain region, which may be related to the decline in 
cholinergic neuronal function in the basal ganglia [6]. Stud-
ies have also speculated that the slowing is not caused by 
aging but by age-related neurological diseases [47]. We also 
found that the average α-rhythm frequency of the older adult 
HCs was approximately 9 Hz, which is lower than the stand-
ard frequency of a younger healthy adult average (approxi-
mately 10 Hz). However, we did not find a correlation be-
tween the average waveform wavelength of the α phase and 
age change. This may be because there was little variation in 
the age of the subjects in our study, where the average age 
was approximately 70 years. The brain wave shape of each 
group is relatively stable at this age stage, and the benign 
changes affected by age do not differ in individuals of this 
age group. To identify the factors that influence EEG chang-
es during the process of normal aging, future studies should 
compare patients with age-matched healthy older adults to 
exclude the confounding factor of age.  

In 1999, Klimesch proposed that frequency and power 
are closely related metrics. The process of extracting indi-
vidual alpha frequency (IAF) involves the calculation of the 
power spectrum distribution of individual EEG signals. The 
second power peak (i.e., the lower power peak) was selected 
as the α -frequency band and defined as the IAF value, and 
the frequency range of low- and high-frequency α was delin-
eated around the peak [47]. Babiloni et al. [35] used the same 
method to delineate the α -frequency range in people with 
different levels of cognitive function. However, this algo-
rithm is limited to determining the α frequency according to 
the location of the peak power, and its main purpose is to 
provide the range of EEG band division in a study popula-

tion. Moreover, the accuracy is poor, and it does not reflect 
individuals’ average frequency of the real α rhythm. There-
fore, a more effective and accurate index is needed to quanti-
fy the slowing of the α rhythm. Our results showed that the 
phase average waveform wavelength avoids the interference 
of other scale information and only reflects the essence of 
the information of the α-rhythm. 

Babiloni et al. found that the occipital α rhythm ampli-
tude can classify HC and AD subjects effectively, with a 
sensitivity of 87.8%, a specificity of 66.7%, and an AUC of 
0.81 [35]. In addition, Cassani et al. achieved 91% accuracy 
in classifying HCs and AD patients using α spectral power 
and coherence. However, despite the high classification ac-
curacy, they did not correct for age, sex, or educational level 
[5]. Ozbek et al. found that a decrease in α/θ power ratio was 
the best index for differentiating early-onset AD patients 
from young HCs, with sensitivity and specificity of over 
80% and an AUC of 0.881. They suggested that patients with 
early-onset AD may have more extensive electrophysiologi-
cal abnormalities than those with late-onset AD [6]. Collec-
tively, previous studies have achieved classification accura-
cies of approximately 80% using EEG spectrum markers to 
differentiate AD patients from HCs [49]. We showed that the 
average phase waveform of the α rhythm in various brain 
regions differed significantly among HCs, mAD patients, 
and msAD patients, and the parietal region showed the larg-
est difference. Moreover, we achieved a sensitivity of 89.3%, 
a specificity of 77.5%, and an AUC was 0.873, which were 
more significant than power and amplitude. A phase average 
waveform wavelength of the α rhythm in lead P3 of 0.11 s 
was the optimal cut-off value to distinguish AD from HCs. 
The normal human α rhythm is dominant in the occipital 
region of the visuospatial cortex [50]. We found that the 
phase average waveform wavelength of the ninth scale in 
lead P3 was most strongly correlated with the MMSE score, 
and the diagnostic efficiency of distinguishing HCs from AD 
patients was the greatest in this lead. We speculate that this 
may be related to the shifting forward of the α  rhythm and 
the disappearance of a dominant rhythm in the occipital re-
gion in dementia patients [47]. Cicalese et al. similarly found 
that the left parietal lobe is closely related to AD-related 
cognitive decline using machine learning combined with 
EEG and functional near-infrared spectroscopy [51]. Previ-
ous studies have suggested that the precuneus in the parietal 
lobe and the posterior cingulate cortex are landmark regions 
of brain damage in AD patients, as evidenced by the deposi-
tion of pathological material and reduction in gray matter 
volume. As AD progresses, the parietal network becomes 
disrupted, and functional connectivity is reduced [19, 52] , 
which may explain why the slowing of the α rhythm is more 
prominent in the parietal lobe. 

Our study had several limitations. Because of the severity 
of cognitive impairment in some AD patients, the EEG data 
of subjects in the dementia group were not normally distrib-
uted. In the future, we plan to increase the sample size, ex-
pand the study population, and include patients with mild 
cognitive impairment to further verify the sensitivity, speci-
ficity, and accuracy of the phase average waveform as a di-
agnostic biomarker for AD. 
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CONCLUSION  
Our study aimed to identify simple EEG biomarkers for 

the diagnosis of AD. Our findings suggest that the phase 
average waveform wavelength of the ninth scale can be used 
as an electrophysiological biological marker for AD diagno-
sis with high accuracy and may serve as a simple auxiliary 
diagnostic tool for early screening of AD on a large scale 
and a non-invasive biomarker of neurodegeneration. 

LIST OF ABBREVIATIONS 

AD = Alzheimer’s Disease 
EEG = Electroencephalography 
Aβ = β-amyloid 
CSF = Cerebrospinal Fluid 
p-TAU 181 = Phosphorylated Tau Protein  
MRI = Magnetic Resonance Imaging  
HC = Healthy Controls  
mAD = Mild AD  
msAD = Moderately Severe AD  
ADL = Abilities of Daily Living Scale  
CDR = Clinical Dementia Rating Scale  
MMSE = Mini-mental State Examination  
CWT = Continuous Wavelet Transform  
ROC = Receiver Operating Characteristic  
AUC = Area Under the ROC Curve 
IAF = Individual Alpha Frequency  
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